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Mathematical programming 

LP 

 

 

MILP 

Some of the variables are integer 

Objective and constraints are still linear 

Convex program 

Optimize a convex function over a convex set 

Non-convex program 
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Task Taxonomy 
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Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: 

taxonomy and survey. Autonomous Robots, 40(4), 729–760. 



Resource allocation games 

 

Developed by team of prof. M. Tambe at USC (2008-now) 

In daily use by various organizations and security agencies 
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http://teamcore.usc.edu/projects/security/


Resource allocation games 
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3 2 4 5 1 6 7 8 

Unprotected         10     11      9       15     11      15     14      6 

Protected             5       4       5        7       6        5       7      3 

-15 

-14 

-11 

 

-10 Optimal strategy        0     0.14      0      0.62    0.2     0.49   0.56     0 



Resource allocation games 

Set of targets: 𝑇 = 𝑡1, … , 𝑡𝑛 

Limited (homogeneous) security resources 𝑟 ∈  ℕ 

Each resource can fully protect (cover) a single target 

The attacker attacks a single target 

Attacker’s utility for covered/uncovered attack: 𝑈𝑎
𝑐 𝑡 < 𝑈𝑎

𝑢 𝑡  

Defender’s utility for covered/uncovered attack: 𝑈𝑑
𝑐 𝑡 > 𝑈𝑑

𝑢(𝑡) 
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Stackelberg equilibrium 

the leader 𝑙  – publicly commits to a strategy 

the follower (𝑓) – plays a best response to leader 

 
arg max

𝜎𝑙∈Δ 𝐴𝑙 ; 𝜎𝑓∈𝐵𝑅𝑓(𝜎𝑙)
𝑟𝑙(𝜎𝑙 , 𝜎𝑓) 

Example 

 

 

Why? 

The defender needs to commit in practice (laws, regulations, etc.) 

It may lead to better expected utility 
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L R 

U (4,2) (6,1) 

D (3,1) (5,2) 



Solving resource allocation games 

Kiekintveld, et al.: Computing Optimal Randomized Resource 

Allocations for Massive Security Games, AAMAS 2009 

Only coverage vector 𝑐𝑡 matters, 𝑍 is a sufficiently large number 
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Sampling the coverage vector 
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Scalability 

25 resources, 3000 targets  => 5 × 1061 defender’s actions 

no chance for matrix game representation 

The algorithm explained above is ERASER 
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Studied extensions 

Complex structured defender strategies 

 

 

Probabilistically failing actions 

 

Attacker’s types 

 

Resource types and teams 

 

Bounded rational attackers 
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Resource allocation (security) games 

Advantages 

Wide existing literature (many variations) 

Good scalability 

Real world deployments 

Limitation 

The attacker cannot react to observations (e.g., defender’s position) 
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Perimeter patrolling 

Agmon et al.: Multi-Robot Adversarial Patrolling: Facing a Full-

Knowledge Opponent. JAIR 2011. 
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The attacker can see the patrol! 



Perimeter patrolling 

Polygon 𝑃, perimeter split to 𝑁 segments 

 

 

 

 

Defender has homogenous resources 𝑘 > 1 

move 1 segment per time step 

turn to the opposite direction in 𝜏 time steps 

Attacker can wait infinitely long and sees everything 

chooses a segment where to attack 

requires 𝑡 time steps to penetrate 
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Interesting parameter settings 

Let 𝑑 =
𝑁

𝑘
 be the distance between equidistant robots 

There is a perfect deterministic patrol strategy if 𝑡 ≥ 𝑑 

the robots can just continue in one direction 

What about 𝑡 =
4

5
𝑑 ? 

 

 

 

 

 

 

The attacker can guarantee success if   t + 1 < d − t − 𝜏 ⇒  𝑡 <
𝑑+𝜏−1

2
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𝑑 

𝜏 

𝑡 𝑡+1 𝑑 − (𝑡 − 𝜏) 



Optimal patrolling strategy 

Class of strategies: continue with probability 𝑝, else turn around 

 

Theorem: In the optimal strategy, all robots are equidistant and 

face in the same direction. 

Proof sketch: 

1. the probability of visiting the worst case segment between 

robots increases with increasing distance between the robots 

2. making a move in different directions increases the distance 
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Probability of penetration 

For simplicity assume 𝜏 = 1 

Probability of visiting 𝑠𝑖 at least once in next 𝑡 steps 

= probability of visiting the absorbing end state from 𝑠𝑖  

sum of each direction visited separately 
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Probability of penetration 
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All computations are symbolic. The result are functions 𝑝𝑝𝑑𝑖: 0,1 → [0,1]. 



Optimal turn probability 

Maximin value for 𝑝 

Each line represents one segment (𝑝𝑝𝑑𝑖) 

 

 

 

 

 

 

 

Iterate all pairs of intersection and maximal points to find solution 

it is all polynomials 
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Perimeter patrol – summary 

Split the perimeter to segments traversable in unit time 

Distribute patrollers uniformly along the perimeter 

Coordinate them to always face the same way 

Continue with probability 𝑝 turn around with probability (1 − 𝑝) 
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Area patrolling 

Basilico et al.: Patrolling security games: Definition and 

algorithms for solving large instances with single patroller and 

single intruder. AIJ 2012. 
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Area patrolling - Formal model 

Environment represented as a graph 

Targets 𝑇 = 6,8,12,14,18  

Penetration time 𝑑(𝑡) 

Target values 

(𝑣𝑑 𝑡 ,𝑣𝑎 𝑡 ) 

 

 

 

 

Defender: Markov policy 

Attacker: wait, attack(t) 
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Solving zero-sum patrolling game 

We assume ∀𝑡 ∈ 𝑇 ∶  𝑣𝑎 𝑡 = 𝑣𝑑 𝑡  

𝑎 𝑖, 𝑗 = 1 if the patrol can move form 𝑖 to 𝑗 in one step; else 0 

𝑃𝑐(𝑡, ℎ) is the probability of stopping an attack at target 𝑡 started when the patrol was at node ℎ 

𝛾𝑖,𝑗
𝑤,𝑡

 is the probability that the patrol reaches node 𝑗 from 𝑖 in 𝑤 steps without visiting target 𝑡 
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𝛼𝑖,𝑗 is a probability of moving from 𝑖 to 𝑗 



AI (GT) problems can often be solved by transformation to MP 
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