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Mathematical programming

LP
maximize cTx
subject to Ax <b
and x>0

MILP

Some of the variables are integer
Objective and constraints are still linear

Convex program
Optimize a convex function over a convex set

Non-convex program
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Task Taxonomy

Target Management

Target previously pointed out ?

No Yes

Target Detection Target Tracking
| . ) .

. : Require multiple or single

Involve mobile or fixed sensors ? q . p & .
\ point of view per target ?

Mobile Fixed Multiple Single
Viewpoints Viewpoint
|M0bile Search | |Sratic Surveillance
|

Provide any guarantee ? Target Localization Monitoring
|
Worst-case None j i ?
Probabilistic Multiple or single target :
Multiple Targets Single Target
Capture | Probabilistic Search Hunting
|
Cyclic task? Observation Following
Yes
Patrolling

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760. 3



Resource allocation games

Developed by team of prof. M. Tambe at USC (2008-now)
In daily use by various organizations and security agencies
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http://teamcore.usc.edu/projects/security/

Resource allocation games
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Resource allocation games

Set of targets: T = t4, ..., t,

Limited (homogeneous) security resources r € N
Each resource can fully protect (cover) a single target

The attacker attacks a single target
Attacker’s utility for covered/uncovered attack: US(t) < UK (t)

Defender’s utility for covered/uncovered attack: Uj(t) > UZ(t)




Stackelberg equilibrium

the leader (1) — publicly commits to a strategy

the follower (f) — plays a best response to leader

s O'lEA(Al)I;nO'af)éBRf(O'l) " (O-I’ O-f)
Example
P L R
U (4,2) (6,1)
D (3,1) (5,2)
Why??

The defender needs to commit in practice (laws, regulations, etc.)

It may lead to better expected utility
NE: (U,L) -> 4; Pure SE: (D,R) -> 5; Mixed SE ~ 5.5



Mixed Stackelberg equilibrium

L R
U (4,2) 6,1)
D 3,1) (5,2)

Strong Stackelberg Equilibrium
Follower breaks ties in favor of the leader (0.5;0.5)->5.5
Form many settings can be motivated by infinitesimal deviation

Weak Stackelberg Equilibrium
Follower breaks ties worst for the leader (0.5; 0.5) -> 3.5
The equilibrium may not exist, because smaller motivation is better
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Solving resource allocation games

Kiekintveld, et al.. Computing Optimal Randomized Resource
Allocations for Massive Security Games, AAMAS 2009

Only coverage vector c; matters, Z is a sufficiently large number

max d
a; € {0,1} VteT

Zat: 1

ct € 0, 1] VteT

m

(]
&
VA

d—Us(t,C) < (1—ar)-Z VteT
0<k-Us(t,C)< (1—ar)-Z VteT



Sampling the coverage vector
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Scalability

25 resources, 3000 targets => 5 x 10°! defender’s actions

no chance for matrix game representation

The algorithm explained above is ERASER

Runtime scaling with Targets
® ERASER ORIGAMI A ORIGAMI-MILP
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Studied extensions

Complex structured defender strategies

Probabilistically failing actions

Attacker’s types

Resource types and teams

Bounded rational attackers
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Resource allocation (security) games

Advantages
Wide existing literature (many variations)
Good scalability
Real world deployments

Limitation
The attacker cannot react to observations (e.g., defender’s position)
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Perimeter patrolling

Agmon et al.: Multi-Robot Adversarial Patrolling: Facing a Full-
Knowledge Opponent. JAIR 2011.

The attacker can see the patrol!
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Perimeter patrolling

Polygon P, perimeter split to N segments

Defender has homogenous resources k > 1
move 1 segment per time step
turn to the opposite direction in T time steps

Attacker can wait infinitely long and sees everything
chooses a segment where to attack
requires t time steps to penetrate
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Interesting parameter settings

Letd = % be the distance between equidistant robots

There is a perfect deterministic patrol strategy if t > d

the robots can just continue in one direction

What about t = gd ?

f
d

¢ t+1 d — (t — 1)

d+t-1

The attacker can guarantee successif t+1<d—(t—1)=> t<
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Optimal patrolling strategy

Class of strategies: continue with probability p, else turn around

Theorem: In the optimal strategy, all robots are equidistant and
face in the same direction.

Proof sketch:

1. the probability of visiting the worst case segment between
robots decreases with increasing distance between the robots

2. making a move in different directions increases the distance

17



Probability of penetration

For simplicity assume 7 = 1

Probability of visiting s; at least once in next t steps
= probability of visiting the absorbing end state from s;
sum of each direction visited separately
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Probability of penetration

Algorithm 1 Algorithm FindFunc(d,t)
. Create matrix M of size (2d + 1)(2d + 1), initialized with Os
Fill out all entries in M as follows:
M[2d+1,2d+1] = 1
for i +— 1 to 2d do
Mi,max{i + 1,2d + 1}| = p
Mli,min{l,i —2}| =1—p
Compute MT = M!
Res = vector of size d initialized with Os
for 1 <loc <ddo
V' = vector of size 2d + 1 initialized with Os.
V{2loc| + 1
Resl|loc] =V x MT[2d + 1]
13: Return Res

L 00 NS e

= =

All computations are symbolic. The result are functions ppd;: [0,1] — [0,1]

expressing the probability of penetration at i for a given probability of turn.
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Optimal turn probability

Maximin value for p

Each line represents one segment (ppd;)

1 : M
09} 03r
08t 8T
07t 0.7 1

06F DB}

ppai(p)
ppdi(p)

05t 05k
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p p

lterate all pairs of intersection and maximal points to find solution

it is all polynomials .



Perimeter patrol — summary

Split the perimeter to segments traversable in unit time
Distribute patrollers uniformly along the perimeter
Coordinate them to always face the same way

Continue with probability p turn around with probability (1 — p)
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Area patrolling

Basilico et al.: Patrolling security games: Definition and

algorithms for solving large instances with single patroller and
single intruder. AlJ 2012.
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Area patrolling - Formal model

Environment represented as a graph

Targets T = {6,8,12,14,18}

Penetration time d(t) (.
Target values H (e

(va(t),va(1))

(N

e
o
o

L]
Defender: Markov policy
N

Attacker: wait, attack(t)




Solving zero-sum patrolling game

We assume Vt € T : v,(t) = v (t)
a(i,j) = 1 if the patrol can move form i to j in one step; else 0
P.(t, h) is the probability of stopping an attack at target t started when the patrol was at node h

yZVj't is the probability that the patrol reaches node j from i in w steps without visiting target t

max u
ajj=0 VijeV

aii=1 VieV
Z v > ier Vali), x = intruder-capture or no-attack
JEV Hd(}’{) — . )

Zieﬁ{:] va(l), X = penetration-t

ur” <a(,j) Vi,jeV

]/f.:f =« VteT,i,jeV\{t}

ver'= Dl iy Mowj) Ywef2..do) teT i jevi(y
xeV\(t}

Pc(t,h)y=1— Z ]f,f(;]’f YVteT,heV
JeVA{t)
u < ug(intruder-capture) P¢(t, h) + ug(penetration-t)(1 — P¢(t, h))

What type of optimization problem is this? LP? MILP? Convex? 24
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Scaling up

No need to visits nodes not on shortest paths between targets
With multiple shortest paths, only the closer to targets is relevant

It is suboptimal to stay at a node that is not a target

L)
O=O=
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Summary

GT can be applied to real world problems in robotics

Pursuit-evasion games
Perfect information capture
Visibility-based tracking

Patrolling
resource allocation
perimeter patrolling
area patrolling

Al (GT) problems can often be solved by transformation to
mathematical programming
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