A practice of (robust) statistical testing

November 25, 2019

1. Implement a calculation of T-Test test statistic

$$t = \frac{\bar{X}_1 - \bar{X}_2}{s_p \sqrt{\frac{2}{n}}}$$

where

$$s_p = \sqrt{\frac{s_{X_1}^2 + s_{X_2}^2}{2}}$$

- 2. Observe that the value of a test statistic under hypothesis H_0 is random variable (To do so, calculate it from two sets of numbers from Normal distribution).
- 3. Draw histograms of test statistics for H_0 and H_1 and observe, how they change with respect to:
 - difference in means,
 - variance of distributions,
 - number of samples.
- 4. Observe, how Student-t distribution with 2n-2 degrees of freedom fits the distribution of test statistics of hypothesis H_0 independently from variance of distributions.
- 5. Calculate thresholds on test statistics, such that the probability of rejection hypothesis H_0 when it is true (Type I error) is $\alpha = 5\%$.
- 6. Empirically verify, that your thredsholds are correct. To do so, estimate the Type I error from a set of independent experiments (realizations of the test statistics under hypothesis H_0 .

- 7. Observe, how the predicition matches the experimental results when the assumptions of T-Test is violated (both distributions have for example different variances.)
- 8. Observe, how the predicition matches the experimental results when number in tests comes from different distributions (e.g. Normal and Cauchy). Can you come up with a different distribution where it nicely fails?
- 9. Implement the test statistic U of Mann-Whitney-U statistics (see the lecture notes).
 - (a) Assume we have $\{(x_i)\}_{i=1}^{n_1}$
 - (b) Calculate ranks of all samples together.
 - (c) Sum ranks of samples from the first population, R_1 .
 - (d) Sum ranks of samples from the second population, R_2 .
 - (e) Calculate $U_1 = R_1 \frac{n_1(n_1+1)}{2}$ and $U_2 = R_2 \frac{n_2(n_2+1)}{2}$.
 - (f) $U = \min\{U_1, U_2\}$
- 10. Compare the distribution of test statistic to predicted approximation for large number of samples $U \sim \mathcal{N}\left(\frac{n_1n_2}{2}, \frac{n_1n_2(n_1+n_2+1)}{12}\right)$.