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Game Theory % CENTER

Mathematical framework studying strategies of players in
situations where the outcomes of their actions critically depend
on the actions performed by the other players.




Robotic GT Applications %Cwm
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Adversarial vs. Stochastic Enwronmen;@é

CENTER

Deterministic environment
The agent can be predict next state of the environment exactly

Stochastic environment
Next state of the environment comes from a known distribution

Adversarial environment

The next state of the environment comes from an unknown
(possibly nonstationary) distribution

Game theory is optimizes behavior in adversarial environments



GT and Robust Optimization %é/\i
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It is sometimes useful to model unknown environmental
variables as chosen by the adversary

the position of the robot is the worst consistent with observations
the planned action depletes the battery the most that it can
the lost person in the woods moves to avoid detection

GT can be used for robust optimization without adversaries



Normal form game %é/\i
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N Is the set of players

A; Is the set of actions (pure strategies) of playeri € N
ri:]1jen 45 —» Ris immediate payoff for player i € N
Mixed strategy

o; € A(4;) is a probability distribution over actions

we naturally extend r; mixed strategies as the expected value

Best response
of player i to strategy profile of other players o_; Is

BR(o_;) = arg maxr;(o;,0_;)
g;€EA(A;)

Nash equilibrium
Strategy profile * isa NE, iff Vi € N :o0; € BR(dZ;)



Normal form game

Player 1
Row player
Maximizer

0-sum game

Player 2

Column player

Minimizer

r P S
R 05| 0 I
Pl 05| 0
S| O I 0.5
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Pure strategy, mixed strategy, Nash equilibrium, game value



Computing NE %écwm

LP for computing Nash equilibrium of 0-sum normal form game

max U
O'l,U

s.t. z o,(ay)r(a,a,) =2U  Va, € A,

a1€A1
2 o1(a;) =1

a1€A1

0.(a;) =0 Va, € A4



Pursuit-Evasion Games %
CENTER



https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjitceE4JjXAhVIaxQKHR5_DyMQjRwIBw&url=https://www.defense.gov/Photos/Photo-Gallery/igphoto/2001720818/&psig=AOvVaw3KRtzbv-hm_brEV6G18lyK&ust=1509466744772322
http://maxpixel.freegreatpicture.com/Daylight-Engine-Air-Camera-Drone-Aerial-View-1866742

Task Taxonomy %C/mﬁg

Target Management

Target previously pointed out ?

No Yes

Target Detection Target Tracking
| . ) .

. : Require multiple or single

Involve mobile or fixed sensors ? q . p & .
\ point of view per target ?

Mobile Fixed Multiple Single
Viewpoints Viewpoint
|M0bile Search | |Sratic Surveillance
|

Provide any guarantee ? Target Localization Monitoring
|
Worst-case None j i ?
Probabilistic Multiple or single target :
Multiple Targets Single Target
Capture | Probabilistic Search Hunting
|
Cyclic task? Observation Following
Yes
Patrolling

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760. 10



Problem Parameters

CENTER

Homogeneous

- Multiple searchers Multiple targets
Heterogeneous / po—
Single searcher ingle target

Number of searchers Number of targets

Transit costs

Bounded speed | Constrained Adversarial placement

Searcher motion Target Stationary

earcher

False alarms Known prior distribution

False contacts (False positive erors

andom placement]

Uniform distribution

False negative errors -

Type Adversarial

) Random walk
Speed Bounded
Unbounded
Turning angle
Bounded
Unbounded

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics™: A survey. Autonomous Robots, 31(4), 299-316.
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Problem Parameters %
CENTER

Homogeneous

- Multiple searchers

/ .
Single searcher ! Single target
Number of searchers Number of targets

Bounded speed | Constrained

Unconstrained

Adversarial

Speed Bounded
- ~__ Unbounded

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics™: A survey. Autonomous Robots, 31(4), 299-316.
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Lion and man game %@/\i

CENTER
arena with radius r

man and lion have unit speed
alternating moves
can lion always capture the man?

Algorithm for the lion
start from the center
stay on the radius that passes the man
move as close to the man as possible

Analysis
capture time with discrete steps 0(r?) [Sgall 2001]
no capture in continuous time
the lion can get to distance c in time O(r logg) [Alonso at al 1992]

single lion can capture the man in any polygon [Isler et al. 2005]

14



Modelling movement constraints % NI
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Homicidal chauffeur game [Isaacs 1951]
unconstraint space
pedestrian is slow, but highly maneuverable C
car is faster, but less maneuverable (Dubin’s car)

can the car run over the pedestrian?

Xy = Uy, |luyl <1; % = (WwcosB,vsinB); 6 =uc, uc € {-1,0,1}

Differential games

x = fu (), uz(), Liug, uz) = ftTZO gi(x(t), uy(t), uz (1)) dt
analytic solution of partial differential equation (gets intractable quickly)
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Incremental Sampling-based Method %é/\i
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S. Karaman, E. Frazzoli: Incremental Sampling-Based
Algorithms for a Class of Pursuit-Evasion Games, 2011.

1 evader, several pursuers

Open-loop evader strategy (for simplicity)

Stackelberg equilibrium
the evader picks and announces her trajectory
the pursuers select trajectory afterwards

Heavily based on RRT* algorithm

Image by MIT OpenCourseWare
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Incremental Sampling-based Method %/\i

CENTER

Algorithm
Initialize evader’s and pursuers’ trees T, and T,

Fori=1to N do

Ne new < GrOW(Te)
if {np € Ty: dist(ne,new, np) < f(i) &time(np) < time(ne,new)} #+ @ then
delete ng pew

Npnew < Grow(Tp)
C={n,eT,: dist(ne,np,new) < f(i) &time(np,new) < time(n,)}

delete C U descendants(C, T,)

log |Tp|
| Te|

For computational efficiency pick f (i) =

17
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Discretization-based approaches %? / \I

Open-loop strategies are very restrictive

Closed-loop strategies are generally intractable
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Cops and robbers game @ AN
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Graph ¢ = (V,E)

Cops and robbers in vertices

Alternating moves along edges

Perfect information

Goal: step on robber’s location

Cop number: Minimum number of cops necessary to guarantee
capture or the robber regardless of their initial location.

21



Cops and robbers game %écwm

Neighborhood N(v) ={u €V : (v,u) € E}

Marking algorithm (for single cop and robber):
1. For all v € V, mark state (v, v)

2. For all unmarked states (c, r)
If v’ € N(r)3c’' € N(c) such that (¢’,r") is marked, then mark (c,r)

3. If there are new marks, go to 2.

If there is an unmarked state, robber wins

If there is none, the cop’s strategy results from the marking order
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Cops and robbers game %Cwm

Time complexity of marking algorithm for k cops is 0(n2%+D).

Determining whether k cops with a given locations can capture a
robber on a given undirected graph is EXPTIME-complete
[Goldstein and Reingold 1995].

The cop number of trees and cliques is one.

The cop number on planar graphs is at most three [Aigner and
Fromme 1984].
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Cops and robbers game %écwm

Simultaneous moves
No deterministic strategy

Optimal strategy is randomized
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Stochastic (Markov) Games

N Is the set of players

S is the set of states (games)

A=Ay XX A,, where 4; is the set of actions of player i

P:Sx A xS - [0,1] is the transition probability function

% CENTER

R =rmr,..,1,,wherer;:S X A - R is immediate payoff for player i

L1 O Plsjlsi(ar,az)

S2
05| 0 1
1 |05] 0
O 105
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Stochastic (Markov) Games

Markovian policy: ¢;:S = A(A)

Objectives

Discounted payoff Y2 oviri(se,ar),y € [0,1)
llm Z —07i (S, at)

Reachability: P(reach(G)), GCS

Mean payoff:

Finite vs. infinite horizon

% CENTER

S2
S1
05 0 1
1 P(sjls;i, (aq,az))
» 1 (05| O
0
0 1 |05
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Value Iteration in SG %écwm

Adaptation of algorithm from Markov decision processes (MDP)

For zero-sum, discounted, infinite horizon stochastic games
Vs € S initialize v(s) arbitrarily (e.g., v(s) = 0)

until v converges

foralls €S
for all (a;,a,) € A(s)

Q(ay,a;) =r(s,as,a) +y Z P(s'|s,aq,a;)v(s")
v(s) = max min xQy s'€S [/ solves the matrix game Q
y

Converges to optimum if each state is updated infinitely often
the state to update can be selected (pseudo)randomly
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Pursuit Evasion as SG %/\i
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N = (e,p) Is the set of players

S = Ve, Vp,, - v, ) EVMTLUT s the set of states

A=A, xXA, where A, = E,A, = E" Is the set of actions

P:Sx AXS - [0,1] Is deterministic movement along the edges

R =1,,1,, where r, = —r, is one if the evader Is captured
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Summary % CENTER

PEGs studied in various assumptions
Simplest cases can be solved analytically
More complex cases have problem-specific algorithms

Even more complex cases best handled by generic Al methods
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