Overview of the Lecture Part 1 – Randomized Sampling-based Motion Planning Methods **Randomized Sampling-based Motion** Sampling-Based Methods **Planning Methods** Probabilistic Road Map (PRM) Characteristics Jan Faigl Rapidly Exploring Random Tree (RRT) Part 2 – Optimal Sampling-based Motion Planning Methods Department of Computer Science Optimal Motion Planners Faculty of Electrical Engineering Rapidly-exploring Random Graph (RRG) Czech Technical University in Prague Informed Sampling-based Methods Lecture 08 Part 3 – Multi-Goal Motion Planning (MGMP) **B4M36UIR – Artificial Intelligence in Robotics** Multi-Goal Motion Planning Physical Orienteering Problem (POP) Jan Faigl, 2019 1 / 69 Jan Faigl, 2019 B4M36UIR - Lecture 08: Sampling-based Motion Planning B4M36UIR - Lecture 08: Sampling-based Motion Planning Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT) Sampling-Based Methods (Randomized) Sampling-based Motion Planning It uses an explicit representation of the obstacles in C-space. A "black-box" function is used to evaluate if a configuration q is a collision-free, e.g., Based on geometrical models and testing Part I collisions of the models. 2D or 3D shapes of the robot and environment can be represented as sets of trian-

Part 1 – Sampling-based Motion Planning

E.g., using RAPID library http://gamma.cs.unc.edu/OBB/

2 / 69

• Creates a discrete representation of C_{free} .

gles, i.e., tesselated models.

tersection of the triangles.

Collision test is then a test of for the in-

- Configurations in C_{free} are sampled randomly and connected to a roadmap (probabilistic roadmap).
- Rather than the full completeness they provide probabilistic completeness or resolution completeness.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists).

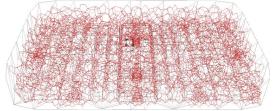
Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistic Roadmaps

A discrete representation of the continuous C-space generated by randomly sampled configurations in C_{free} that are connected into a graph.

- **Nodes** of the graph represent admissible configurations of the robot.
- **Edges** represent a feasible path (trajectory) between the particular configurations.

Probabilistic complete algorithms: with increasing number of samples an admissible solution would be found (if exists).



Having the graph, the final path (trajectory) can be found by a graph search technique.

Incremental Sampling and Searching

- Single query sampling-based algorithms incrementally create a search graph (roadmap).
 - 1. Initialization G(V, E) an undirected search graph, V may contain q_{start} , q_{goal} and/or other points in C_{free} .
 - 2. Vertex selection method choose a vertex $q_{cur} \in V$ for the expansion.
 - 3. Local planning method for some $q_{new} \in C_{free}$, attempt to construct a path $\tau : [0,1] \to \mathcal{C}_{free}$ such that $\tau(0) = q_{cur}$ and $\tau(1) =$ q_{new} , τ must be checked to ensure it is collision free.

If τ is not a collision-free, go to Step 2.

- 4. Insert an edge in the graph Insert τ into E as an edge from q_{cur} to q_{new} and insert q_{new} to V if $q_{new} \notin V$. How to test q_{new} is in V?
- 5. Check for a solution Determine if G encodes a solution, e.g., using a single search tree or graph search technique.
- 6. Repeat Step 2 iterate unless a solution has been found or a termination condition is satisfied.

LaValle, S. M.: Planning Algorithms (2006), Chapter 5.4

Jan Faigl, 2019	B4M36UIR – Lect	ure 08: Sampling	-based Motion Planning	6 / 69	Jan Faigl, 2019	B4M36UIR – Lect	ure 08: Sampling-based Motion Planning	7 / 69
Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics	Rapidly Exploring Random	Tree (RRT)	Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics Rapidly Exploring Random	Tree (RRT)

Probabilistic Roadmap Strategies

Multi-Query strategy is roadmap based.

- Generate a single roadmap that is then used for repeated planning queries.
- An representative technique is Probabilistic RoadMap (PRM).

Kavraki, L., Svestka, P., Latombe, J.-C., Overmars, M. H.B (1996): Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces. T-RO.

Single-Query strategy is an incremental approach.

- For each planning problem, it constructs a new roadmap to characterize the subspace of C-space that is relevant to the problem.
 - Rapidly-exploring Random Tree RRT;

LaValle. 1998 Hsu et al., 1997

- Expansive-Space Tree EST;
- Sampling-based Roadmap of Trees SRT. A combination of multiple-query and single-query approaches. Plaku et al., 2005

Multi-Query Strategy

Build a roadmap (graph) representing the environment.

- 1. Learning phase
 - 1.1 Sample *n* points in C_{free} .
 - 1.2 Connect the random configurations using a local planner.
- 2. Query phase
 - 2.1 Connect start and goal configurations with the PRM.

E.g., using a local planner.

2.2 Use the graph search to find the path.

Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Spaces Lydia E. Kavraki and Petr Svestka and Jean-Claude Latombe and Mark H. Overmars, IEEE Transactions on Robotics and Automation, 12(4):566-580, 1996.

> First planner that demonstrates ability to solve general planning problems in more than 4-5 dimensions.

Jan Faigl, 2019

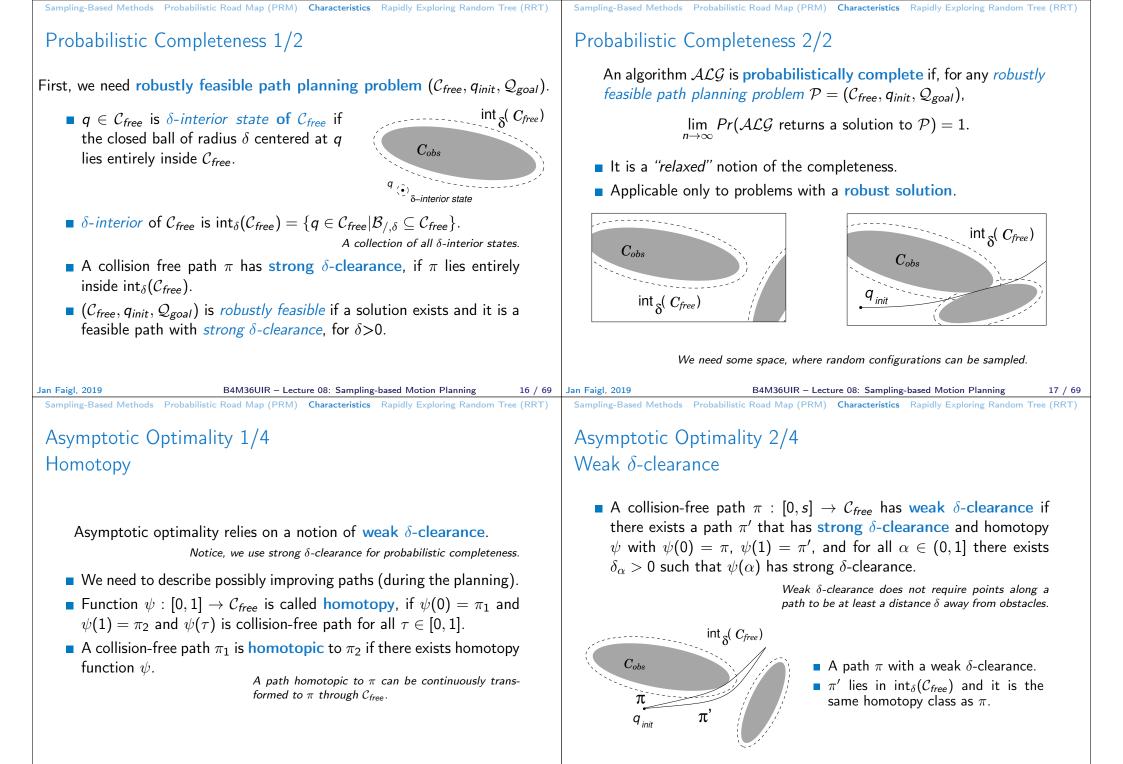
8 / 69 Jan Faigl, 2019

PRM Construction

#1 Given problem domain #2 Random configuration #3 Connecting samples #4 Connected roadmap #5 Query configuration #5 Query configuration #6 Final found path 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 Incremental construction. Connect nodes in a radius ρ. Local planner tests collisions up to selected resolution δ. Path can be found by Dijkstra's algorithm. What are the properties of the PRM algorithm? We need a couple of more formalisms.
Jan Faigl, 2019 B4M36UIR – Lecture 08: Sampling-based Motion Planning 11 / 69 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)	Jan Faigl, 2019 B4M36UIR – Lecture 08: Sampling-based Motion Planning 12 / 69 Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)
Path Planning Problem Formulation	Path Planning Problem
 Path planning problem is defined by a triplet	 Feasible path planning For a path planning problem (C_{free}, q_{init}, Q_{goal}): Find a feasible path π : [0, 1] → C_{free} such that π(0) = q_{init} and π(1) ∈ cl(Q_{goal}), if such path exists; Report failure if no such path exists. Optimal path planning The optimality problem asks for a feasible path with the minimum cost. For (C_{free}, q_{init}, Q_{goal}) and a cost function c : Σ → ℝ_{≥0}: Find a feasible path π* such that c(π*) = min{c(π) : π is feasible}; Report failure if no such path exists.

Practical PRM

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)



Jan Faigl, 2019

18 / 69 Jan Faigl, 2019

B4M36UIR - Lecture 08: Sampling-based Motion Planning 19 / 69

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Asymptotic Optimality 3/4 **Robust Optimal Solution**

- It is applicable with a robust optimal solution that can be obtained as a limit of robust (non-optimal) solutions.
- A collision-free path π^* is robustly optimal solution if it has weak δ -clearance and for any sequence of collision free paths $\{\pi_n\}_{n\in\mathbb{N}}$, $\pi_n \in \mathcal{C}_{free}$ such that $\lim_{n\to\infty} \pi_n = \pi^*$,

$$\lim_{n\to\infty}c(\pi_n)=c(\pi^*).$$

There exists a path with strong δ -clearance, and π^* is homotopic to such path and π^* is of the lower cost.

• Weak δ -clearance implies robustly feasible solution problem.

Thus, it implies the probabilistic completeness.

Asymptotic Optimality 4/4 Asymptotically optimal algorithm

An algorithm \mathcal{ALG} is asymptotically optimal if, for any path planning problem $\mathcal{P} = (\mathcal{C}_{free}, q_{init}, \mathcal{Q}_{goal})$ and cost function *c* that admit a robust optimal solution with the finite cost c^*

$$\Pr\left(\left\{\lim_{i\to\infty}Y_i^{\mathcal{ALG}}=c^*\right\}\right)=1$$

• $Y_i^{\mathcal{ALG}}$ is the extended random variable corresponding to the minimumcost solution included in the graph returned by \mathcal{ALG} at the end of the iteration *i*.

Jan Faigl, 2019	B4M36UIR – Lec	ture 08: Sampling-based Motion Planning	20 / 69	Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-based Motion Planning	21 / 69
Sampling-Based Methods	Probabilistic Road Map (PRM)	Characteristics Rapidly Exploring Random	Tree (RRT)	Sampling-Based Methods	Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random	Tree (RRT)

Properties of the PRM Algorithm

- Completeness for the standard PRM has not been provided when it was introduced.
- A simplified version of the PRM (called sPRM) has been mostly studied.
- sPRM is probabilistically complete.

What are the differences between PRM and sPRM?

PRM vs simplified PRM (sPRM)

Algorithm 1: PRM
Vstup : q_{init} , number of samples n , radius ρ Výstup : PRM – $G = (V, E)$
$V \leftarrow \emptyset; E \leftarrow \emptyset;$ for $i = 0,, n$ do $q_{rand} \leftarrow \text{SampleFree};$ $U \leftarrow \text{Near}(G = (V, E), q_{rand}, \rho);$ $V \leftarrow V \cup \{q_{rand}\};$ foreach $u \in U$, with increasing $ u - q_r \text{ do}$ if q_{rand} and u are not in the same connected component of G = (V, E) then if CollisionFree (q_{rand}, u) then $\begin{bmatrix} E \leftarrow E \cup \\ \{(q_{rand}, u), (u, q_{rand})\}; \end{bmatrix}$
return $G = (V, E);$

Algorithm 2: sPRM

```
Vstup: q<sub>init</sub>, number of samples n,
           radius \rho
Výstup: PRM - G = (V, E)
V \leftarrow \{q_{init}\} \cup
{SampleFree<sub>i</sub>}<sub>i=1,...,n-1</sub>; E \leftarrow \emptyset;
foreach v \in V do
      U \leftarrow \text{Near}(G = (V, E), v, \rho) \setminus \{v\};
      foreach u \in U do
             if CollisionFree(v, u) then
                   E \leftarrow E \cup \{(v, u), (u, v)\};
```

return G = (V, E);

There are several ways for the set U of vertices to connect them:

- k-nearest neighbors to v;
- variable connection radius ρ as a function of *n*.

Jan Faigl, 2019

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Probabilistically complete and asymptotically optimal.

Heuristics practically used are usually not probabilistic complete.

Differential constraints (car-like vehicles) are not straightforward.

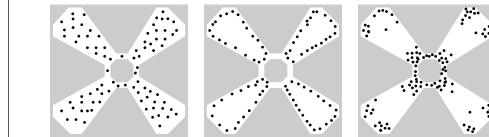
Processing complexity can be bounded by O(n²).
Query complexity can be bounded by O(n²).
Space complexity can be bounded by O(n²).

k-nearest sPRM is not probabilistically complete.
Variable radius sPRM is not probabilistically complete.

Sampling-Based Methods Probabilistic Road Map (PRM) Characteristics Rapidly Exploring Random Tree (RRT)

Comments about Random Sampling 1/2

Different sampling strategies (distributions) may be applied.



- Notice, one of the main issue of the randomized sampling-based approaches is the narrow passage.
- Several modifications of sampling based strategies have been proposed in the last decades.

Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-based Motion Planning	24 / 69	Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-based Motion Planning	25 / 69
Sampling-Based Methods	Probabilistic Road Man (PRM) Characteristics Ranidly Exploring Random Tree	(RRT)	Sampling-Based Methods	Probabilistic Road Man (PRM) Characteristics Random T	

Comments about Random Sampling 2/2

A solution can be found using only a few samples.

Do you know the Oraculum? (from Alice in Wonderland)

Based on analysis of Karaman and Frazzoli

Sampling strategies are important:

+ It has very simple implementation.

+ It provides completeness (for sPRM).

- Near obstacles;
- Narrow passages;
- Grid-based;

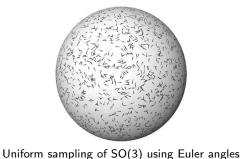
PRM – Properties

PRM algorithm

SPRM (simplified PRM):

• Uniform sampling must be carefully considered.

James J. Kuffner (2004): Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning. ICRA.



Rapidly Exploring Random Tree (RRT)

Single–Query algorithm

- It incrementally builds a graph (tree) towards the goal area.
 It does not guarantee precise path to the goal configuration.
- 1. Start with the initial configuration q_0 , which is a root of the constructed graph (tree).
- 2. Generate a new random configuration q_{new} in C_{free} .
- 3. Find the closest node q_{near} to q_{new} in the tree.

E.g., using KD-tree implementation like ANN or FLANN libraries.

4. Extend q_{near} towards q_{new} .

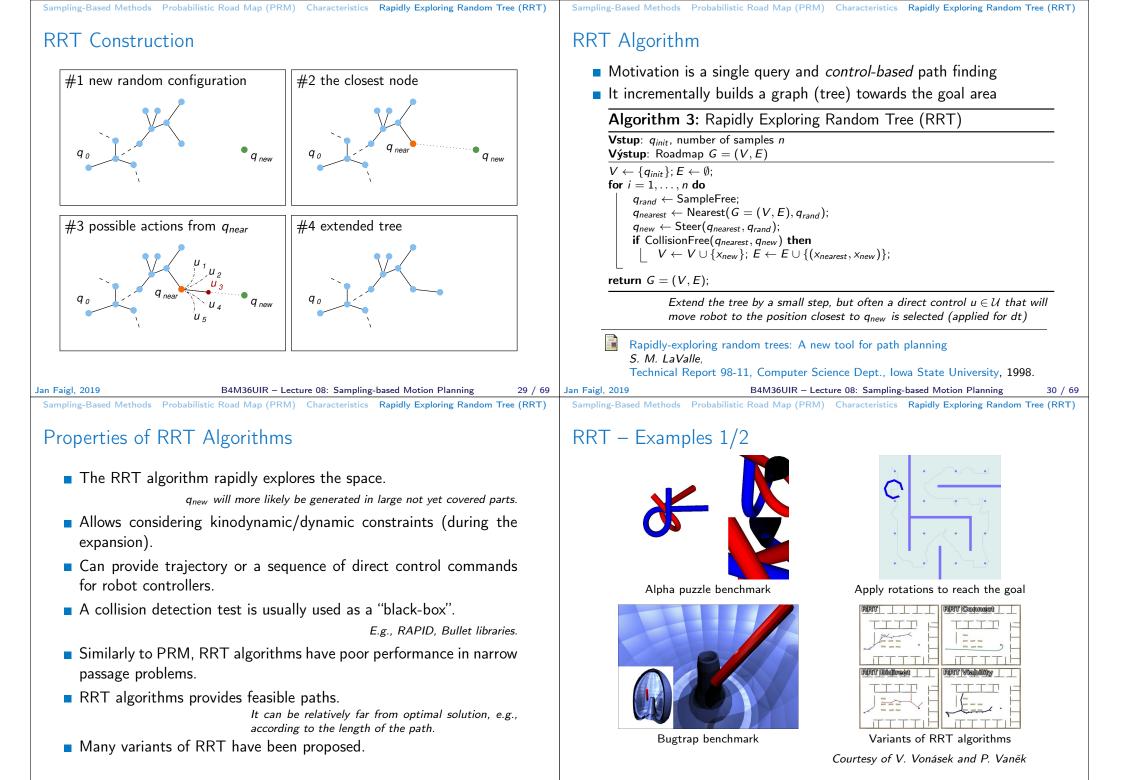
Extend the tree by a small step, but often a direct control $u \in \mathcal{U}$ that will move robot the position closest to q_{new} is selected (applied for δt).

5. Go to Step 2, until the tree is within a sufficient distance from the goal configuration.

Or terminates after dedicated running time.

Naïve sampling

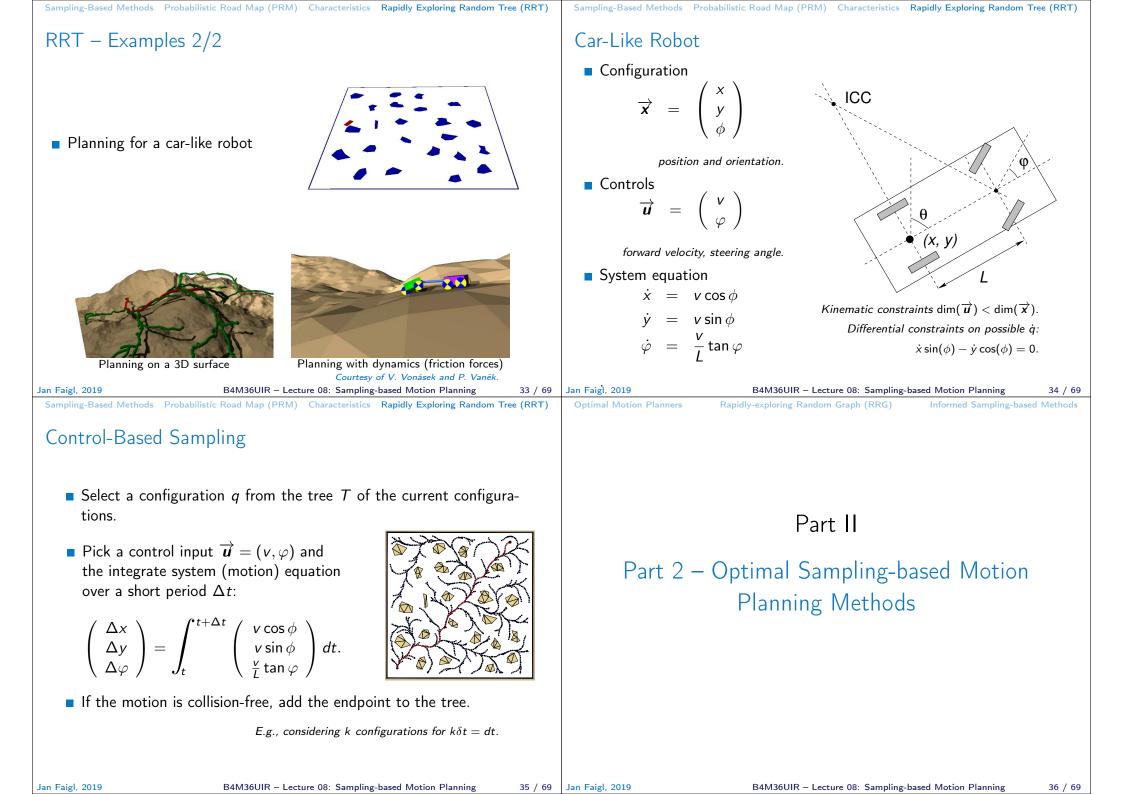
Jan Faigl, 2019



Jan Faigl, 2019

1 / 69 Jan Faigl, 2019

32 / 69



Sampling-Based Motion Planning

- PRM and RRT are theoretically probabilistic complete.
- They provide a feasible solution without quality guarantee.

Despite that, they are successfully used in many practical applications.

In 2011, a systematical study of the asymptotic behavior of randomized sampling-based planners has been published.

It shows, that in some cases, they converge to a non-optimal value with a probability 1.

 Based on the study, new algorithms have been proposed: RRG and optimal RRT (RRT*).

Karaman, S., Frazzoli, E. (2011):Sampling-based algorithms for optimal motion planning. IJRR.

RRT and Quality of Solution 1/2

- Let Y_i^{RRT} be the cost of the best path in the RRT at the end of the iteration *i*.
- Y_i^{RRT} converges to a random variable

$$\lim_{i\to\infty}Y_i^{RRT}=Y_\infty^{RRT}.$$

The random variable Y_{∞}^{RRT} is sampled from a distribution with zero mass at the optimum, and

$$\Pr[Y_{\infty}^{RRT} > c^*] = 1.$$

Karaman and Frazzoli, 2011

The best path in the RRT converges to a sub-optimal solution almost surely.

	http://sertac	c.scripts.mit.edu/rrtstar	r				
Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-ba	ased Motion Planning	38 / 69	Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-ba	ased Motion Planning	39 / 69
Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Informed Sampling-bas	sed Methods	Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Informed Sampling-base	d Methods

RRT and Quality of Solution 2/2

- RRT does not satisfy a necessary condition for the asymptotic optimality.
 - For $0 < R < \inf_{q \in Q_{goal}} ||q q_{init}||$, the event $\{\lim_{n \to \infty} Y_n^{RTT} = c^*\}$ occurs only if the *k*-th branch of the RRT contains vertices outside the *R*-ball centered at q_{init} for infinitely many *k*.

See Appendix B in Karaman and Frazzoli, 2011

It is required the root node will have infinitely many subtrees that extend at least a distance ϵ away from q_{init} .

The sub-optimality is caused by disallowing new better paths to be discovered.

```
Rapidly-exploring Random Graph (RRG)
```

```
Algorithm 4: Rapidly-exploring Random Graph (RRG)
Vstup: q<sub>init</sub>, number of samples n
Výstup: G = (V, E)
V \leftarrow \emptyset; E \leftarrow \emptyset;
for i = 0, ..., n do
     q_{rand} \leftarrow \text{SampleFree};
     q_{nearest} \leftarrow \text{Nearest}(G = (V, E), q_{rand});
     q_{new} \leftarrow \text{Steer}(q_{nearest}, q_{rand});
     if CollisionFree(q_{nearest}, q_{new}) then
           Q_{near} \leftarrow \text{Near}(G =
          (V, E), q_{new}, \min\{\gamma_{RRG}(\log(\operatorname{card}(V))/\operatorname{card}(V))^{1/d}, \eta\});
          V \leftarrow V \cup \{q_{new}\};
          E \leftarrow E \cup \{(q_{nearest}, q_{new}), (q_{new}, q_{nearest})\};
          foreach q_{near} \in Q_{near} do
               if CollisionFree(q<sub>near</sub>, q<sub>new</sub>) then
                     E \leftarrow E \cup \{(q_{rand}, u), (u, q_{rand})\};
return G = (V, E);
```

Proposed by Karaman and Frazzoli (2011). Theoretical results are related to properties of Random Geometric Graphs (RGG) introduced by Gilbert (1961) and further studied by Penrose (1999).

Rapidly-exploring Random Graph (RRG)

Informed Sampling-based Methods

RRG Expansions

- At each iteration, RRG tries to connect new sample to all vertices in the r_n ball centered at it.
- The ball of radius

$$r(\operatorname{card}(V)) = \min\left\{\gamma_{RRG}\left(\frac{\log\left(\operatorname{card}(V)\right)}{\operatorname{card}(V)}\right)^{1/d}, \eta\right\}$$

where

- η is the constant of the local steering function;
- $\gamma_{RRG} > \gamma_{RRG}^* = 2(1+1/d)^{1/d} (\mu(\mathcal{C}_{free})/\xi_d)^{1/d};$
 - d dimension of the space;
 - $\mu(\mathcal{C}_{\textit{free}})$ Lebesgue measure of the obstacle–free space;
 - ξ_d volume of the unit ball in *d*-dimensional Euclidean space.
- The connection radius decreases with *n*.
- The rate of decay ≈ the average number of connections attempted is proportional to log(n).

RRG Properties

- Probabilistically complete;
- Asymptotically optimal;
- Complexity is $O(\log n)$.

(per one sample)

- Computational efficiency and optimality:
 - It attempts a connection to $\Theta(\log n)$ nodes at each iteration;

in average

- Reduce volume of the "connection" ball as $\log(n)/n$;
- Increase the number of connections as log(*n*).

Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-b	ased Motion Planning	43 / 69	Jan Faigl, 2019	B4M36UIR – Lecture 08: Sampling-I	based Motion Planning	44 / 69
Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Informed Sampling-ba	sed Methods	Optimal Motion Planners	Rapidly-exploring Random Graph (RRG)	Informed Sampling-base	ed Methods

Other Variants of the Optimal Motion Planning

PRM* follows the standard PRM algorithm where connections are attempted between roadmap vertices that are the within connection radius r as the function of n

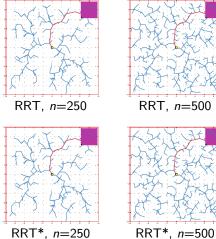
$$r(n) = \gamma_{PRM} (\log(n)/n)^{1/d}.$$

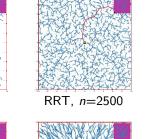
RRT* is a modification of the RRG, where cycles are avoided.

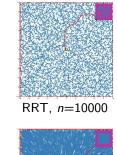
It is a tree version of the RRG.

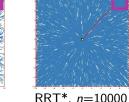
- A tree roadmap allows to consider non-holonomic dynamics and kinodynamic constraints.
- It is basically the RRG with "rerouting" the tree when a better path is discovered.

Example of Solution 1/3





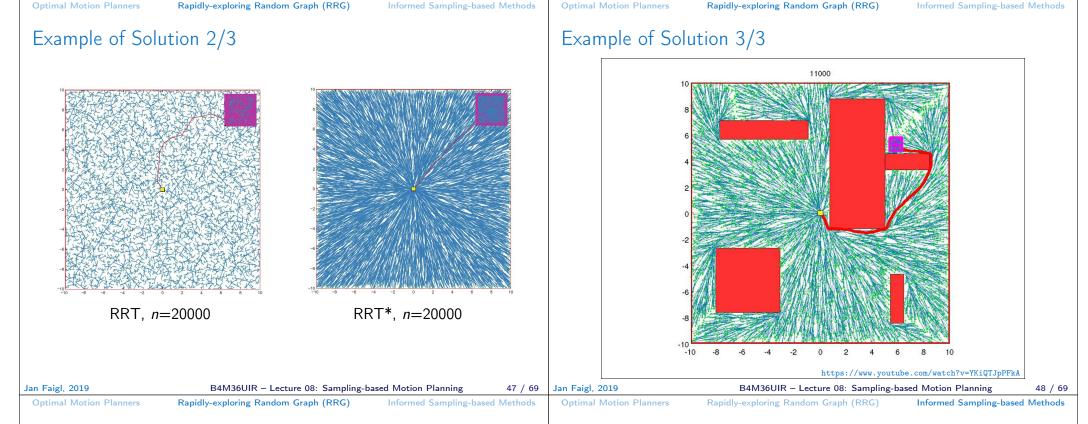




Karaman & Frazzoli, 2011

15 / 69 Jan Faigl, 2019

RRT*, n=2500



Overview of Randomized Sampling-based Algorithms

Algorithm	Probabilistic Completeness	5 1	
PRM	~	×	
sPRM	~	~	
k-nearest sPRM	×	×	
RRT	~	×	
RRG	✓	~	
PRM*	~	~	
RRT*	~	✓	

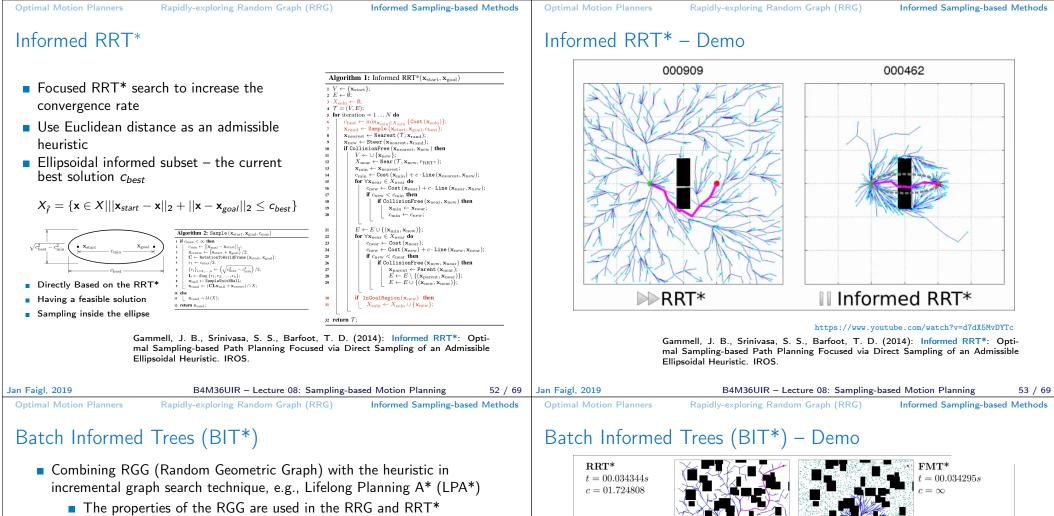
Notice, k-nearest variants of RRG, PRM*, and RRT* are complete and optimal as well.

Improved Sampling-based Motion Planners

 Although asymptotically optimal sampling-based motion planners such as RRT* or RRG may provide high-quality or even optimal solutions of the complex problem, their performance in simple, e.g., 2D scenarios, is relatively poor

In a comparison to the ordinary approaches (e.g., visibility graph)

- They are computationally demanding and performance can be improved similarly as for the RRT, e.g.,
 - Goal biasing, supporting sampling in narrow passages, multi-tree growing (Bidirectional RRT)
- The general idea of improvements is based on informing the sampling process
- Many modifications of the algorithms exists, selected representative modifications are
 - Informed RRT*
 - Batch Informed Trees (BIT*)
 - Regionally Accelerated BIT* (RABIT*)



- Batches of samples a new batch starts with denser implicit RGG
- The search tree is updated using LPA* like incremental search to reuse existing information

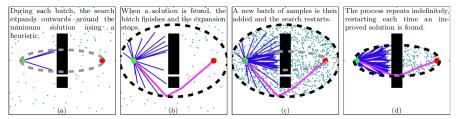
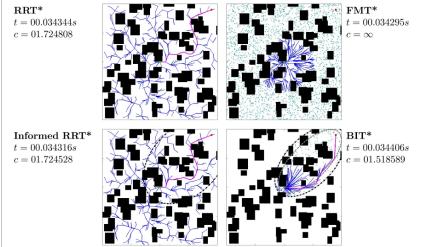


Fig. 3. An illustration of the informed search procedure used by BIT*. The start and goal states are shown as green and red, respectively. The current solution is highlighted in magenta. The subproblem that contains any better solutions is shown as a black dashed line, while the progress of the current batch is shown as a grey dashed line. Fig. (a) shows the growing search of the first batch of samples, and (b) shows the first search ending when a solution is found. After pruning and adding a second batch of samples, Fig. (c) shows the search restarting on a denser graph while (d) shows the second search ending when an improved solution is found. An animated illustration is available in the attached video.

> Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. ICRA.



https://www.youtube.com/watch?v=TQIoCC48gp4

Gammell, J. B., Srinivasa, S. S., Barfoot, T. D. (2015): Batch Informed Trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. ICRA.

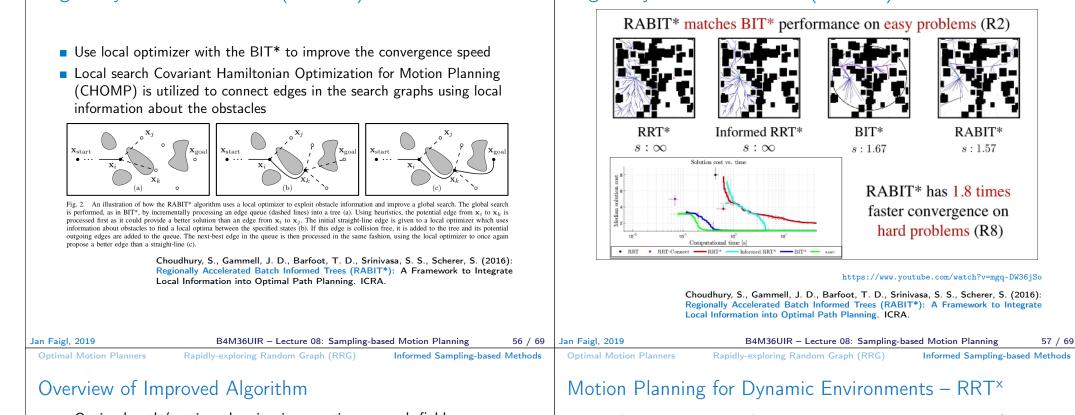
Rapidly-exploring Random Graph (RRG)

Regionally Accelerated BIT* (RABIT*)

Informed Sampling-based Methods

Optimal Motion Planners

Regionally Accelerated BIT* (RABIT*) – Demo



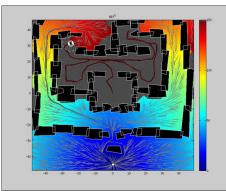
Optimal path/motion planning is an active research field

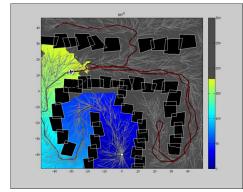
Approaches	Constraints	Planning Mode	Kinematic Model	Sampling Strategy	Metric
^{1.} RRT* [7]	Holonomic	Offline	Point	Uniform	Euclidean
2. Anytime RRT* [4]	Non-holonomic	Online	Dubin Car	Uniform	Euclidean + Velocity
3. B-RRT* [58]	Holonomic	Offline	Rigid Body	Local bias	Goal biased
4. RRT*FN [33]	Holonomic	Offline	Robotic Arm	Uniform	Cumulative Euclidean
5. RRT*-Smart [35]	Holonomic	Offline	Point	Intelligent	Euclidean
6. Optimal B-RRT* [36	Holonomic	Offline	Point	Uniform	Euclidean
^{7.} RRT# [50]	Holonomic	Offline	Point	Uniform	Euclidean
 Adapted RRT* [64], [49] 	Non-holonomic	Offline	Car-like and UAV	Uniform	A* Heuristic
^{9.} SRRT* [44]	Non-holonomic	Offline	UAV	Uniform	Geometric + dynamic constraint
 Informed RRT* [34] 	Holonomic	Offline	Point	Direct Sampling	Euclidean
^{11.} IB-RRT* [37]	Holonomic	Offline	Point	Intelligent	Greedy + Euclidean
^{12.} DT-RRT [39]	Non-holonomic	Offline	Car-like	Hybrid	Angular + Euclidean
13. RRT*i [3]	Non-holonomic	Online	UAV	Local Sampling	A* Heuristic
14. RTR+CS* [43]	Non-holonomic	Offline	Car-like	Uniform + Local Planning	Angular + Euclidean
15. Mitsubishi RRT* [2]	Non-holonomic	Online	Autonomous Car	Two-stage sampling	Weighted Euclidean
^{16.} CARRT* [65]	Non-holonomic	Online	Humanoid	Uniform	MW Energy Cost
^{17.} PRRT* [48]	Non-holonomic	Offline	P3-DX	Uniform	Euclidean

Noreen, I., Khan, A., Habib, Z. (2016): Optimal path planning using RRT* based approaches: a survey and future directions. IJACSA

B4M36UIR - Lecture 08: Sampling-based Motion Planning

Refinement and repair of the search graph during the navigation (quick) rewiring of the shortest path)





RRT^X – Robot in 2D

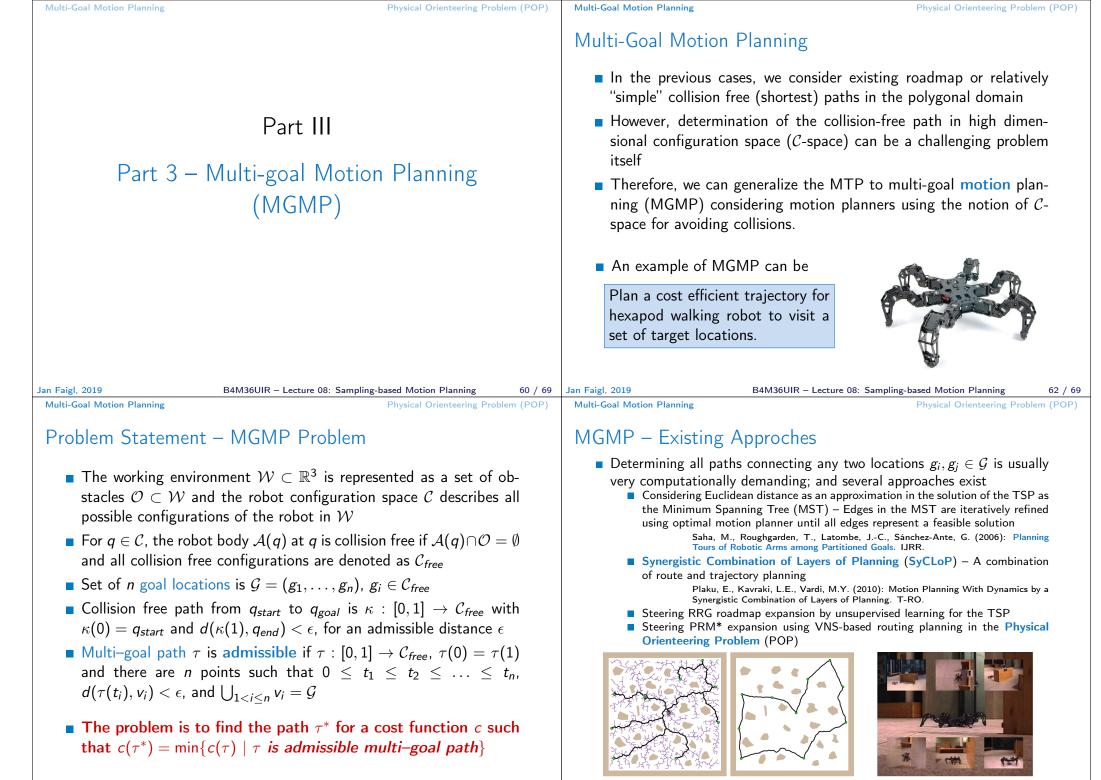
 $RRT^{X} - Robot in 2D$

https://www.youtube.com/watch?v=S9pguCPUo3M

https://www.youtube.com/watch?v=KxFivNgTV4o

Otte, M., & Frazzoli, E. (2016). RRT^X: Asymptotically optimal single-query sampling-based motion planning with quick replanning. The International Journal of Robotics Research, 35(7), 797--822.

58 / 69 Jan Faigl, 2019 B4M36UIR - Lecture 08: Sampling-based Motion Planning 59 / 69



Jan Faigl, 2019

63 / 69 Jan Faigl, 2019

B4M36UIR – Lecture 08: Sampling-based Motion Planning

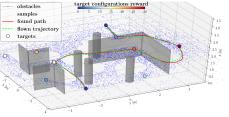
64 / 69

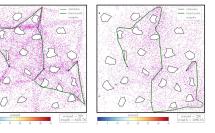
Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP)

- Orienteering Problem (OP) in an environment with obstacles and motion constraints of the data collecting vehicle.
- A combination of motion planning and routing problem with profits.
- VNS-PRM* VNS-based routing and mo-

tion planning is addressed by **PRM***

- An initial low-dense roadmap is continuously expanded during the VNSbased POP optimization to shorten paths of promising solutions.
- Shorten trajectories allow visiting more locations within T_{max}.

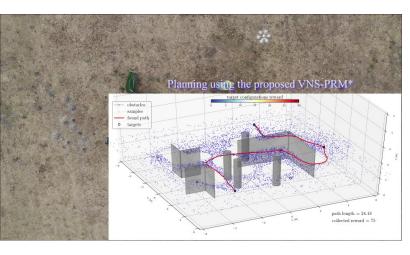




 Pěnička, Faigl and Saska: Physical Orienteering Problem for Unmanned Aerial Vehicle Data Collection Planning in Environments with Obstacles. IEEE Robotics and Automation Letters 4(3):3005–3012, 2019.
 Jan Faigl, 2019
 B4M36UIR – Lecture 08: Sampling-based Motion Planning

Summary of the Lecture

Multi-Goal Trajectory Planning with Limited Travel Budget Physical Orienteering Problem (POP) – Real Experimental Verification



Jan Faigl, 2019

Multi-Goal Motion Planning

B4M36UIR – Lecture 08: Sampling-based Motion Planning

67 / 69

Topics Discussed

66 / 69

Topics Discussed – Randomized Sampling-based Methods

- Single and multi-query approaches Probabilistic Roadmap Method (PRM); Rapidly Exploring Random Tree (RRT)
- Optimal sampling-based planning Rapidly-exploring Random Graph (RRG)
- Properties of the sampling-based motion planning algorithms
 - Path, collision-free path, feasible path
 - Feasible path planning and optimal path planning
 - Probabilistic completeness, strong $\delta\text{-clearance},$ robustly feasible path planning problem
 - \blacksquare Asymptotic optimality, homotopy, weak $\delta\text{-clearance, robust optimal solution}$
 - PRM, RRT, RRG, PRM*, RRT*
- Improved randomized sampling-based methods
 - Informed sampling Informed RRT*; Improving by batches of samples and reusing previous searches using Lifelong Planning A* (LPA*)
 - Improving local search strategy to improve convergence speed
 - Planning in dynamic environments RRT^X
- Multi-goal motion planning (MGMP) problems are further variants of the robotic TSP

Next: Game Theory in Robotics

Jan Faigl, 2019

Topics Discussed

68 / 69 Jan Faigl, 2019