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Robotic Information Gathering Robotic Information Gathering Robotic S d F Robotic Information Gathering
Robotic Information Gathering Challenges in Robotic Information Gathering Robotic Exploration of Unknown Environment
. 1 Where to take new measurements? m Robotic exploration is a fundamental problem of robotic information gathering
Create a model of phenomena by autonomous mobile robots per- ) .
. . . . To improve the phenomena model m The problem Is:
forming measurements in a dynamic unknown environment. . R . . N
m What locations visit first? Lea rning How to efficiently utilize a group of mo-
On-line decision-making adaptivity bile robots to autonomously create a
. - map of an unknown environment
m How to efficiently utilize more R°b°gc::f:|m‘ﬂ°" P
robots? JGatusi . m Performance indicators vs constraints

o Sensing Planning Time, energy, map qualiy vs robots, communication
To divide the task between the robots uncertainty.  uncertainty m Performance in a real mission depends on

m How to navigate robots to the se- the on-line decision-making

lected locations? m It includes the problems of:

Improve Localization vs Model ® Map building and localization

B Determination of the navigational waypoints
Where to go next?
How to address all these aspects altogether to find a cost ® Path planning and navigation to the waypoints
.. R . . . .. m Coordination of the actions (multi-robot team)
efficient solution using in—situ decisions? Courtesy of M. Kulich
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Robotic Exploration

Mobile Robot Exploration

Create a map of the environment

m Frontier-based approach
Yamauchi (1997)

m Occupancy grid map
Moravec and Elfes (1985)

Laser scanner sensor

= Next-best-view approach

Select the next robot goal

Performance metric:
Time to create the map of the whole environment

search and rescue mission
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Robotic Exploration

Environment Representation — Mapping and Occupancy Grid

m The robot uses its sensors to build a map of the environment

m The robot should be localized to integrate new sensor measurements
into a globally consistent map

. . . . SR =
m SLAM - Simultaneous Localization and Mapping ,, 3 ol
/ Ji
m The robot uses the map being built to localize itself ¢ S @7

m The map is primarily to help to localize the robot ’ ST,

m The map is a “side product” of SLAM

m Grid map — discretized world representation
m A cell is occupied (an obstacle) or free

m Occupancy grid map

m Each cell is a binary random variable modeling
the occupancy of the cell
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Occupancy Grid

m Assumptions

m The area of a cell is either completely free or occupied e free space

u Cells (random variables) are indepedent of each other
m The state is static

cypied space

m A cell is a binary random variable modeling the
occupancy of the cell [ [ <Fpmi=o
m Cell m; is occupied p(m;) =1
m Cell m; is not occupied p(m;) =0
= Unknown p(mj) = 0.5

p(m)=1

m Probability distribution of the map m
p(m) = Nip(m;)
m Estimation of map from sensor data z;.; and robot poses xi.;
p(m|zi.t, x1.¢) = Nip(mj|z1.t, x1:¢)

Binary Bayes filter — Bayes rule and Markov process assumption
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Robotic Exploration

Binary Bayes Filter 1/2

m Sensor data z.; and robot poses xi.¢
= Binary random variables are indepedent and states are static

p(zt|m;, Z1:t-1, Xl:t)P(mi|Zl:t—17 Xl:t)

Robotic Exploration
Binary Bayes Filter 2/2
m Probability a cell is occupied

p(mi|ze, x¢)p(ze|xe) p(mi|z1:e-1, X1:6-1)
p(mj)p(ze|z1:e-1, x1:¢)

p(mj|z1.e, x1:¢) =

p(mi|z1.¢, x1:t) Bayes rule - )
p\zZt|z1:t—-1, X1:t m Probability a cell is not occupied
e plzelmx)p(mzi. ie01) (omiz, x)p(zx)p(-mi )
= —mij|ze, xe) p(ze|xe ) p(—mmi| 2161, X1:6—
p(ztlz1:e-1, x1:t) plomzmesne) = POz P x)pCmize 1,50
p(=m;)p(zt|z1:e-1, x1:t)
) = Pminzexe)p(ze x)
p(zelmi, xe) = p(milx:) = Ratio of the probabilities
By e p(milze, xe)p(ze|xe)p(milz1e—1, X1:6-1) p(mj|z1.¢, x1:¢) p(mi|ze, xe)p(mi|z1.e—1, x1:.-1) p(—~m;)
P(mi,z1:t,x1:t) e :
p(mi|xe)p(ze| 2101, x1:¢) p(—mi|z1:e, x1:¢) e rlelmlzie Lxve sdelom)
Markov p(mi|ze, xe)p(ze|xe)p(milz1:e—1, X1:6-1) _ _p(milzt, x) p(mi, z1.e—1,x1:e-1) 1 — p(m;)
p(mi)p(z¢|z1:6—1, x1:¢) 1—p(mjlze, xt) 1= p(mi|z1.e-1,x1:e-1)  p(m;)
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sensor model z;, recursive term, prior
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Robotic Exploration

Logs Odds Notation

m Log odds ratio is defined as

p(x)

I(x) = log 1= 500

m and the probability p(x) is

p(x) =1

= p(x)

1

T 1l

m The product modeling the cell m; based on z1.; and xq.;

/(mi|21:t7X1:t) = I(m[|zt7Xt)

inverse sensor model

Jan Faigl, 2018
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Robotic Exploration

Occupancy Mapping Algorithm

Algorithm 1: OccupancyGridMapping({/t—1,i}. X, z¢)

foreach m; of the map m do
if m; in the perceptual field of z; then
| i o= l—1,i +inv_sensor_model(m;, xt, zt) — lo;
else
L feii= v,

return {/; ;}

m Occupancy grid mapping developed by Moravec and Elfes in mid
80'ies for noisy sonars

1.0 Occupancy probability
08

0.6 2 prior
0.4 4 free /T

0.2

measured distance
00 05 10 15 20 25 3.0

]
l

Field of view of the sonar
range sensor

Inverse sensor model for
sonars range sensors

Occupancy value depending on
the measured distance
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Robotic Exploration

Model for Laser Sensor

Occupancy probability

z

Poce
Porior brot

Prree

m The model is “sharp” with a precise
detection of the obstacle

m For the range measurement d;, up-
date the grid cells along a sensor
beam

measured distance
>
>

Algorithm 2: Update map for £ = (di. ..., dy)
foreach d; € £ do
foreach cell m; raycasted towards min(d;, range) do
p i= grid(m;)Ppee;
grid(m;) := p/(2p — Prree — grid(m;) +1);
mg = cell at d;;
if obstacle detected at my then
p = grid(mg)pocc:
grid(m;) := p/(2p — pocc — grid(m;) + 1)
else
L p = grid(m)ppree;
grid(m;) := p/(2p ~ Pfree — grid(m;) + 1)
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Robotic Exploration

Frontier-based Exploration

m The basic idea of the frontier based exploration is navigation of

the mobile robot towards unknown regions

environment

cells are classified into:

m FREESPACE - p(m;) < 0.5
= 0BSTACLE — p(m;) > 0.5
= UNKNOWN — p(m;) = 0.5

m Frontier cell is a FREESPACE cell
that is incident with an UNKNOWN cell

m Frontier cells as the navigation way-

Yamauchi (1997)

Frontier — a border of the known and unknown regions of the

Based on the probability of individual cells in the occupancy grid,

\:‘ FREESPACE
. OBSTACLE
. FRONTIER
. Robot

points have to be reachable, e.g., af-

ter obstacle growing

Jan Faigl, 2018
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Robotic Exploration

Frontier-based Exploration Strategy

Algorithm 3: Frontier-based Exploration

map := init(robot, scan);

while there are some reachable frontiers do
Update occupancy map using new sensor data and Bayes rule;
M := Created grid map from map using thresholding;
M := Grow obstacle according to the dimension of the robot;
F := Determnine frontier cells from M;
F := Filter out unreachable frontiers from F;
f := Select the closest frontier from F, e.g. using shortest path;
path := Plan a path from the current robot position to f;
Navigate robot towards f along path (for a while);
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Robotic Exploration

Multi-Robot Exploration — Map Marge

m The individual maps can be merged in a similar way as integration
of new sensor measurements

odds,., S
P =TT a5 E T
(oceuy) = 220 T
u E
"ddsX,y:Hoddsj(yy, Btiii crrer %
= TR TTITTTTTTTT
i P(occ], i
Y 1- Plocc,) i

P(occ)iyy) is the probability that grid cell on the global coordinate is occupied in the map of the
robot.
We need the same global reference frame (localization).
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Robotic Exploration

Multi-Robot Exploration — Overview

m We need to assign navigation waypoint
to each robot, which can be formulated

as the task-allocation problem
m Exploration can be considered as an
iterative procedure

1. Initialize the occupancy grid Occ
2. M < create_ navigation _grid(Occ)

cells of M have values {freespace, obstacle, unknown}

3. F « detect_ frontiers(M)
4. Goal candidates G <+ generate(F)

5. Assign next goals to each robot r € R,
((r,8n) -+ (rm: &r,)) = assign(R, G, M)

m There are several
the exploration
where  important

parts of
procedure
decisions
are made regarding the ex-

ploration performance, e.g.

m How to determined goal
candidates from the the frontiers?

6. Create a plan P; for each pair (r;, .
P ! p ,t<,’ g,f,)‘ ] . B How to plan a paths and assign
consisting of ‘srmpe operations the goals to the robots?
7. Perform each plan up to sp.x operations ® How to navigate the robots
At each step, update Occ using new sensor measurements towards the goal?
8. If |G| == 0 exploration finished, otherwise go to m When to replan?

Step 2

Jan Faigl, 2018

B4M36UIR — Lecture 09: Robotic Exploration

B etc.

20 / 37




Robotic Exploration

Exploration Procedure — Decision-Making Parts

1. Initialize — set plans for m robots, P = (Py,...,Pm), P; = 0.

2. Repeat
2.1 Navigate robots using the plans P;
2.2 Collect new measurements;
2.3 Update the navigation map M;

Until replanning condition is met.

3. Determine goal candidates G from M.

4. If |G| > 0 assign goals to the robots
® ((r1,8n),---:(rm. &r,))=assign(R, G, M),
ri€R.g, €G;
m Plan paths to the assigned goals
P= pIan((rl,g,l), ceey <rm:grm>:M);
m Go to Step 2.
5. Stop all robots or navigate them to the depot

All reachable parts of the environment are explored.
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Robotic Exploration

Improvements of the basic Frontier-based Exploration

Several improvements have been proposed in the literature

Introducing utility as a computation of expected
covered area from a frontier
Gonzslez-Bafios, Latombe (2002)

Map segmentation for identification of rooms and
exploration of the whole room by a single robot
Holz, Basilico, Amigoni, Behnke (2010)

Consider longer planning horizon (as a solution of
the Traveling Salesman Problem (TSP))
Zlot, Stentz (2006), Kulich, Faigl (2011, 2012)

Representatives of free edges
Faigl, Kulich (2015)
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TSP-based Robotic Exploration

Distance Cost Variants

= Simple robot—goal distance

m Evaluate all goals using the robot—goal distance
A length of the path from the robot position to the
goal candidate

m Greedy goal selection — the closest one

m Using frontier representatives improves the per-

formance a bit

m TSP distance cost

m Consider visitations of all goals
Solve the associated traveling salesman problem (TSP)
m A length of the tour visiting all goals
m Use frontier representatives
m the TSP distance cost improves performance
about 10-30% without any further heuristics,
e.g., expected coverage (utility)

Kulich, M., Faigl, J, Pfeucil, L. (2011): On Distance Utility in the Exploration Task. ICRA.
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TSP-based Robotic Exploration

Multi-Robot Exploration Strategy

m A set of m robots at positions R =

{r17r27-~-7rm
m At time t, let a set of n goal candidates be
G(t) = {glw s 7gn}

l.e, frontiers

m The exploration strategy (at the planning step t):

Select a goal g € G(t) for each robot r € R that will
minimize the required time to explore the environment.

The problem is formulated as the task-allocation problem

(<r11gr1>7 ceey (rm7grm>) = aSSign(Rv G(t)vM)v

where M is the current map
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TSP-based Robotic Exploration

Multi-Robot Exploration — Problem Definition

A problem of creating a grid map of the unknown environment by a

set of m robots R = {ri,r2,...,rm}.
Exploration is an iterative procedure:

1. Collect new sensor measurements

2. Determinate a set of goal candidates
G(t)={g1.8 .80}

e.g., frontiers

3. At time step t, select next goal for each
robot as the task-allocation problem

((rlvgl’1>7 (RN <rm1gfm>) = aSSign(Rv G(t)7 M(t))

using the distance cost function

4. Navigate robots towards goal

5. If |G(t)| > 0 go to Step 1; otherwise terminate

Jan Faigl, 2018
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TSP-based Robotic Exploration

Goal Assignment Strategies — Task Allocation Algorithms

1. Greedy Assignment
Yamauchi B, Robotics and Autonomous Systems 29, 1999

m Randomized greedy selection of the closest goal candidate
2. lterative Assignment
Werger B, Mataric M, Distributed Autonomous Robotic Systems 4, 2001
m Centralized variant of the broadcast of local eligibility algorithm
(BLE)
3. Hungarian Assignment
m Optimal solution of the task-allocation problem for assignment of
n goals and m robots in O(n?)
Stachniss C, C implementation of the Hungarian method, 2004
4. Multiple Traveling Salesman Problem — MTSP Assignment
m (clusterfirst, route-second), the TSP distance cost
Faigl et al. 2012
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TSP-based Robotic Exploration

MTSP-based Task-Allocation Approach

m Consider the task-allocation problem as the Multiple Traveling
Salesman Problem (MTSP)

m MTSP heuristic (cluster—first, route-second )

1. Cluster the goal candidates G to m clusters
C={G,...,Cn},GCG
using K-means
2. For each robot r; € R, i € {1,... m} select the next goal g; from
C; using the TSP distance cost
Kulich et at., ICRA (2011)

m Solve the TSP on the set G; U {ri}
the tour starts at r;
m The next robot goal g; is the first goal of the found TSP tour

Faigl, J., Kulich, M., Pfeuéil, L. (2012): Goal Assignment using Distance Cost in
Multi-Robot Exploration . IROS.
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TSP-based Robotic Exploration

Statistical Evaluation of the Exploration Strategies

m Evaluation for the number of robots m and sensor range p

Iterative
pom vs vs
Greedy

Hungarian

Iterative

MTSP
vs
Hungarian

_

QA AR WWWWw
Oco0o0O0 cooo cooo
=

O~NOIW ONOITW ONOTW
ot bttt FE

=

R

eI T ]
|+
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TSP-based Robotic Exploration

Performance of the MTSP vs Hungarian Algorithm

m Replanning as quickly as possible; m=3,p=3m

The MTSP assignment provides better performance
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Robotic Information Gathering

Information Theory in Robotic Information Gathering

m Employ information theory in control policy for robotic exploration

® Entropy — uncertainty of x: H[x] = — [ p(x) log p(x)dx
m Conditional Entropy — expected uncertainty of x after learning unknown z; H[x|z]
B Mutual information — how much uncertainty of x will be reduced by learning z;
Ivi[x; z] = H[x] — Hx|2]
m Control policy is a rule how to select the robot action that reduces the
uncertainty of estimate by learning measurements:

argmax,c 4 Ivi[x; z|a],
where A is a set of possible actions, x is a future estimate, and z is
future measurement
m Computation of the mutual information is computationally demanding
m Cauchy-Schwarz Quadratic Mutual Information (CSQMI) defined
similarly to mutual information

m A linear time approximations for CSQMI
Charrow, B. et al., (2015): Information-theoretic mapping using Cauchy-Schwarz
Quadratic Mutual Information. ICRA.

m Compute CSQMI as Cauchy-Schwarz divergence Ics[m; z] — raycast of
the sensor beam and determine distribution over the range returns

Robotic Information Gathering

Actions

m Actions are shortest path to cover the frontiers

Sampled poses to cover a cluster

Detect and cluster frontiers Paths to the sampled poses

m Select an action (a path) that maximizes the rate of
Cauchy-Schwarz Quadratic Mutual Information

Robotic Information Gathering

Example of Autonomous Exploration using CSQMI

Aerial vehicle

Ground vehicle

m Planning with trajectory optimization — determine trajectory maximizing /cs
Charrow, B. et al., (2015): Information-Theoretic Planning with Trajectory Opti-
mization for Dense 3D Mapping. RSS.
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Robotic Information Gathering Topics Discussed
Robotic Information Gathering Topics Discussed
m Robotic information gathering can be considered as the informative mo-
tion planning problem to a determine trajectory P* such that . . .
m Robotic information gathering
P = argmaxpey I(P), such that c(P) < B, where m Robotic exploration of unknown environment
m V is the space of all possible robot trajectories, .
A . . ; m Occupancy grid map
m /(P) is the information gathered along the trajectory P SU mmar Of the Lecture
m c(P) is the cost of P and B is the allowed budget Yy m Frontier based exploration
m Exploration procedure and decision-making
m Searching the space of all possible trajectories . . . .
; g P 2P ) m TSP-based distance cost in frontier-based exploration
is complex and demanding problem
. . m Multi-robot exploration and task-allocation
m A discretized problem can solved by . . . . .
combinatorial optimization techniques = Mutual information and informative path planning informative and motivational
Usually scale poorly with the size of the problem
m A trajectory is from a continuous domain . .
! . i . . . m Next: Multi-robot planning
m Sampling-based motion planning techniques can employed for
finding maximally informative trajectories
Hollinger, G., Sukk G. (2014): ling-based robotic information gathering algorithms. IJRR.
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