

EMPIRICAL STUDIES POWER ANALYSIS

SAN 2019/20

HUMAN FACTORS

HUMAN FACTORS

- Humans are complicated Computers are simple
- Age, female, male, experts, novices, left- handed, right-handed, English-speaking, Chinesespeaking, from the north, from the south, tall, short, strong, weak, fast, slow, able-bodied, disabled, sighted, blind, motivated, lazy, creative, bland, tired, alert, ...
- Humans are never precise

- Workplace habits, groupware usage patterns, social networking, online dating, privacy, media spaces, design theory, ...
- Web navigation, user search strategies, collaborative computing, ubiquitous computing, social navigation, ...
- Selection techniques, force or auditory feedback, text entry, gestural input, ...

workplace h	ahits	arounwa	ire lisade na	tterns
social netwo	Scale (sec)	Time Units	System	World (theory)
spaces desi	10 ⁷	Months		
	10 ⁶	Weeks		SOCIAL BAND
web navigat	10 ⁵	Days		BAND
collaborativ	10 ⁴	Hours	Task	
	10 ³	10 min	Task	RATIONAL BAND
social naviga	10 ²	Minutes	Task	
- coloction to	10 ¹	10 sec	Unit task	
	10 ⁰	1 sec	Operations	COGNITIVE
text entry, g	10 ⁻¹	100 ms	Deliberate act	BAND
	10 ⁻²	10 ms	Neural circuit	
	10 ⁻³	1 ms	Neuron	BIOLOGICAL BAND
	10 ⁻⁴	100 μs	Organelle	

Newell 1999

- Workplace habits, groupware usage patterns, social networking, online dating,
 privacy, media spaces, design theory, ...
- Web navigation, user search strategies, collaborative computing, ubiquitous computing, social navigation, ...
- Selection techniques, force or auditory feedback, text entry,
 gestural input, ...

Scale (sec)	Time Units	System	World (theory)
10	Months		
10 ⁶	Weeks		SOCIAL BAND
10 ⁵	Days		
10 ⁴	Hours	Task	DATIONAL
10 ³	10 min	Task	RATIONAL BAND
10 ²	Minutes	Task	BAND
10 ¹	10 sec	Unit task	
100	1 sec	Operations	
10 ⁻¹	100 ms	Deliberate act	Britte
10 ⁻²	10 ms	Neural circuit	
10 ⁻³	1 ms	Neuron	BIOLOGICAL BAND
10 ⁻⁴	100 µs	Organelle	2.00

Newell 1999

- Workplace habits, groupware usage patterns, social networking, online dating,
 privacy, media spaces, design theory, ...
 - Web navigation, user search strategies, collaborative computing, ubiquitous computing, social navigation, ...
 - Selection techniques, force or auditory feedback, text entry,
 gestural input, ...

Scale (sec)	Time Units	System	World (theory)
10	Months		
10 ⁶	Weeks		SOCIAL BAND
10 ⁵	Days		BAND
10 ⁴	Hours	Task	DATIONAL
10 ³	10 min	Task	BAND
10 ²	Minutes	Task	
10 ¹	10 sec	Unit task	
100	1 sec	Operations	BAND
10 ⁻¹	100 ms	Deliberate act	
10 ⁻²	10 ms	Neural circuit	
10 ⁻³	1 ms	Neuron	BIOLOGICAL
10 ⁻⁴	100 µs	Organelle	

Newell 1999

Qualitative

HUMAN FACTORS | SENSORS

- Vision
 - Intensity, Fixations,
 Saccades
- Hearing
 - Loudness, Pitch, Timbre
- Touch
 - Position, Texture,
 Temperature, Movement,
 Resistance

(a) Scene. (b) Task: Remember the position of the people and objects in the room. (c) Task: Estimate the ages of the people

atler 2010

HUMAN FACTORS | RESPONDERS

- Limbs
- Voice

- Eyes
- Taste and smell

Use of the limbs in HCI: (a) Hands. (b) Fingers. (c) Thumbs. (d) Arms. (e) Feet. (f) Head.

HUMAN FACTORS | BRAIN

- Cognition
 - Thinking, reasoning, and deciding
- Memory
 - Long-term vs short-term (working)
- Language
 - Corpus, redundancy, entropy

THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG
ROONOT-VISMOB
READING LAMP ON THE DESK SHED GLOW ON
REAODSHED-GLOO-
POLISHED WOOD BUT LESS ON THE SHABBY RED CARPET
P-L-SOBUL-SOSHREC

HUMAN FACTORS | PERFORMANCE

- Reaction time
 - stimuli->response delay
- Time to make decision
 - logarithmic if there is a system
- Visual search
 - linear relation to number of items
- Skilled behavior
 - performance improves through training

Attention

- no cognitive action without attention
- Error
 - error is a discrete event in a task, or trial, where the outcome is incorrect

RESEARCH METHODS

RESEARCH METHODS

Observation

Experiment

Correlation

RESEARCH | OBSERVATION

- Interviews, field investigations, contextual inquiries, case studies, focus groups, ...
- Focus on thought, feeling, attitude, emotion, reaction, expression, sentiment, opinion, mood, manner, strategy, ...
- Qualitative rather than quantitative
- Achieves relevance while sacrificing precision

RESEARCH | EXPERIMENT

- Controlled experiments in laboratory settings
- Checking causality
 - manipulated (independent) variable => response (dependent) variable
 - systematically exposing participants to different configurations of the interface or interaction technique
- Measurement of responses
 - task completion time, number of errors, ...
- Allows conclusion to be drawn
 - hypothesis test

Khan Academy

RESEARCH | CORRELATION

- Looking for relations between variables
- Quantification of variables is necessary
 - age, income, number of privacy settings
 - nominal-scale variables are categorized (e.g., personality type, gender)
- Data collected through a various methods
 - observation, interviews, on-line surveys, questionnaires, or measurement
- Balance between relevance and precision

RESEARCH | CORRELATION

Looking for relations between variables

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

RESEARCH | CORRELATION

Looking for relations between variables

NOAA, Jouzel 2007

MEASUREMENT

MEASUREMENT | SCALES

- Nominal, ordinal, interval, ratio
- Different sort of information
- Different analysis possible

MEASUREMENT | NOMINAL

- Assigning a code to an attribute or a category
 - it does not need to be a number
- Often used with frequencies or counts

P02	F	BHAL	L	4			
P06	F	AHBL	С	4			
P07	F	ALBH	С	4			
P08	F	BHAL	С	5			
P09	F	BLAH	С	5			
P10	F	AHBL	С	5			
P11	М	ALBH	С	5			
P13	Μ	ALBH		Mobilo Phone			
P14	М	BLAH	Gender		e Usaye	Total	%
P15	F	BHAL	Condor	Not Using	Using	lotai	
P16	F	BLAH	Mala	602	00	701	51 10/
P18	Μ	BLAH	wale	003	90	/01	51.1%
P19	F	ALBH	Female	644	102	746	48.9%
P20	М	AHBL	Total	1307	200	1527	
			TOLAI	1327	200	1327	1
			%	86.9%	13.1%		

MEASUREMENT | ORDINAL

- Order or ranking
- Interval is not intrinsically equal between successive points on the scale
- Comparisons of greater than or less than are possible
- It is not valid to compute the mean

How many email messages do you receive each day?

- 1. None (I don't use email)
- 2. 1-5 per day
- 3. 6-25 per day
- 4. 26-100 per day
- 5. More than 100 per day

MacKenzie 2013

MEASUREMENT | INTERVAL

- Equal distances between adjacent values
- There is no absolute zero
- Mean can be computed
- Ratios of interval data are not meaningful
 - one cannot say that 20°C is twice as warm as 10°C

Please indicate your level of agreement with the following statements.					
	Strongly disagree	Mildly disagree	Neutral	Mildly agree	Strongly agree
It is safe to talk on a mobile phone while driving.	1	2	3	4	5
It is safe to read a text message on a mobile phone while driving.	1	2	3	4	5
It is safe to compose a text message on a mobile phone while driving.	1	2	3	4	5

MacKenzie 2013

MEASUREMENT | RATIO

- Ratio data have an absolute zero
- Time
 - completion time
- Count
 - normalization is recommended
- Errors normalized as "error rates (%)"
 - number of errors/number of trials*100
 - number of incorrectly entered characters/total number of characters times 100

RESEARCH QUESTION IN HCI

RESEARCH QUESTION

- Research is conducted to answer (and raise) questions about new or existing user interfaces or interaction techniques
- Often the questions contains the relationship between two variables:
 - One variable is a circumstance or condition that is manipulated – interface property
 - The other is an observed and measured behavioral response task performance

RESEARCH QUESTION

Is it viable?

Is it as good as or better than current practice?

What are its strengths and weaknesses?

 Which of several alternatives is best?
 Relevant, but not testable!

RESEARCH QUESTION

Example, questions about new technique comparing to qwerty software keyboard (QSK).

- Is the new technique any good?
- Is the new technique better than QSK?
- Is the new technique faster than QSK?
- Is the new technique faster than QSK after a bit of practice?
- Is the measured entry speed (in words per minute) higher for the new technique than for a QSK after one hour of use?

INTERNAL VS. EXTERNAL VALIDITY

High

Accuracy of Answer

Internal Validity

Low

Is the measured entry speed (in words per minute) higher with the new technique than with QSK after one hour of use?

> Is the new technique better than QSK?

Low

Breadth of Question (External Validity)

High

MacKenzie 2013

INTERNAL VS. EXTERNAL VALIDITY

- Internal Validity
 - low in breadth (that's bad!) yet answerable with high accuracy (that's good!)
 - we can craft a methodology to answer it through observation and measurement
- External Validity
 - high in breadth (that's good!) yet answerable with low accuracy (that's bad)
 - we lack a methodology to observe and measure "better than"

VARIABILITY AND CONFIDENCE

- People exhibit variability in their actions
- Variability person per person, but also person per task
- The result is always different!
- Variability strongly affects the confidence with which we can answer research questions

DESIGNING HCI EXPERIMENT

COMPARATIVE EVALUATION

- Evaluation on its own is questionable
- Baseline condition validates the methodology
- Testable research questions are crafted as comparisons

EXPERIMENT DESING

Process of bringing together all the pieces necessary to test hypotheses on a user interface or interaction technique:

- Variables
- Tasks and procedure
- Participants

VARIABLES | INDEPENDENT

An independent variable (factor) is a characteristic that is manipulated or systematically controlled to evoke a change in a human response.

- Manipulated across multiple levels (at least 2)
- Independent of participant behavior
- Typically a nominal-scale attribute, often related to a property of an interface
 - device, entry method, feedback modality, selection technique, menu depth, button layout
 - unchangeable human characteristic (age, handedness, gender, expertise, ...)
 - environment characteristics (room lightning, noise, ...)

VARIABLES | DEPENDENT

A dependent variable is a measured human behavior.

- Typically a ratio-scale human behavior
 - task completion time, error rate, accuracy, number of button clicks, scrolling events, gaze shifts, ...
- Dependent on the human behavior
- Any observable, measurable aspect of human behavior is a potential dependent variable
 - all dependent variables must be clearly defined to ensure the research can be replicated

VARIABLES | OTHER

- Control variables
 - influence a dependent variable but are not under investigation => we try to make them constant
 - lighting, temperature, noise, display size, mouse shape, keyboard angle, chair height, participant characteristic
- Random variables
 - increase variability of measured behavior => results are less generalizable
 - typically characteristics of the participants: biometrics, social disposition (nervousness), genetics (gender, IQ)

Variable	Advantage	Disadvantage
Random	Improves external validity by using a variety of situations and people.	Compromises internal validity by introducing additional variability in the measured behaviours.
Control	Improves internal validity since variability due to a controlled circumstance is eliminated	Compromises external validity by limiting responses to specific situations and people.

VARIABLES | OTHER

- Confounding variables
 - any circumstance or condition that changes systematically with an independent variable is a confounding variable
 - very problematic in research is the effect due to independent variable or confounding?
 - e.g. prior experience, experiment setup (difference in conditions), ...

VARIABLES | EFFECTS

- Main effect vs. interaction effects on dependent variables
- Interaction effects that are three-way or higher are extremely difficult to interpret
- Optimal number of independent variables: one or two, three at most

TASK & PROCEDURE

- Procedure should contain all combinations of independent variable and their values
- Task is representative and discriminates

 Besides tasks the procedure contains instruction and training

PARTICIPANTS

- Select participants from the same population to whom to results apply
- Use sufficient number of participants
 - a priori power analysis
 - check similar research studies
- Increasing the number of participants increases the likelihood of achieving statistically significant results
 - Large number of participants: statistically significant results for a difference of no practical significance

PARTICIPANTS | WITHIN/BETWEEN S.

WITHIN-SUBJECT

- repeated measures
- less participants
- variance low
- interference between test cond.
 - learning effect
 - fatigue effect

BETWEEN-SUBJECT

- separate groups
- more participants
- balancing needed
- no interference between test cond.

PARTICIPANTS | CONTERBALANCING

- Simplest case 1 factor, 2 levels (A, B), withinsubject experiment participants are divided into two groups, 12 participants:
 - 6 in one group order A, B

(b)

- 6 in the other group order of conditions B, A
- This is the simplest case of Latin square
- n × n table filled with n different symbols positioned such that each symbol occurs exactly once in each row and each column

(C)

Α	В	
В	Α	

(a)

A	В	С	
В	С	Α	
С	Α	В	

Α	В	С	D
В	С	D	А
С	D	Α	В
D	Α	В	С

(d)	Α	В	С	D	Е
	В	С	D	Е	А
	С	D	Е	Α	В
	D	Е	Α	В	С
	Е	Α	В	С	D

PARTICIPANTS | CONTERBALANCING

- Balanced Latin squares where each condition precedes and follows other conditions an equal number of times
- Number of levels of the factor must divide equally

4x4 unbalanced Latin square

(a)

Balanced Latin squares (a) 4×4 . (b) 6×6 .

ASYMMETRIC SKILL TRANSFER

- There are occasions where different learning effects appear for one order (e.g., $A \rightarrow B$) compared to another (e.g., $B \rightarrow A$)
 - group effect = different amount of improvement depending on the order of testing

Testing Half

POWER ANALYSIS

ERRORS IN EXPERIMENTS

- Type I error (False positive, α error)
 - H₀ is rejected, when in reality H₁ is not correct
- Type II error (False negative, β error)
 - $\rm H_{0}$ is not rejected (H_{1} is not accepted), when in reality $\rm H_{1}$ is correct

	H0 not rejected	H1 accepted
H0 is truth	Correct	Type I error
H1 is truth	Type II error	Correct

SOURCES OF ERRORS

- 1. Usability properties identification
- 2. Prototype creation
- 3. Experiment design
- 4. Participants recruitment
- 5. Test execution and data collection
- 6. Data analysis
- 7. Conclusions and recommendations statement

SOURCES OF ERRORS | CONT.

- 3. Experiment design
 - poor choic
 - wrong chc
 - unaware design in
 - accidental insignificar
 - large spr
 - shift of m
- 6. Data analys

- analysis of influence of test conditions on the data measured
- evaluator bias => analysis performed by more evaluators

DATA ANALYSIS | OUTLIERS

Outliers are always there

- but more often for "long tail" distributions
- Outliers elimination
 - selection bias => "data fishing"
 - before looking at the data measured (step 6)
 - better: before test execution (step 5)
 - perform qualitative evaluation of outliers behavior

		n	nethod A	Α		method B				
min	26	24	22	17	15	10	9	8	7	6
max	94	98	75	82	72	41	39	31	29	27

POWER ANALYSIS

• Power of a test = $(1 - \beta)$

– probability that the test correctly rejects ${\sf H}_{\rm 0}$

```
power = \mathbb{P}(\operatorname{reject} H_0 | H_1 \text{ is true})
```

Depends on

- significance level α (Type I error probability)
- sample size n
- effect size d (min. degree of violation of H_0)
 - specify on a priori grounds

t test: Cohen's
$$d = \frac{\mu_1 - \mu_2}{\sigma}$$

POWER ANALYSIS | SIZE d

t tests

Cohen's suggestion:
0.2, 0.5, 0.8

$$d = \frac{\mu_1 - \mu_2}{\sigma}$$

ANOVA

Cohen's suggestion:0.1, 0.25, 0.4

 Chi-square test
 Cohen's suggestion: 0.1, 0.3, 0.5

$$f = \sqrt{\frac{\sum_{i=1}^{k} p_i * (\mu_i - \mu)^2}{\sigma^2}}$$

 $p_i = n_i/N$ $n_i =$ number of observations in group *i* $\mu =$ grand mean

$$w = \sqrt{\sum_{i=1}^{m} \frac{(p0_i - p1_i)^2}{p0_i}}$$

 $p0_i$ = cell probability in i^{th} cell under H_0 $p1_i$ = cell probability in i^{th} cell under H_1

POWER ANALYSIS | DEPENDENCE

 $\alpha = 0.05$ $\beta = 0.14$

 $\begin{aligned} \alpha &= 0.1 \\ \beta &= 0.08 \end{aligned}$

POWER ANALYSIS | TYPES

- A priori
 - controlling power level before conducting test
 - computing sample size n
 - function of required power level, specified α , d
- Post hoc
 - after a test was conducted
 - Does the test had fair chance to reject incorrect H_0 ?
 - computing the power level
- Compromise
 - fixed ratio between α and β
- Sensitivity
 - estimating/checking the size of an effect d

POWER ANALYSIS | DISCOVERY

- How many users do we need for discovering 95% of (ALL) problems?
- Golden rule of usability testing: Five users is enough to observe all relevant problems with very high probability.
- To detect X % of problems that affects Y % of users.
- To have a X % chance of detecting ...

$$n = \frac{\ln(1 - X)}{\ln(1 - Y)}$$

$$n = 5$$

$$very high = 95 \%$$

$$all relevant = 50 \%$$

POWER ANALYSIS | COMPARING

- Determining *n* for comparing two means
 - within-subject

$$n = \frac{\left(t_{\alpha} + t_{\beta}\right)^2 s^2}{d^2}$$

 t_{α} = critical value for Confidence level t_{β} = critical value for Power s^{2} = the variance (estimate of SD²) d^{2} = the square of critical diference

between subject

$$n = \frac{2(t_{\alpha} + t_{\beta})^2 s^2}{d^2}$$

POWER ANALYSIS | COMPARING

F test (MANOVA: Repeated measures, within factors)

$$\alpha = 0.05$$

 $\beta = 0.73$
 $f = 0.25$ (medium)
 $n = 16$

$$\alpha = 0.05$$

 $\beta = 0.37$
 $f = 0.4$ (large)
 $n = 16$

POWER ANALYSIS | COMPARING

F test (MANOVA: Repeated measures, within factors)

$$\alpha = 0.05$$

 $\beta = 0.73$ for $\beta = 0.2, n = 44$
 $f = 0.25$ (medium)
 $n = 16$

$$\alpha = 0.05$$

 $\beta = 0.37$ for $\beta = 0.2, n = 22$
 $f = 0.4$ (large)
 $n = 16$

$$\alpha = 0.05$$

 $\beta = 0.92$ for $\beta = 0.2, n = 244$
 $f = 0.1$ (small)
 $n = 16$

EXPERIMENT RESULTS

F test (MANOVA: Repeated measures, within factors)

Keyboard type means: A=41.86400 B=14.40800 Group means: AB=29.92800 BA=26.34400					
Effect	===== df 	SS	MS		p
Group	1	1605.632	1605.632	3.020	0.08865
Participant(Group)	48	25519.320	531.653		
Keyboard type	1	94228.992	94228.992	341.435	0.00000
Keyboard type x Group	1	1083.392	1083.392	3.926	0.05330
Keyboard type_x_P(Grou	48	13247.016	275.979		
Trails	4	8265.372	2066.343	107.509	0.00000
Trails x Group	4	38.148	9.537	0.496	0.73855
Trails_x_P(Group)	192	3690.280	19.220		

SAN 2018 experiment

THANK YOU FOR ATTENTION

Zdeněk Míkovec xmikovec@fel.cvut.cz

REFERENCES

 MacKenzie, I. Scott. Human-computer interaction: An empirical research perspective. Newnes, 2012. (available online, google it)

Further reading

- "Personal Dynamic Media" by A. Kay and A. Goldberg (1977).
- "The Computer for the 21st Century" by M. Weiser (1991).

REFERENCES

- Power Analysis in R: <u>http://www.statmethods.net/stats/power.html</u>
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences, ISBN 978-0805802832, Routledge.
- Sauro, J., & Lewis, J. R. (2012). Quantifying the user experience: Practical statistics for user research. Elsevier.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1. 9: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 41(4), 1149-1160.
- Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior research methods, 41(4), 1149-1160.
- Kuniavsky, M. (2012). Observing the user experience: a practitioner's guide to user research. Morgan Kaufmann.
- MacKenzie, I. S. (2012). Human-computer interaction: An empirical research perspective. Newnes.