Czech Technical University in Prague Lecture 12 Part 4 – Swarm and modular robots **B4M36UIR – Artificial Intelligence in Robotics** Petr Váňa, Petr Čížek, 2017 B4M36UIR - Lecture 12: Multi-Robot Planning 1 / 36 Petr Váňa, Petr Čížek, 2017 B4M36UIR - Lecture 12: Multi-Robot Planning 2 / 36 Multi-Robot Systems (MRS) - Intro Formed by individual robots (agents) capable of perceiving the environment by their sensors, communicating with other agents, and changing the environment by their actions. Part I (A. Farinelli et al., Trans. on Syst. Man and Cyber., 2004) Challenges in MRS scenarios: Part 1 – Multi-Robot Systems (MRS) Path/Motion planning How to find path for multiple robots? Collision avoidance How to find obstacle-free path? Dynamic obstacles in the environment How to execute the plans deadlock-free? Kiva Systems (Amazon warehouse) Limited communication radius Physical limitations of the robot Reliability of (centralized) MRS And others ... A busy traffic intersection

Overview of the Lecture

- Part 1 Multi-Robot Systems (MRS)
- Part 2 Multi-Robot Planning
- Part 3 MRS domains and tasks

Petr Váňa, Petr Čížek. 2017

B4M36UIR – Lecture 12: Multi-Robot Planning

Multi-Robot Planning

Jan Faigl

Department of Computer Science Faculty of Electrical Engineering

3 / 36 Petr Váňa, Petr Čížek, 2017

B4M36UIR – Lecture 12: Multi-Robot Planning

Multi-Robot vs. Single-Robot

Multi-Robot Systems - taxonomy (part 1)

- Pros.
 - Parallel task execution actions can be done in parallel
 - Improved robustness failure of an individual should not affect the whole team
 - Wider range of applications some tasks cannot be solved by a single robot or some specialization of the robot is needed (heterogeneous teams)

Cons.

Petr Váňa, Petr Čížek, 2017

- Interference the robots may interfere and disturb each other, there
 is an uncertainty about intentions of other robots
- Communication there is a limited communication bandwidth between robots

B4M36UIR - Lecture 12: Multi-Robot Planning

■ Maintenance - multiple robots are harder to maintain

Cooperation

- **Cooperative** robots cooperate to achieve joint goal
- Competitive robots compete to best fulfill their own self-interest, i.e., robots can cooperate or form coalitions if that is in their own self-interest
- Communication
 - **Implicit** the information is transmitted through the environment
 - **Explicit** the information is transmitted directly between robots
- Organization
 - Centralized global coordination and planning
 - Hierarchical army model hierarchy of leaders
 - Decentralized local coordination, the global pattern of behavior is an emergent property

Petr Váňa, Petr Čížek, 2017	B4M36UIR – Lecture 12: Multi-Robot Planning	5 / 36	Petr Váňa, Petr Čížek, 2017	B4M36UIR – Lecture 12: Multi-Robot Planning	6 / 36
Multi-Robot Syster	ms - taxonomy (part 2)				
Team composition					
_	s - all robots have identical hardware and softwar				
	is - robots differ either in sensory-actuator capabi are control procedures	lities			
swarms - large	e number of usually homogeneous robots, local o explicit communication	con-		Part II	
			Part 2	2 – Multi-Robot Planning	
MAV 1	MAV 2 Heterogenous formation				
UGV	Heterogenous formation				

7 / 36 Petr Váňa, Petr Čížek, 2017

Multi-Robot Path Planning on Discrete Graphs (MPP)

MPP problem definition:

- *G* = (*V*, *E*) is a connected undirected simple graph where
 - $V = v_i$ is a the vertex set,
 - $E = \{(v_i, v_j)\}$ is the edge set.
- $\mathcal{R} = R_1, \cdots, R_m$ is a set of *m* robots.
- Robots moves at discrete time steps.
- Each robot R_i is associated with an *start* and *goal* configuration (q_i^s, q_i^g)
- MPP can be transformed to **boolean satisfiability problem** (3SAT).
- Finding optimal solution is **NP-complete**

(J. Yu, "Optimal Multi-Robot Path Planning on Graphs: Structure and Computational Complexity",

B4M36UIR - Lecture 12: Multi-Robot Planning

Robotics and Automation Letters, 2016)

Petr Váňa, Petr Čížek, 2017

Pebble motion problems - more "pebbles" can occupy one vertex

Multi-Robot Path Planning on Discrete Graphs (MPP)

- Advantages of MPP on a discrete graph
 - Simple formulation
- Limitations of MPP on a discrete graph
 - A unit speed is assumed (one edge per time step)
 - A robot body is not considered
 - Some problems are hard to discretize
 - Even relatively small MPP instance can be computationally intractable

Multi-Robot Path Planning on Discrete Graphs (MPP)

9-puzzle example

(J. Yu, Robotics and Automation Letters, 2016)

Initial configurations

Desired goal configurations

Possible moves of two robots:

Impossible moves of two robots:

B4M36UIR – Lecture 12: Multi-Robot Planning

10 / 36

Multi-Robot Motion Planning - part 1

Fundamental problem in MRS

- Formal notation:
 - There is a set of m > 1 robots $\mathcal{R} = R_1, \cdots, R_m$,
 - each operating in a configuration space C_i , for $1 \le i \le m$,
 - let $C_i^f \in C_i$ be each robot's free space,
 - and $C_i^o = C_i \setminus C_i^f$ be each robot's occupied space.
 - The composite configuration space $C = C_1 \times \cdots \times C_m$ is Cartesian product of each robot's configuration space.
 - A composite configuration Q = (q₁, · · · , q_m) ∈ C is m-tuple of robot configurations.
 - For two robots R_i, R_j, i ≠ j, let I^j_i(q_j) ∈ C_i be the set of configurations of robot R_i that lead into collision with robot R_j at configuration q_j.
 - \blacksquare Then the composite free space is defined as $\mathcal{C}^f \in \mathcal{C}$ consists of configurations
 - $Q=(q_1,\cdots,q_m)$ subject to:
 - $q_i \in C_i^f$ for every $1 \le i \le m$,
 - $q_i \notin I_i^j(q_j), q_j \notin I_j^i(q_i)$ for every $1 \leq i \leq j \leq m$.
 - The composite obstacle space is then defined as $C^o = C \setminus C^f$.

(S. M. LaValle, "Planning Algorithms", Cambridge University Press, 2006)

Example of MPP - 15 puzzle

2 3

6 7

9 10 11 12

13 14 15

8

5

Multi-Robot Motion Planning - part 2

Multi-Robot Motion Planning - Approaches

configuration space

assembles the parts

uration space.

The problem:

- Set of Start configurations $S = (q_1^s, \cdots, q_m^s) \in \mathcal{C}^f$
- Set of Goal configurations $G = (q_1^g, \cdots, q_m^g) \in \mathcal{C}^f$
- Find a continuous trajectory $\tau_i : [0, 1]$ for each robot R_i , for $1 \le i \le m$, without collisions with obstacles and other robots, minimizing a cost function c, such that: $\tau_i(0) = q_i^s$ and $\tau_i(1) = q_i^g$
- The selection of a **cost function** *c* is subject to optimization criteria, e.g.:
 - 1. Min Total Time
- minimize $\sum_{i=1}^{m} t_i$
- 2. Min Makespan minimize
 - minimize $\max_{1 \le i \le m} t_i$
- 3. Min Total Distance

minimize $\sum_{i=1}^{m} I_i$

4. Min Max Distance

minimize $\max_{1 \le i \le m} I_i$

where t_i and l_i are the trajectory τ_i duration and length, respectively

Petr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning 13 / 36 Petr Vá	tr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning
---	---

Centralized Planning - Coupled Planning

Planning directly in the composite configuration space

 $\mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_m$

- Utilizes standard path planning methods, such as random-sampling based approaches or grid-based planners
- \blacksquare m robots with d DOFs are assumed as a single robot with $m \cdot d$ DOFs
- **Complete**, i.e., it always find a solution (if exists)
- Complexity $\approx \exp(m \cdot d)$
- Becomes computationally intractable even for small number of robots.
- Finding optimal solution is NP-complete

(J. Yu, "Optimal Multi-Robot Path Planning on Graphs: Structure and Computational Complexity",

Robotics and Automation Letters, 2016)

■ Note, for unlabeled case, when there is no explicit mapping S → G, i.e., you do not care which robot is on particular goal, the complexity is polynomial

 $(\mathsf{M}.\mathsf{Turpin\ et\ al.,\ "Goal\ assignment\ and\ trajectory\ planning\ for\ large\ teams\ of\ interchangeable\ robots"},$

Centralized Planning - Assembly Planning

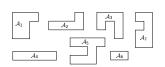
- The task is to assembly final product from multiple parts.
- A single part is moved at a time.
- Result of the planning is a sequence of paths for individual parts.

Centralized planning – planning directly in the composite config-

• Assembly planning – determining a sequence of motions that

Decoupled planning – planning of each trajectory separately

Decentralized planning – each robot plans its own trajectories


Coupled planning – direct planning in the composite

(Prioritized planning, Pairwise cooperation)

and solves collision situations as they appear

Planning is started from the final configurations backwards.

Courtesy of (S. M. LaValle, 2006)

Autonomous Robots, 2014) Petr Váňa, Petr Čížek, 2017 B4M36UI

Centralized Planning - Decoupled Planning

- Planning for each robot R_i , $1 \le i \le m$ with d DOFs separately
- Coordination of particular plans is done later
- Not complete, not optimal
- **Complexity** $\approx m \exp(d)$

Methods of plan coordination:

Prioritized planning

- Each robot is assigned with a priority
- Plans are constructed according to priorities
- Cannot prevent deadlocks
- (https://www.youtube.com/watch?v=dFm-JJhyuv0)
- Pairwise cooperation
 - Planning in coordination space Robot configuration is considered one-dimensional (position on a trajectory in time)
 - Coordinations are incrementally solved for all the robots
- Petr Váňa, Petr Čížek, 2017

B4M36UIR - Lecture 12: Multi-Robot Planning

Kiva robots in Amazon warehouses

- Amazon acquired Kiva Systems for \$775 million in 2012
- Grid-based planning problem
- Restricted areas for human operators
- Classical A* planning
- Task allocation problem
- About 30,000 robots in 2016
- Open-source example

(https://github.com/oliehoek/kiva)

Courtesy of (S. M. LaValle, 2006)

Kiva Systems (Amazon warehouse)

An example of Amazon warehouse layout

((P. R. Wurman et al., "Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses" Al Magazine, 2008)

Decentralized planning

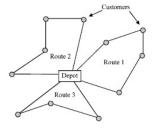
- Each robot plans its own trajectory and resolves possible collision with other vehicles
- Both implicit and explicit communication types can be considered
- Collision situations are resolved as they appear

Collision resolution methods

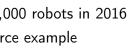
- Based on the priority earliest collision is solved first
- Based on the shortest trajectory prolongation

Petr Váňa, Petr Čížek, 2017

17 / 36


B4M36UIR - Lecture 12: Multi-Robot Planning

18 / 36

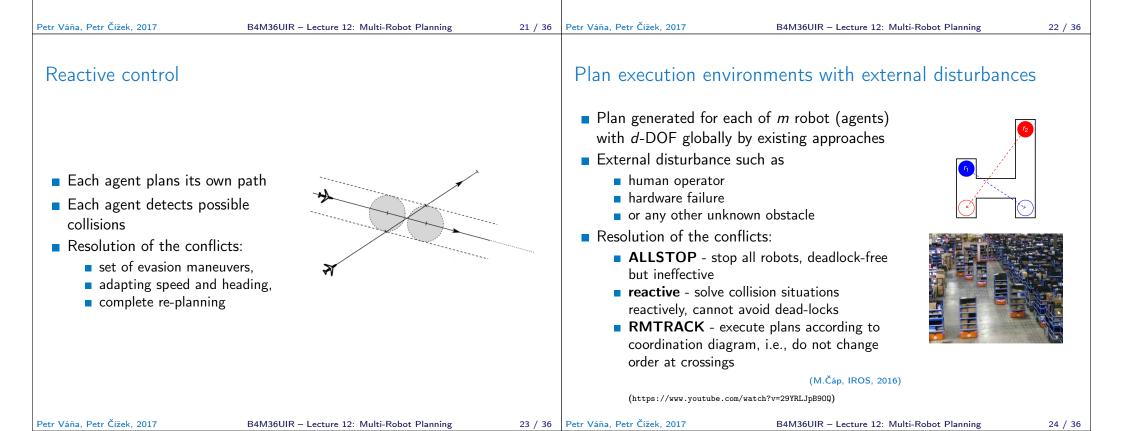

Vehicle routing problem (VRP)

Special case of a graph-based Multi-Robot planning with multiple goals.

- First introduced by Dantzig and Ramser in 1959.
- Generalization of the classical TSP with multiple vehicles.
- Problem definition
 - n customers.
 - *m* vehicles with maximal capacities a_k .
 - A single depot (both initial and final positions of vehicles).
 - Costs $d_{i,i}$ between the given cities.
 - Find a set of routes with a minimal total cost.

(Souce: K. Ghoseiri et al., 2009)

Vehicle routing problem


Possible formulations

- Vehicle Routing Problems with Pickup and Delivery (VRPPD) pickup and delivery locations are defined
- Vehicle routing problem with LIFO similar to VRPPD but with stack loading
- Vehicle Routing Problem with Time Windows (VRPTW) times windows of visits are limited
- Capacitated Vehicle Routing Problem (CVRP) each vehicle has its capacity (Uncapacitated VRP is also called mTSP)
- **Open** Vehicle Routing Problem (OVRP) return to depot is not required

Plan execution

Reactive control

- Agent follows the shortest path to the target
- Collision situations are resolved as they appear
- Cannot prevent deadlocks or infinite loops
- Deliberative control
 - Planning of coordinated trajectories for all the robots
 - Agents execute the path in an incremental way
 - Guarantees deadlock free execution (if plans are executed precisely)

(M.čáp, IROS, 2016) Coordination space shows mutual collisions of trajectories τ_i and τ_j with respect to the time scale

> *x*₂ 9¹ 8⊀

0

B4M36UIR - Lecture 12: Multi-Robot Planning

0123456789

25 / 36

Petr Váňa, Petr Čížek, 2017

$\mathsf{MRS}\xspace$ domains and tasks

- Data collection planning (https://www.youtube.com/watch?v=5MPSAReNzJU)
- Exploration (https://www.youtube.com/watch?v=tqMcK5YzwZc)
- Inspection

Petr Váňa, Petr Čížek, 2017

- Coverage
- Monitoring
- Pickup and delivery
- Pursuit evasion
- Cooperative transportation
- Multi-robot sensor fusion

Petr Váňa, Petr Čížek, 2017

B4M36UIR – Lecture 12: Multi-Robot Planning

Part III

Part 3 – MRS domains and tasks

Part IV

Part 4 – Swarm and modular robots

B4M36UIR - Lecture 12: Multi-Robot Planning

28 / 36

Swarm robotics

An approach to **coordination** of (usually a large number of) robots in a **distributed** and **decentralized** way. A plain set of rules at individual level can produce a large set of complex behaviors at the swarm level that emerges from interactions between the robots and interactions of robots with the environment.

(Y. Tan, Z. Zheng, Defense Technology, 2013)

- Nature inspired, e.g., social insects, fish, birds, herding mammals
- Properties
 - Homogenity agents in a swarm are homogeneous robots, as such, they are assumed to be interchangeable
 - Locality agents can observe only part of the system within a certain range. Decisions depend on current neighborhood.
 - Little to no explicit communication swarms in nature are decentralized

(S. Jha et al., Anim. Behav., 2006)

Petr Váňa, Petr Čížek, 2017

B4M36UIR – Lecture 12: Multi-Robot Planning

Swarm robotics - applications

 Collective Movement - how can an uncoordinated group of robots move from one place to another

(M.Saska et al., ICRA, 2014)

 Distributed sensing - swarms are very effective in Source search missions

(J. E. Hurtado et al., JIRS, 2004)

Cooperative transportation

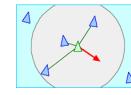
(C. R. Kube et al., RAS, 2000)

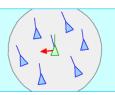
Collective mapping - e.g. area coverage, shoveling

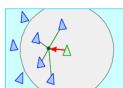
(M.Saska et al., JIRS, 2014)

Swarm robotics - behavior model

How to describe the control policies in swarms?


A distributed behavioral model - boids


(C.Reynolds, SIGGRAPH, 1987)


 Introduces three basic steering maneuvers based on local neighbors (flockmates)

Separation - steer to avoid local flockmates

Alignment - steer towards an average heading of local flockmates **Cohesion** - steer to the average position of the flockmates

Further complex behaviors can be developed, e.g., avoidance, following, aggregation, dispersion, homing

Petr Váňa, Petr Čížek, 2017

29 / 36

B4M36UIR - Lecture 12: Multi-Robot Planning

30 / 36

Modular robots

- Composed of elementary mechatronic modules that can assemble to form body of various shapes
- Pros.
 - Adaptability to various operation conditions
 - Failure recovery by ejecting or replacing broken modules

Cons.

- Complicated mechatronic design
- Complicated development of locomotion strategies
- Locomotion control principles
 - Self-reconfiguration repeatedly disconnecting and reconnecting modules
 - Joint-controlled locomotion controlling individual limbs of the robot

	Topics Discussed		
Modular robots - Joint-controlled locomotion			
How to develop new locomotion rules for a robot with variable morphology?			
1. Each module is an individual entity - MPP			
 2. The whole robot is an individual entity - Planning with motion primitives - require synthesis of new gaits for each topology Often used - CPG controllers developed by genetic algorithms (GA) Leads to high-dimensional parameter optimization - crucial role of cost function 	Summary of the Lecture		
 Greedy optimization - early iterations of GA does not provide ability to solve the problem which leads to a blind random search (H.Lipson et al., Nature, 2000) 			
 Ranking quality and novelty of found solutions - low-performing solutions may help in solving other task (crippling walking robot) (A.Cully et al., Evolutionary Computation, 2016) (https://www.youtube.com/watch?v=2aTIL_c-qwA) Random sampling with CPGs as motion primitives - combination of motion primitives may lead to feasible solutions (V.Vonásek et al., SSCI, 2016) 			
<pre>(https://www.youtube.com/watch?v=4KNDk2jjUGs)</pre>			
Petr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning 33 / 36	Petr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning 34 / 36		
Petr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning 33 / 36 Topics Discussed 33 33 36	Petr Váňa, Petr Čížek, 2017 B4M36UIR – Lecture 12: Multi-Robot Planning 34 / 36 Topics Discussed		
 MRS systems and their taxonomy 			
 Multi-robot path planning 			
 Multi-robot motion planning 			
 Centralized approaches (Coupled, Assembly, Decoupled) Decentralized approaches 	Thank you for your attention!		
Vehicle routing problem			
Swarm robotics			
Modular robots			
Next: Game Theory in Robotics			