Decision Trees

Lecturer: Jiří Matas

Authors: Jiří Matas, Ondřej Drbohlav

Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

7.1.2016

Pros

- 1. simple, intuitive
- 2. no restrictions on the feature space:

 $X_1 \times X_2 \times \ldots X_D$, $(D \gg 1)$

 X_i can be discrete, continuous, categorical, ordinal, . . .

- 3. interpretability
- 4. to classify, not all X_i may be actually needed
- 5. sequential decisions
- 6. high degree of robustness to outliers (unlike e.g. linear classifiers)
- 7. different scales between features are not a problem
- 8. deals with additional information
- 9. for any decision tree point, gives class probability
- 10. can be used in regression problems

Cons

(1)

- 1. not well justified learning algorithm
- 2. overfitting is a problem
 - for standard methods, but this can be fixed (randomized d. trees, decision *forests*)

р m

Decision Tree

What is a decision tree?

A tree with two types of nodes:

Decision nodes Leaf nodes

Decision node: Specifies a choice or test of some attribute with 2 or more alternatives;

 \rightarrow every decision node is part of a path to a leaf node

Leaf node: Indicates classification of an example

age?
>>>>>>https://www.age"
</ap>

Learning decision trees: An example

Problem: decide whether to wait for a table at a restaurant.

Attributes used

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Goal predicate: WillWait?

Attribute-based representations

Example	Attributes								Target			
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait	
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т	
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F	
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т	
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т	
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F	
X_6	F	Т	F	Т	Some	\$\$	Т	Т	ltalian	0–10	Т	
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F	
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т	
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F	
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F	
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F	
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т	

Examples described by attribute values (Boolean, discrete, continuous)

Classification of examples is positive (T) or negative (F)

12 examples (6 T, 6 F)

Decision trees

One possible representation for hypotheses E.g., here is a tree for deciding whether to wait:

Top-Down Induction of DT (TDIDT)

Growth Phase: The tree is constructed top-down.

- Find the "best" attribute.
- Partition examples based on the attribute's values.
- Apply recursively to each partition.

Pruning Phase: The tree is pruned bottom-up

- For each node, keep subtree or change to leaf.
- Choose by comparing estimated error.

m p
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

examples into sub-sets that are all positive or all negative... i.e. maximum information gain.

17

16

Choosing an attribute: Information Gain

Information Gain (IG) measures the expected reduction in entropy. The higher the Information Gain with respect to an attribute A, the more is the expected reduction in entropy. Weight of each subcla

$$Gain(S,A) = Entropy(S) - \sum_{v \in Value(A)} \left| \frac{|S_v|}{|S|} \right| Entropy(S_v)$$

where Values(A) is the set of all possible values for attribute A, S_v is the subset of S for which attribute A has value v.

Example contd.

12

Decision tree learned from the 12 examples:

m p
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

 $\begin{array}{c} P \\ \swarrow \\ P_1 \\ P_2 \cdots \\ P_k \end{array}$

• Define a splitting function $S(P, \theta)$ as a mapping which takes a set P (data points at a node) and splitting parameters θ and produces the partition of P to $\{P_1, P_2, \ldots, P_k\}$. That is,

$$S: P, \boldsymbol{\theta} \to \{P_1, P_2, \dots, P_k\},$$

$$P_i \cap P_j = \emptyset \Leftrightarrow i \neq j \tag{3}$$

$$\bigcup_{i=1}^k P_i = P \tag{4}$$

- ullet $m{ heta}$: contains the index i of the splitting dimension X_i and the branching factor k
- k = 2: binary split
- k > 2: multiway split
- When X_i is continuous, θ contains the range(s) of values for individual partitions (when k = 2, typically a threshold. Example: [height $\leq 1.75m$?])

(2)

Input:

- training set $\mathcal{T} = \{(\mathbf{x}_1, k_1), (\mathbf{x}_2, k_2), ..., (\mathbf{x}_N, k_N)\}.$
- ullet class $\mathcal S$ of allowed splitting parameters

Do:

- 1. $P = \mathcal{T}$
- 2. Find the best splitting function (best measured by training error ϵ):

$$\begin{split} S &= \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathcal{S}} \frac{|P_1|}{|P|} \epsilon(P_1) + \frac{|P_2|}{|P|} \epsilon(P_2) + \dots \frac{|P_k|}{|P|} \epsilon(P_k) \\ \{P_1, P_2, \dots, P_k\} &= S(P, \boldsymbol{\theta}) \\ \epsilon(P_i) &= 1 - \max_j \frac{|P_i^{(j)}|}{|P_i|} \\ (P_i^{(j)}: \text{number of points of class } j \text{ in } P_i) \end{split}$$

3. Go recursively to branches

mp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(5)

(6)

(7)

3. Go recursively to branches

Input:

- training set $\mathcal{T} = \{(\mathbf{x}_1, k_1), (\mathbf{x}_2, k_2), ..., (\mathbf{x}_N, k_N)\}.$
- ullet class ${\mathcal S}$ of allowed splitting parameters

Do:

- 1. $P = \mathcal{T}$
- 2. Find the best splitting function (best is measured by **Information Gain** which is the difference of entropies H of data before and after the split):

$$S = \underset{\boldsymbol{\theta} \in \mathcal{S}}{\operatorname{argmin}} \frac{|P_1|}{|P|} H(P_1) + \frac{|P_2|}{|P|} H(P_2) + \dots \frac{|P_k|}{|P|} H(P_k)$$

$$\{P_1, P_2, \ldots, P_k\} = S(P, \boldsymbol{\theta})$$

$$H(P_i) = -\sum_{j} \frac{|P_i^{(j)}|}{|P_i|} \log \frac{|P_i^{(j)}|}{|P_i|} \quad (\text{entropy of } P_i)$$
(10)

 $(P_i^{(j)}:$ number of points of class j in P_i)

(8)

(9)

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.

Decision Trees: a sequence of tests. Representation very natural for humans. Style of many "How to" manuals and trouble-shooting procedures.