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Game Theory

Mathematical framework studying strategies of players in 

situations where the outcomes of their actions critically depend 

on the actions performed by the other players. 
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Robotic GT Applications

3

By Yuxuan Wang through flicker

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjitceE4JjXAhVIaxQKHR5_DyMQjRwIBw&url=https://www.defense.gov/Photos/Photo-Gallery/igphoto/2001720818/&psig=AOvVaw3KRtzbv-hm_brEV6G18lyK&ust=1509466744772322


Adversarial vs. Stochastic Environment

Deterministic environment

The agent can be predict next state of the environment exactly

Stochastic environment

Next state of the environment comes from a known distribution

Adversarial environment

The next state of the environment comes from an unknown 

(possibly nonstationary) distribution

Game theory is optimizes behavior in adversarial environments
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GT and Robust Optimization

It is sometimes useful to model unknown environmental 

variables as chosen by the adversary

the position of the robot is the worst consistent with observations

the planned action depletes the battery the most that it can

the lost person in the woods moves to avoid detection

GT can be used for robust optimization without adversaries

5



Normal form game
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𝑁 is the set of players

𝐴𝑖 is the set of actions (pure strategies) of player 𝑖 ∈ 𝑁

𝑟𝑖: ς𝑗∈𝑁𝐴𝑗 → ℝ is immediate payoff for player 𝑖 ∈ 𝑁

Mixed strategy

𝜎𝑖 ∈ Δ(𝐴𝑖) is a probability distribution over actions

we naturally extend 𝑟𝑖 mixed strategies as the expected value

Best response

of player 𝑖 to strategy profile of other players 𝜎−𝑖 is 

𝐵𝑅 𝜎−𝑖 = arg max
𝜎𝑖 ∈Δ(𝐴𝑖)

𝑟𝑖( 𝜎𝑖 , 𝜎−𝑖)

Nash equilibrium

Strategy profile 𝜎∗ is a NE, iff ∀𝑖 ∈ 𝑁 ∶ 𝜎𝑖
∗ ∈ 𝐵𝑅(𝜎−𝑖

∗ )



Normal form game

0-sum game

Pure strategy, mixed strategy, Nash equilibrium, game value
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Player 1

Row player

Maximizer

Player 2

Column player

Minimizer

r p s

R 0.5 0 1

P 1 0.5 0

S 0 1 0.5



Computing NE

LP for computing Nash equilibrium of 0-sum normal form game

max
𝜎1,𝑈

𝑈

𝑠. 𝑡. 

𝑎1∈𝐴1

𝜎1 𝑎1 𝑟 𝑎1, 𝑎2 ≥ 𝑈 ∀𝑎2 ∈ 𝐴2



𝑎1∈𝐴1

𝜎1 𝑎1 = 1

𝜎1 𝑎1 ≥ 0 ∀𝑎1 ∈ 𝐴1
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Pursuit-Evasion Games
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Task Taxonomy
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Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: 

taxonomy and survey. Autonomous Robots, 40(4), 729–760.



Problem Parameters
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Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in 

mobile robotics: A survey. Autonomous Robots, 31(4), 299–316. 



Problem Parameters

12

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in 

mobile robotics: A survey. Autonomous Robots, 31(4), 299–316. 



PERFECT INFORMATION CAPTURE
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arena with radius 𝑟

man and lion have unit speed

alternating moves

can lion always capture the man?

Algorithm for the lion

start from the center

stay on the radius that passes the man

move as close to the man as possible

Analysis

capture time with discrete steps 𝑂 𝑟2 [Sgall 2001]

no capture in continuous time 

the lion can get to distance 𝑐 in time 𝑂(𝑟 log
𝑟

𝑐
) [Alonso at al 1992]

single lion can capture the man in any polygon [Isler et al. 2005]
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Modelling movement constraints

Homicidal chauffeur game [Isaacs 1951]

unconstraint space

pedestrian is slow, but highly maneuverable 

car is faster, but less maneuverable (Dubin’s car)

can the car run over the pedestrian?

ሶ𝑥𝑀 = 𝑢𝑀, 𝑢𝑀 ≤ 1; ሶ𝑥𝐶 = 𝑣 cos 𝜃 , 𝑣 sin 𝜃 ; ሶ𝜃 = 𝑢𝐶 , 𝑢𝐶 ∈ {−1,0,1}

Differential games

ሶ𝑥 = 𝑓(𝑥, 𝑢1 𝑡 , 𝑢2(𝑡)), 𝐿𝑖 𝑢1, 𝑢2 = 𝑡=0
𝑇

𝑔𝑖(𝑥 𝑡 , 𝑢1 𝑡 , 𝑢2(𝑡)) 𝑑𝑡

analytic solution of partial differential equation (gets intractable quickly)
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Incremental Sampling-based Method

S. Karaman, E. Frazzoli: Incremental Sampling-Based 

Algorithms for a Class of Pursuit-Evasion Games, 2011.

1 evader, several pursuers

Open-loop evader strategy (for simplicity)

Stackelberg equilibrium

the evader picks and announces her trajectory

the pursuers select trajectory afterwards

Heavily based on RRT* algorithm
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Incremental Sampling-based Method

Algorithm

Initialize evader’s and pursuers’ trees 𝑇𝑒 and 𝑇𝑝

For 𝑖 = 1 to 𝑁 do
𝑛𝑒,𝑛𝑒𝑤 ← 𝐺𝑟𝑜𝑤(𝑇𝑒)

if 𝑛𝑝 ∈ 𝑇𝑝: 𝑑𝑖𝑠𝑡 𝑛𝑒,𝑛𝑒𝑤 , 𝑛𝑝 ≤ 𝑓 𝑖 & time np ≤ time ne,new ≠ ∅ then 
delete 𝑛𝑒,𝑛𝑒𝑤

𝑛𝑝,𝑛𝑒𝑤 ← 𝐺𝑟𝑜𝑤 𝑇𝑝
𝐶 = {𝑛𝑒 ∈ 𝑇𝑒: 𝑑𝑖𝑠𝑡 𝑛𝑒 , 𝑛𝑝,𝑛𝑒𝑤 ≤ 𝑓 𝑖 & time np,n𝑒𝑤 ≤ time ne }

delete 𝐶 ∪ descendants C, Te

For computational efficiency pick 𝑓 𝑖 ≈
log |𝑇𝑒|

|𝑇𝑒|
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iteration 500 iteration 3000

iteration 5000 iteration 10000
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Discretization-based approaches

Open-loop strategies are very restrictive

Closed-loop strategies are generally intractable
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Cops and robbers game

Graph 𝐺 = (𝑉, 𝐸)

Cops and robbers in vertices

Alternating moves along edges

Perfect information

Goal: step on robber’s location

Cop number: Minimum number of cops necessary to guarantee 

capture or the robber regardless of their initial location.
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Cops and robbers game

Neighborhood 𝑁 𝑣 = 𝑢 ∈ 𝑉 ∶ 𝑣, 𝑢 ∈ 𝐸

Marking algorithm (for single cop and robber):

1. For all 𝑣 ∈ 𝑉, mark state (𝑣, 𝑣)

2. For all unmarked states (𝑐, 𝑟)
If ∀𝑟′ ∈ 𝑁 𝑟 ∃𝑐′ ∈ 𝑁 𝑐 such that (𝑐′, 𝑟′) is marked, then mark 𝑐, 𝑟

3. If there are new marks, go to 2.

If there is an unmarked state, robber wins

If there is none, the cop’s strategy results from the marking order

(more in: Chung at al. 2011)
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Cops and robbers game

Time complexity of marking algorithm for 𝑘 cops is 𝑂 𝑛2 𝑘+1 .

Determining whether 𝑘 cops with a given locations can capture a 

robber on a given undirected graph is EXPTIME-complete 

[Goldstein and Reingold 1995].

The cop number of trees and cliques is one.

The cop number on planar graphs is at most three [Aigner and 

Fromme 1984].

23



Cops and robbers game

Simultaneous moves

No deterministic strategy

Optimal strategy is randomized
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Stochastic (Markov) Games 

𝑁 is the set of players

𝑆 is the set of states (games)

𝐴 = 𝐴1 ×⋯× 𝐴𝑛, where 𝐴𝑖 is the set of actions of player 𝑖

𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition probability function

𝑅 = 𝑟1, … , 𝑟𝑛, where 𝑟𝑖: 𝑆 × 𝐴 → ℝ is immediate payoff for player 𝑖
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Stochastic (Markov) Games 

Markovian policy:  𝜎𝑖: 𝑆 → Δ(𝐴)

Objectives

Discounted payoff:   σ𝑡=0
∞ 𝛾𝑡𝑟𝑖(𝑠𝑡, 𝑎𝑡) , 𝛾 ∈ [0,1)

Mean payoff:  lim
𝑇→∞

1

𝑇
σ𝑡=0
𝑇 𝑟𝑖(𝑠𝑡 , 𝑎𝑡)

Reachability:   𝑃 𝑟𝑒𝑎𝑐ℎ 𝐺 , 𝐺 ⊆ 𝑆

Finite vs. infinite horizon
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Value Iteration in SG

Adaptation of algorithm from Markov decision processes (MDP)

For zero-sum, discounted, infinite horizon stochastic games

∀𝑠 ∈ 𝑆 initialize 𝑣 𝑠 arbitrarily (e.g., 𝑣 𝑠 = 0)

until 𝑣 converges

for all 𝑠 ∈ 𝑆
for all (𝑎1, 𝑎2) ∈ 𝐴 𝑠

𝑄 𝑎1, 𝑎2 = r s, a1, a2 + 𝛾

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎1, 𝑎2 𝑣(𝑠′)

𝑣 𝑠 = max
𝑥

min
𝑦

𝑥𝑄𝑦 // solves the matrix game 𝑄

Converges to optimum if each state is updated infinitely often

the state to update can be selected (pseudo)randomly
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Pursuit Evasion as SG
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𝑁 = (𝑒, 𝑝) is the set of players

𝑆 = 𝑣𝑒 , 𝑣𝑝1 , … , 𝑣𝑝𝑛 ∈ 𝑉𝑛+1 ∪ 𝑇 is the set of states

𝐴 = 𝐴𝑒 × 𝐴𝑝, where 𝐴𝑒 = 𝐸, 𝐴𝑝 = 𝐸𝑛 is the set of actions

𝑃: 𝑆 × 𝐴 × 𝑆 → [0,1] is deterministic movement along the edges

𝑅 = 𝑟𝑒 , 𝑟𝑝, where 𝑟𝑒 = −𝑟𝑝 is one if the evader is captured



Summary

PEGs studied in various assumptions

Simplest cases can be solved analytically

More complex cases have problem-specific algorithms

Even more complex cases best handled by generic AI methods
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Resources

Game theory basics

Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems: Algorithmic, Game-Theoretic, 

and Logical Foundations. [Sections 3.2, 4.1, 6.3] http://www.masfoundations.org

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement 

learning. Machine Learning Proceedings 1994, 157–163.

Pursuit-evasion games

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and 

survey. Autonomous Robots, 40(4), 729–760.

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile 

robotics: A survey. Autonomous Robots, 31(4), 299–316. 

Sgall J. (2001). Solution of David Gale's lion and man problem. Theoretical Computer 

Science. 259(1-2):663-70.

Homicidal chauffeur game: http://sector3.imm.uran.ru/poland2008patsko/index.html

S. Karaman, E. Frazzoli. Incremental Sampling-Based Algorithms for a Class of Pursuit-

Evasion Games, 2011. 30
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