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Game Theory 

Mathematical framework studying strategies of players in 

situations where the outcomes of their actions critically depend 

on the actions performed by the other players.  
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Robotic GT Applications 
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Adversarial vs. Stochastic Environment 

Deterministic environment 

The agent can be predict next state of the environment exactly 

Stochastic environment 

Next state of the environment comes from a known distribution 

Adversarial environment 

The next state of the environment comes from an unknown 

(possibly nonstationary) distribution 

 

Game theory is optimizes behavior in adversarial environments 
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GT and Robust Optimization 

It is sometimes useful to model unknown environmental 

variables as chosen by the adversary 

the position of the robot is the worst consistent with observations 

the planned action depletes the battery the most that it can 

the lost person in the woods moves to avoid detection 

 

GT can be used for robust optimization without adversaries 
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Normal form game 
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𝑁 is the set of players 

𝐴𝑖 is the set of actions (pure strategies) of player 𝑖 ∈ 𝑁 

𝑟𝑖:  𝐴𝑗𝑗∈𝑁 → ℝ is immediate payoff for player 𝑖 ∈ 𝑁 

Mixed strategy  

𝜎𝑖 ∈ Δ(𝐴𝑖) is a probability distribution over actions 

we naturally extend 𝑟𝑖 mixed strategies as the expected value 

Best response 

 of player 𝑖 to strategy profile of other players 𝜎−𝑖 is  

 
𝐵𝑅 𝜎−𝑖 = arg max

𝜎𝑖∈Δ(𝐴𝑖)
𝑟𝑖( 𝜎𝑖 , 𝜎−𝑖) 

Nash equilibrium 

Strategy profile 𝜎∗ is a NE, iff    ∀𝑖 ∈ 𝑁 ∶ 𝜎𝑖
∗ ∈ 𝐵𝑅(𝜎−𝑖

∗ ) 



Normal form game 

0-sum game 

Pure strategy, mixed strategy, Nash equilibrium, game value 
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Player 1 

Row player 

Maximizer 

Player 2 

Column player 

Minimizer 

r p s 

R 0.5 0 1 

P 1 0.5 0 

S 0 1 0.5 



Computing NE 

LP for computing Nash equilibrium of 0-sum normal form game 

 
max
𝜎1,𝑈

𝑈 

 𝑠. 𝑡.     𝜎1 𝑎1 𝑟 𝑎1, 𝑎2 ≥ 𝑈

𝑎1∈𝐴1

       ∀𝑎2 ∈ 𝐴2 

  𝜎1 𝑎1 = 1

𝑎1∈𝐴1

 

 

                                       𝜎1 𝑎1 ≥ 0          ∀𝑎1 ∈ 𝐴1 
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Pursuit-Evasion Games 
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Task Taxonomy 
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Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: 

taxonomy and survey. Autonomous Robots, 40(4), 729–760. 



Problem Parameters 

11 

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in 

mobile robotics`: A survey. Autonomous Robots, 31(4), 299–316.  



Problem Parameters 
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PERFECT INFORMATION CAPTURE 
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arena with radius 𝑟  

man and lion have unit speed 

alternating moves 

can lion always capture the man? 

Algorithm for the lion 

start from the center 

stay on the radius that passes the man 

move as close to the man as possible 

Analysis 

capture time with discrete steps 𝑂 𝑟2    [Sgall 2001] 

no capture in continuous time  

the lion can get to distance 𝑐 in time 𝑂(𝑟 log
𝑟

𝑐
) [Alonso at al 1992] 

single lion can capture the man in any polygon [Isler et al. 2005] 
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Modelling movement constraints 

Homicidal chauffeur game [Isaacs 1951] 

unconstraint space 

pedestrian is slow, but highly maneuverable  

car is faster, but less maneuverable (Dubin’s car) 

can the car run over the pedestrian? 

 𝑥 𝑀 = 𝑢𝑀, 𝑢𝑀 ≤ 1; 𝑥 𝐶 = 𝑣 cos 𝜃 , 𝑣 sin 𝜃 ;  𝜃 = 𝑢𝐶 , 𝑢𝐶 ∈ {−1,0,1}      

 

Differential games 

𝑥 = 𝑓(𝑥, 𝑢1 𝑡 , 𝑢2(𝑡)), 𝐿𝑖 𝑢1, 𝑢2 =  𝑔𝑖(𝑥 𝑡 , 𝑢1 𝑡 , 𝑢2(𝑡)
𝑇

𝑡=0
) 𝑑𝑡 

analytic solution of partial differential equation (gets intractable quickly) 
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Incremental Sampling-based Method 

S. Karaman, E. Frazzoli: Incremental Sampling-Based 

Algorithms for a Class of Pursuit-Evasion Games, 2011. 

1 evader, several pursuers 

Open-loop evader strategy (for simplicity) 

Stackelberg equilibrium 

the evader picks and announces her trajectory 

the pursuers select trajectory afterwards 

Heavily based on RRT* algorithm 
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Incremental Sampling-based Method 

Algorithm 

Initialize evader’s and pursuers’ trees 𝑇𝑒 and 𝑇𝑝 

For 𝑖 = 1 to 𝑁 do 
𝑛𝑒,𝑛𝑒𝑤 ← 𝐺𝑟𝑜𝑤(𝑇𝑒) 

if 𝑛𝑝 ∈ 𝑇𝑝: 𝑑𝑖𝑠𝑡 𝑛𝑒,𝑛𝑒𝑤 , 𝑛𝑝 ≤ 𝑓 𝑖  & time np ≤ time ne,new ≠ ∅ then  
delete 𝑛𝑒,𝑛𝑒𝑤 

 
𝑛𝑝,𝑛𝑒𝑤 ← 𝐺𝑟𝑜𝑤 𝑇𝑝  
𝐶 = {𝑛𝑒 ∈ 𝑇𝑒: 𝑑𝑖𝑠𝑡 𝑛𝑒 , 𝑛𝑝,𝑛𝑒𝑤 ≤ 𝑓 𝑖  & time np,n𝑒𝑤 ≤ time ne } 

delete 𝐶 ∪ descendants C, Te  

 

For computational efficiency pick 𝑓 𝑖 ≈
log |𝑇𝑒|

|𝑇𝑒|
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iteration 500 iteration 3000 

iteration 5000 iteration 10000 
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Discretization-based approaches 

Open-loop strategies are very restrictive 

Closed-loop strategies are generally intractable 
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Cops and robbers game 

Graph 𝐺 = (𝑉, 𝐸) 

Cops and robbers in vertices 

Alternating moves along edges 

Perfect information 

Goal: step on robber’s location 

 

Cop number: Minimum number of cops necessary to guarantee 

capture or the robber regardless of their initial location. 
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Cops and robbers game 

Neighborhood 𝑁 𝑣 = 𝑢 ∈ 𝑉 ∶ 𝑣, 𝑢 ∈ 𝐸  

 

Marking algorithm (for single cop and robber): 

1. For all 𝑣 ∈ 𝑉, mark state (𝑣, 𝑣) 

2. For all unmarked states (𝑐, 𝑟) 
If ∀𝑟′ ∈ 𝑁 𝑟 ∃𝑐′ ∈ 𝑁 𝑐  such that (𝑐′, 𝑟′) is marked, then mark 𝑐, 𝑟  

3. If there are new marks, go to 2. 

 

If there is an unmarked state, robber wins 

If there is none, the cop’s strategy results from the marking order 
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Cops and robbers game 

Time complexity of marking algorithm for 𝑘 cops is 𝑂 𝑛2 𝑘+1 . 

Determining whether 𝑘 cops with a given locations can capture a 

robber on a given undirected graph is EXPTIME-complete 

[Goldstein and Reingold 1995]. 

The cop number of trees and cliques is one. 

The cop number on planar graphs is at most three [Aigner and 

Fromme 1984]. 
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Cops and robbers game 

Simultaneous moves 

No deterministic strategy 

 

 

 

 

 

 

 

Optimal strategy is randomized 
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Stochastic (Markov) Games  

𝑁 is the set of players 

𝑆 is the set of states (games) 

𝐴 = 𝐴1 ×⋯× 𝐴𝑛, where 𝐴𝑖 is the set of actions of player 𝑖 

𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition probability function 

𝑅 = 𝑟1, … , 𝑟𝑛, where 𝑟𝑖: 𝑆 × 𝐴 → ℝ is immediate payoff for player 𝑖 
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Stochastic (Markov) Games  

Markovian policy:  𝜎𝑖: 𝑆 → Δ(𝐴) 

Objectives 

Discounted payoff:    𝛾𝑡𝑟𝑖(𝑠𝑡, 𝑎𝑡)
∞
𝑡=0 , 𝛾 ∈ [0,1) 

Mean payoff:  lim
𝑇→∞

1

𝑇
 𝑟𝑖(𝑠𝑡 , 𝑎𝑡)
𝑇
𝑡=0  

Reachability:   𝑃 𝑟𝑒𝑎𝑐ℎ 𝐺 ,  𝐺 ⊆ 𝑆 

Finite vs. infinite horizon 
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Value Iteration in SG 

Adaptation of algorithm from Markov decision processes (MDP) 

For zero-sum, discounted, infinite horizon stochastic games 

∀𝑠 ∈ 𝑆 initialize 𝑣 𝑠  arbitrarily (e.g., 𝑣 𝑠 = 0) 

until 𝑣 converges 

for all 𝑠 ∈ 𝑆 
for all (𝑎1, 𝑎2) ∈ 𝐴 𝑠  

 𝑄 𝑎1, 𝑎2 = r s, a1, a2 + 𝛾 𝑃 𝑠′ 𝑠, 𝑎1, 𝑎2 𝑣(𝑠′)

𝑠′∈𝑆

 

𝑣 𝑠 = max
𝑥

min
𝑦

𝑥𝑄𝑦                // solves the matrix game 𝑄 

 

Converges to optimum if each state is updated infinitely often 

the state to update can be selected (pseudo)randomly 
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Pursuit Evasion as SG 
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𝑁 = (𝑒, 𝑝) is the set of players 

𝑆 = 𝑣𝑒 , 𝑣𝑝1 , … , 𝑣𝑝𝑛 ∈ 𝑉𝑛+1 ∪ 𝑇   is the set of states 

𝐴 = 𝐴𝑒 × 𝐴𝑝, where 𝐴𝑒 = 𝐸, 𝐴𝑝 = 𝐸𝑛 is the set of actions 

𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] is deterministic movement along the edges 

𝑅 = 𝑟𝑒 , 𝑟𝑝, where 𝑟𝑒 = −𝑟𝑝 is one if the evader is captured 



Summary 

PEGs studied in various assumptions 

Simplest cases can be solved analytically 

More complex cases have problem-specific algorithms 

Even more complex cases best handled by generic AI methods 
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