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Mathematical programming

LP
maximize cTx
subject to Ax <b
and x>0

MILP

Some of the variables are integer
Objective and constraints are still linear

Convex program
Optimize a convex function over a convex set

Non-convex program
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Task Taxonomy %C/mﬁg

Target Management

Target previously pointed out ?

No Yes

Target Detection Target Tracking
| . ) .

. : Require multiple or single

Involve mobile or fixed sensors ? q . p & .
\ point of view per target ?

Mobile Fixed Multiple Single
Viewpoints Viewpoint
|M0bile Search | |Sratic Surveillance
|

Provide any guarantee ? Target Localization Monitoring
|
Worst-case None j i ?
Probabilistic Multiple or single target :
Multiple Targets Single Target
Capture | Probabilistic Search Hunting
|
Cyclic task? Observation Following
Yes
Patrolling

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760. 3



Resource allocation games @
CENTER

Developed by team of prof. M. Tambe at USC (2008-now)

In daily use by various organizations and security agencies



http://teamcore.usc.edu/projects/security/

Resource allocation games
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Resource allocation games @ AN

Setof targets: T = tq, ..., t,

Limited (homogeneous) security resources r € N
Each resource can fully protect (cover) a single target

The attacker attacks a single target
Attacker’s utility for covered/uncovered attack: US(t) < UK (t)

Defender’s utility for covered/uncovered attack: Uj(t) > UZ(t)



Stackelberg equilibrium

the leader (1) — publicly commits to a strategy

the follower (f) — plays a best response to leader

s alEA(Az)r;nae})éBR (o)) n(01, o)
Example
P L R
U (4,2) 6,1)
D 3,1) (5,2)
Why?
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The defender needs to commit in practice (laws, regulations, etc.)

It may lead to better expected utility



Solving resource allocation games @ AN
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Kiekintveld, et al.: Computing Optimal Randomized Resource
Allocations for Massive Security Games, AAMAS 2009

Only coverage vector c; matters, Z is a sufficiently large number

max d
a; € {0,1} VteT

Zat: 1

teTl

ct € 0, 1] VteT
Jes om
teTl

d—Us(t,C) < (1—ar)-Z VteT
0<k-Us(t,C)< (1—ar)-Z VteT



Sampling the coverage vector % / \I
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Scalability e VAX

25 resources, 3000 targets => 5 x 10°! defender’s actions
no chance for matrix game representation

The algorithm explained above is ERASER

Runtime scaling with Targets
® ERASER ORIGAMI A ORIGAMI-MILP
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Studied extensions %/\i
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Complex structured defender strategies

Probabilistically failing actions

Attacker’s types

Resource types and teams

Bounded rational attackers

11



Resource allocation (security) games %
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Advantages
Wide existing literature (many variations)
Good scalability
Real world deployments

Limitation
The attacker cannot react to observations (e.g., defender’s position)
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Perimeter patrolling %Ai
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Agmon et al.: Multi-Robot Adversarial Patrolling: Facing a Full-
Knowledge Opponent. JAIR 2011.

The attacker can see the patrol!
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Perimeter patrolling %é / \I

Polygon P, perimeter splitto N segments

5 equivalent
Defender has homogenous resources k > 1
move 1 segment per time step
turn to the opposite direction in T time steps

Attacker can wait infinitely long and sees everything
chooses a segment where to attack
requires t time steps to penetrate
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Interesting parameter settings

Letd = % be the distance between equidistant robots

There is a perfect deterministic patrol strategy if t > d

the robots can just continue in one direction

What about t = %d ?

|
d
' t+1 d— (t—1)

The attacker can guarantee successif t+1<d—-(t—17)= t<

@ CENTER

d+t-1
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Optimal patrolling strategy %é AN
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Class of strategies: continue with probability p, else turn around

Theorem: In the optimal strategy, all robots are equidistant and
face in the same direction.

Proof sketch:

1. the probability of visiting the worst case segment between
robots increases with increasing distance between the robots

2. making a move in different directions increases the distance

16



Probability of penetration %écwm

For simplicity assume 7 = 1

Probability of visiting s; at least once in next t steps
= probability of visiting the absorbing end state from s;
sum of each direction visited separately
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Probability of penetration %écwm

Algorithm 1 Algorithm FindFunc(d,t)

1: Create matrix M of size (2d + 1)(2d + 1), initialized with Os
2: Fill out all entries in M as follows:
3: M|[2d+1,2d+ 1] =
4: for i + 1 to 2d do
Mi,max{i + 1,2d + 1}| = p
Mli,min{l,i —2}| =1—p
Compute MT = M!
Res = vector of size d initialized with Os
for 1 <loc <ddo
10: V= vector of size 2d + 1 initialized with 0s.
11:  V|2loc| < 1
12:  Reslloc]| =V x MT|[2d + 1]
13: Return Res

© 00 ~1 & W

All computations are symbolic. The result are functions ppd;:[0,1] — [0,1].
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Optimal turn probability %Cwm

Maximin value for p

Each line represents one segment (ppd;)

fa
09}
08}
0.7}

06}

ppdi(p)
ppdi(p)

05+

0.4}

0.3F

0.2}

01}

Iterate all pairs of intersection and maximal points to find solution

it is all polynomials .



Perimeter patrol — summary % AN
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Split the perimeter to segments traversable in unit time
Distribute patrollers uniformly along the perimeter
Coordinate them to always face the same way

Continue with probability p turn around with probability (1 — p)
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Area patrolling

Basilico et al.:

algorithms for solving large instances with single patroller and
single intruder. AlJ 2012.
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Patrolling security games: Definition and

Or ;

. O

f o

Jor
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Area patrolling - Formal model %@CWEQ

Environment represented as a graph

Targets T = {6,8,12,14,18}

Penetration time d(t) (.
Target values

(va (), v4(0))

(N

e
o
o

Defender: Markov policy

Attacker: wait, attack(t)




Solving zero-sum patrolling game %écwm

We assume Vt € T : v,(t) = v (t)
a(i,j) = 1 if the patrol can move form i to j in one step; else O

P.(t, h) is the probability of stopping an attack at target t started when the patrol was at node h
yZ”j't is the probability that the patrol reaches node j from i in w steps without visiting target t

maxu
ajj=0 VijeV
ZD{I‘J =1 VieV
Jjev Ug(x) =
af,j <a(,j) Vi,jeV

> ier vali), X = intruder-capture or no-attack
Y ety va(i). X = penetration-t

}/f.:f =qajj VteT, i,jeV\{t]

vt = 3 (v Mag) Ywef2.....d®). teT, i jeV\ ()
xeV\{t}
Pc(t,h)=1— Z ]/f(;]’f YVteT, heV
jeviie

u < ug(intruder-capture) Pc(t, h) + ug(penetration-t)(1 — P¢(t, h))
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Al (GT) problems can often be solved by transformation to MP

27



