52 Generating Elementary Combinatorial Objects

Finally, we present a successor algorithm for the revolving door ordering, in
Algorithm 2.13. In this algorithm, the successor of the last k-subset is the first
one. In other words, we think of the list A™* as being ordered cyclicly, and
therefore we define

successor{{1,...,k—1,n})={1,...,k)}.

Note that this is also a minimal change.
Algorithm 2.13 begins by defining ¢x+) to be n + 1. This means that we do not
have to handle the situation j = k as a special case.

Algorithm 2.13: KSUBSETREVDOORSUCCESSOR (T, k,n)

it &—n+1
ji+1
while (j < k) and (¢; = j)

doj+j7+1
ifk# jmod2

ifj =1
] then tlt(— t:.__jl
=1
else {t,-_, ~j-1

(301, L +.01
Wijy1 F o3 7 L

then {tj'l el

2.4 Permutations
2.4.1 Lexicographic ordering

We now look at the generation of all »! permutations of the set {1,...,n}. A
permutation is a bijection from a set to itself. One way to represent a permutation
7 :{1,...,n} = {1,...,n} is by listing its values, as follows:

[=[1}, ..., «n]].

We call this the list representation of the permutation 7. Saying that 7 is a permu-
tation is equivalent to saying that each element in {1,...,n} occurs exactly once
in this list.

Permutations 53

First, we will look at the lexicographic ordering of permutations. The lexico-
graphic ordering is defined in terms of the list representation. As an example,
when n = 3, the lexicographic ordering of the six permutations of {1,2,3} is as

follows:
[1,2,3],(1,3, 2},[2,1,3),(2,3, 1],(3,1,2],[3,2,1].

We begin by describing an algorithm for generating permutations in lexico-
graphic order. This generation algorithm depends on a successor algorithm that
finds the permutation that immediately follows a given permutation (in lexico-
graphic order). In Algorithm 2.14, # is a permutation of {1, ..., n} given in list
representation,

Algorithm 2.14 has four steps. In the first while loop, we find 7 such that

alil <A+ 1) > 7l + 2] >--- > 7[nj.

Note that by setting #[0] to 0, we ensure that the while loop terminates with 0 <

i<n—1Ifi=0,then

Ly RELW

T=fnn-1,...,1]

is the last permutation lexicographically and has no successor. Otherwise, we
proceed'to the second while loop, where we find the integer j such that w[j] >
wlé] and w[k] < #li] for j < k < n (ie., j is the position of the last element
among 7fi +1],. .., x[n] that is greater than r[i]). The third step is to interchange
[é] and (5], and the fourth step is to reverse the sublist

[x[i +1),...,[r]].

Algorithm 2.14: PERMLEXSUCCESSOR (n, 7)

7[0] « 0
t+—n—1
while 7[i + 1] < #[i]
doi +~1-~1
ifi =20
then return (“undefined”)
j+n
while 7(j] < =[i]
doj+j-1
t + wfj]
nlj] + i
wfi] « ¢
forhe—tit+1ton
do p{h] « =[h]
forhe—i+1lton
do w[h] + pln+i+1 - h)
return (%)

54 Generating Elementary Combinatorial Objects

As an example, suppose that n = 7 and
= [3,6,2,7,5,4,1].
Then, after the first while loop, we have 1 = 3, since
2<7>3>4>1.

After the second while loop, we have j = 6 since 4 > 2 and 1 < 2. In the third
step, we interchange 3 and 7, producing

[3.6,4,7.5,2,1].

Finally, we reverse the sublist
[7> 5a 23 1]3

producing the permutation
(3,6,4,1,2,5,7),

which is the successor of #.

It is now easy to generate all n! permutations of {1,...,n}. We can begin with
the permutation [1, 2, . . ., n] (which is the first permutation lexicographically) and
invoke Algorithm 2.14 a total of n! — 1 times.

We next turn to ranking and unranking permutations in iexicographic order. In
the lexicographic ordering of permutations of {1, .. ., n}, we first have the (n—1)!
permutations that begin with a “1”, followed by the (n — 1}! permutations that
begin with a “2”, etc. Hence, if m is a permutation of {1,...,n}, itis clear that

(7[1] = 1) (n = 1)} < rank(m) < 7(l](n —1)! - 1.

Let r’ denote the rank of 7 within the group of (» — 1}! permutations that begin
with 7[i]. Then r is the rank of [x[2],...,n[n]} when it is considered as a per-
mutation of {1,...,n}\{x[1]}. If we decrease every element of [x[2],..., w{n]]
that is greater than #[1] by one, then we obtain a permutation =’ of {1,...,n—1}
that also has rank r'.

This observation leads to a recursive formula for lexicographic rank of permu-
tations of {1,...,n}. Forn > 1, we have

7 ¥

rank{z,n) = (7[1] — 1) (n — 1)! + rank(7’,n — 1},

where e s
vy J wli+1] -1 ifaxfi+1) > 1]
wHl = wfi+ 1 if i + 1) < =[1).
Initia! conditions for this recurrence relation are given by

rank({1],1) = 0.

Permutations 55

We work out a small example to illustrate:
rank([2,4,1,3],4) = 6 + rank([3, 1, 2], 3}
= 6 + 4 + rank([L,2],2)
= 6+4+ 0+ rank([1],1)
=6+4+4+0+0
= 10.

It is easy to convert this recursive formula into a non-recursive algorithm, which
we present as Algorithm 2.15.

Algorithm 2.15: PERMLEXRANK (7, 7)

r«0
pP+T
for; —1ton
re 1+ (pli] - 1) (n - 5)!
do fori— j+1ton
4o {1 olil > ol)
then pfi] + pft] — 1

return (r)

Now suppose we want to unrank the integer r, where 0 < 7 < n! — 1. Unrank-
ing can be done fairly easily if we first determine the factorial representation of
7, by expressing r in the form

n-1
r= Z(d‘t) il)!
i=1
where 0 < d; < ifort = 1,...,n— 1. (We leave it as an exercise to prove

that any non-negative integer r such that 0 < r < n! — 1 has a unique factorial
representation of this form.)
Suppose that # = unrank{r) in the lexicographic ordering. It is easy to see that

71} = dn-1 + 1.

Thus the first element of 7 is determined immediately from the factorial represen-
tation of 7. Now, denole

r'=r—ds1-(n-1),

and suppose that 7 = unrank(r’), where 7’ is a permutation of {1,...,n — 1}.
(This could be done recursively, for example.) Suppose we increment by one all
elements of n’ that are greater ihan d,,—,-. Finaily, define

ali} =="fi + 1]

56 Generating Elementary Combinatorial Objects

for 2 < i < n. Then it will be the case that # = unrank(r).
As an example, suppose that 7 = 4 and r = 10. The factorial representation of
r 18
1-3'+2-214+0-10
Hence, n[1] = d3 + 1 = 2. Now, compute ' = r — 6 = 4. It can be verified
that #' = unrank(4) = [3,1,2). Then we increment the first and third elements
by one, so 7' = {4, 1, 3]. Hence, we obtain

unrank(10) = [2,4,1, 3].

Algorithm 2.16 is a non-recursive implementation of this unranking algorithm.
In this algorithm, we use a function mod which performs modular reduction ac-
cording to the following rule:

mod{z,m)=r<cs=rmodmand0<r <m~-1.

Algorithm 2.16: PERMLEXUNRANK (2, 7)

7[n] « 1
forj+ lton-1
fd - mod!r}!!!'-l-l!!t

réer—d-j!
wn—-jl—d+1
fort ~n—j3+1ton
40 JiETli > d
| then r[i] « #[i] + 1

do

.

return ()

We illustrate Algorithm 2.16 by recomputing unrank{10). Initially, we set

w[4] = L.
When 3 = 1, we compute
4= med10,2) _
1 ?

n[3] = 1 and w{4] = 2.

When j = 2, we have
mod(10, 6}
d=——— =%

r=10-2-2=6,

and

#[2] = 3.

Permutations 57

Finally, when 3 = 3, we have

__mod(6,24)
= 6 =
r=6-1-6=0
7[1] = 2,7[2] = 4 and ={4] = 3.

d 1,

Hence, we obtain

uwnranl(10
ulllﬂllr\\.l.u

} = {2141 1)3}1

as before.

24,2 Minimal change ordering

First we need to give some thought as to what a minimal change would be in the
context of permutations. It is certainly the case that any two distinct permutations
7 and 7' of {1,...,n} must differ in at least two positions. Further, if 7 and
7' differ in exactly two positions, then one can be obtained from the other by a
single transposition (i.e., by exchanging the elements in the two given positions).
It may even happen that the two positions are adjacent; so, we in fact transpose
two adjacent elements in order to transform 7 into o’ This is equivalent to saying
that there exists an integer i, 1 < ¢ < n — 1, such that

n[f+1] ifj=i
mlfl=4¢ #®j-1 ifj=¢i+1

wli} ifj #4141

This is in fact the definition we will take for a minimal change for permutations.
The Trotter-Johnson algorithm is a nice example of a minimal change algo-

rithm for generating the n! permutations. It can be most easily described recur-
sively. Suppose we have a listing of the (n — 1)! permutations of {1,...,n — 1}
in minimal change order, say

T = [mo, 71, ... » Mn—1)1-1]-

Form a new list by repeating each permutation in the list T*~! n times. Now
insert the element n into each of the n copies of each permutation 7;, as follows.
If ¢ is even, then we first inseri element 2 after ihe element in position n — 1,
then after the element in position n — 2, etc., and finally preceding the element in
position 1. If 7 is odd, then we proceed in the opposite order, inserting element n
into the n copies of 7; from the beginning to the end of =,

We illustrate the procedure for n = 1, 2,3 and 4. We begin with n = 1, where

we have
T =[1].

Next, we obtain
T2 ={[1,2},[2,1]).

