

Support Vector Machines

Lecturer: Jiří Matas

Authors: Ondřej Drbohlav, Jiří Matas

Centre for Machine Perception Czech Technical University, Prague http://cmp.felk.cvut.cz

> Slide credits: Alexander Apartsin

Last update: 13.11.2017

Perceptron Revisited:

Linear Classifier: $y(x) = sign(w \cdot x + b)$

Which one is the best?

Notion of Margin

- Distance from a data point to the boundary:
- Data points closest to the boundary are called support vectors
- *Margin d* is the distance between two classes.

Maximum Margin Classification

- Intuitively, the classifier of the maximum margin is the best solution
- Vapnik formally justifies this from the view of Structure Risk Minimization
- Also, it seems that only support vectors matter (is SVM a statistical classifier?)

р

5/34

Quantifying the Margin:

- Canonical hyper-planes:
 - **Redundancy in the choice of w and b:**

$$w(\mathbf{x}) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$
$$= sign(k\mathbf{w} \cdot \mathbf{x} + k \cdot b)$$

To break this redundancy, assuming the closest data points are on the hyper-planes (canonical hyper-planes):

$$w \cdot x + b = \pm 1$$

• The margin is:

$$d = \frac{2}{\|\mathbf{w}\|}$$

The condition of correct classification

$$\mathbf{w} \cdot \mathbf{x_i} + b \ge 1 \quad \text{if } y_i = 1$$
$$\mathbf{w} \cdot \mathbf{x_i} + b \le -1 \quad \text{if } y_i = -1$$

Maximizing Margin:

• The quadratic optimization problem:

Find w and b such that $d = \frac{2}{\|\mathbf{w}\|}$ is maximized; and for all $\{(\mathbf{x}_i, y_i)\}$ $\mathbf{w}\cdot\mathbf{x}_i + b \ge 1$ if $y_i = 1$; $\mathbf{w}\cdot\mathbf{x}_i + b \le -1$ if $y_i = -1$ 7/34

• A simpler formulation:

Mimimizing
$$\frac{1}{2} \| \mathbf{w} \|^2$$

Subject to : $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$, for $i = 1, ..., N$

The dual problem (1)

 Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.

8/34

- The solution involves constructing a *dual problem:*
 - The Lagrangian *L*:

$$L(\mathbf{w}, b; \mathbf{h}) = \frac{1}{2} \| \mathbf{w} \|^2 - \sum_{i=1}^{N} h_i [y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$

where $\mathbf{h} = (h_1, \dots, h_N)$ is the vector of non - negative Lagrange multipliers

• Minimizing L over \mathbf{w} and b:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} h_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} h_i y_i = 0$$

The dual problem (2)

Therefore, the optimal value of **w** is:

$$\mathbf{w}^* = \sum_{i=1}^N h_i y_i \mathbf{x}_i$$

Using the above result we have:

$$L(\mathbf{h}) = \sum_{i=1}^{N} h_i - \frac{1}{2} \| \mathbf{w}^* \|^2$$
$$= \sum_{i=1}^{N} h_i - \frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}$$
where $\mathbf{D} = y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$

The dual optimization problem

Maximizing:
$$L(\mathbf{h}) = \sum_{i=1}^{N} h_i - \frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}$$

Subject to : $\mathbf{h} \cdot \mathbf{y} = 0$
 $\mathbf{h} \ge 0$

Important Observations (1):

The solution of the dual problem depends on the *inner-product* between data points, i.e., $\mathbf{x}_i \cdot \mathbf{x}_j$ rather than data points themselves.

10/34

- The dominant contribution of support vectors:
 - **•** The Kuhn-Tucker condition

At the solution, $(\mathbf{w}^*, \mathbf{b}^*, \mathbf{h})$, the following relationships hold $h_i[y_i(\mathbf{w}^* \cdot \mathbf{x}_i + \mathbf{b}^*) - 1] = 0$, for i = 1, ..., N

• Only support vectors have non-zero *h* values

 $y_i(\mathbf{w}^* \cdot \mathbf{x}_i + b^*) = 1, \ h_i > 0$

Important Observations (2):

• The form of the final solution:

$$\mathbf{w}^* = \sum_{i \in SV} h_i y_i \mathbf{x}_i$$
$$f(\mathbf{x}) = \mathbf{w}^* \cdot \mathbf{x} + b^*$$
$$= \sum_{i \in SV} h_i y_i \mathbf{x}_i \cdot \mathbf{x} + b^*$$

- Two features:
 - Only depending on support vectors
 - Depending on the inner-product of data vectors
- Fixing b:

Choose any support vector, \mathbf{x}_{k} ,

$$\boldsymbol{b}^* = \boldsymbol{y}_k - \mathbf{w}^* \cdot \mathbf{x}$$

Soft Margin Classification

- What if data points are not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples.

р

12/34

The formulation of soft margin

• The original problem:

Minimizing
$$\frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^N \xi_i$$

Subject to
 $y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$, for $i = 1, ..., N$
 $\xi_i \ge 0$, for $i = 1, ..., N$

The dual problem:

Maximizing:
$$L(\mathbf{h}) = \sum_{i=1}^{N} h_i - \frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}$$

Subject to : $\mathbf{h} \cdot \mathbf{y} = 0$
 $0 \le \mathbf{h} \le \mathbf{C}$
where $D_{ij} = y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$

Linear SVMs: Overview

- The classifier is a *separating hyperplane*.
- Most "important" training points are support vectors; they define the hyperplane.

14/34

- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers b_i .
- Both in the dual formulation of the problem and in the solution training points appear only inside inner-products.

Who really need linear classifiers

Datasets that are linearly separable with some noise, linear SVM work well:

But if the dataset is non-linearly separable?

• How about... mapping data to a higher-dimensional space:

0

X

Non-linear SVMs: Feature spaces

 General idea: the original space can always be mapped to some higher-dimensional feature space where the training set becomes separable:

The "Kernel Trick"

• The SVM only relies on the inner-product between vectors $\mathbf{x}_i \cdot \mathbf{x}_i$

17/34

If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$, the inner-product becomes:

$$K(\mathbf{x}_{i},\mathbf{x}_{j}) = \varphi(\mathbf{x}_{i}) \cdot \varphi(\mathbf{x}_{j})$$

- $K(\mathbf{x}_i, \mathbf{x}_j)$ is called the kernel function.
- For SVM, we only need specify the kernel $K(\mathbf{x}_i, \mathbf{x}_j)$, without need to know the corresponding non-linear mapping, $\varphi(\mathbf{x})$.

Non-linear SVMs

The dual problem:

Maximizing: $L(\mathbf{h}) = \sum_{i=1}^{N} h_i - \frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}$ Subject to : $\mathbf{h} \cdot \mathbf{y} = 0$ $0 \le \mathbf{h} \le \mathbf{C}$ where $D_{ij} = y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$

- Optimization techniques for finding b_i 's remain the same!
- The solution is:

$$\mathbf{w}^* = \sum_{i \in SV} h_i y_i \varphi(\mathbf{x}_i)$$
$$f(\mathbf{x}) = \mathbf{w}^* \cdot \varphi(\mathbf{x}) + b^*$$
$$= \sum_{i \in SV} h_i y_i K(\mathbf{x}_i, \mathbf{x}) + b^*$$

Examples of Kernel Trick (1)

• For the example in the previous figure:

• The non-linear mapping

$$x \to \varphi(x) = (x, x^2)$$

• The kernel

$$\varphi(x_i) = (x_i, x_i^2), \quad \varphi(x_j) = (x_j, x_j^2)$$
$$K(x_i, x_j) = \varphi(x_i) \cdot \varphi(x_j)$$
$$= x_i x_j (1 + x_i x_j)$$

Where is the benefit?

Examples of Kernel Trick (2)

Polynomial kernel of degree 2 in 2 variables

• The non-linear mapping:

 $\mathbf{x} = (x_1, x_2)$ $\varphi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$

• The kernel

$$\varphi(\mathbf{x}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\varphi(\mathbf{y}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

$$K(\mathbf{x}, \mathbf{y}) = \varphi(\mathbf{x}) \cdot \varphi(\mathbf{y})$$

$$= (1 + \mathbf{x} \cdot \mathbf{y})^2$$

Examples of kernel trick (3)

Gaussian kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma^2}$$

• The mapping is of infinite dimension:

$$\varphi(\mathbf{x}) = (\dots, \varphi_{\omega}(\mathbf{x}), \dots), \quad \text{for } \omega \in \mathbb{R}^{d}$$
$$\varphi_{\omega}(\mathbf{x}) = Ae^{-B\omega^{2}}e^{-i\mathbf{w}\mathbf{x}}$$
$$K(\mathbf{x}, \mathbf{y}) = \int \varphi_{\omega}(\mathbf{x})\varphi^{*}{}_{\omega}(\mathbf{y})d\omega$$

The moral: very high-dimensional and complicated non-linear mapping can be achieved by using a simple kernel!

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

Examples of Kernel Functions

• Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j)$

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$$

• Polynomial kernel of power *p*: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i \cdot \mathbf{x}_j)^p$

Gaussian kernel:
$$K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2/2\sigma^2}$$

- In the form, equivalent to RBFNN, but has the advantage of that the center of basis functions, i.e., support vectors, are optimized in a supervised.
- Two-layer perceptron:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\alpha \mathbf{x}_i \cdot \mathbf{x}_j + \beta)$$

Lifting Dimension by Polynomial Mapping of Degree d

Let
$$d \in \mathbb{N}$$
 and $\mathbf{x} = \left[x_1, x_2, ..., x_D\right]^{ op} \in \mathbb{R}^D$.

Let $\phi_d(\mathbf{x})$ denote the mapping which lifts \mathbf{x} to the space containing all monomials of degree d', $1 \leq d' \leq d$ in the components of \mathbf{x} :

For example, when $\mathbf{x} = [x_1, x_2]^{\top} \in \mathbb{R}^2$,

$$\phi_1(\mathbf{x}) = [x_1, x_2]^\top, \tag{1}$$

$$\phi_2(\mathbf{x}) = [x_1, x_2, x_1^2, x_1 x_2, x_2^2]^\top,$$
(2)

$$\phi_3(\mathbf{x}) = [x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3]^\top.$$
(3)

The number of monomials of degree d' of $\mathbf{x} \in \mathbb{R}^D$ is $\binom{d'+D-1}{d'}$. The dimensionality L of the output space of $\phi_d(\mathbf{x})$ is thus

$$L = \sum_{d'=1}^{d} \begin{pmatrix} d' + D - 1 \\ d' \end{pmatrix}.$$
 (4)

Lifting Dimension by Polynomial Mapping of Degree \boldsymbol{d}

Feature space dimensionality D, lifting by $\phi_d(\mathbf{x})$

dimensionality of feature space after lifting (L)

D d	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	5	9	14	20	27	35	44
3	3	9	19	34	55	83	119	164
4	4	14	34	69	125	209	329	494
5	5	20	55	125	251	461	791	1286
6	6	27	83	209	461	923	1715	3002
7	7	35	119	329	791	1715	3431	6434
8	8	44	164	494	1286	3002	6434	12869

Lifting by Polynomial Mapping of Degree d, Example

d = 1, dim $(\phi_d(\mathbf{x})) = 2$ support vectors : 3

$$d = 2$$
, dim $(\phi_d(\mathbf{x})) = 5$
support vectors : 5

Lifting by Polynomial Mapping of Degree d, Example

d = 3, dim $(\phi_d(\mathbf{x})) = 9$ support vectors : 5

$$f(\mathbf{x}) = \mathbf{w} \cdot \phi_d(\mathbf{x}) + b$$

d = 4, dim $(\phi_d(\mathbf{x})) = 14$ support vectors : 6

SVM Overviews

Main features:

- By using the kernel trick, data is mapped into a highdimensional feature space, without introducing much computational effort;
- Maximizing the margin achieves better generation performance;
- Soft-margin accommodates noisy data;
- □ Not too many parameters need to be tuned.

Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

SVM so far

m p
29/34

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for many benchmark datasets.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik *et al.* '97].
- Most popular optimization algorithms for SVMs are SMO [Platt '99] and SVM^{light} [Joachims' 99], both use *decomposition* to handle large size datasets.
- It seems the kernel trick is the most attracting site of SVMs. This idea has now been applied to many other learning models where the inner-product is concerned, and they are called 'kernel' methods.
- Tuning SVMs remains to be the main research focus: how to an optimal kernel? Kernel should match the smooth structure of data.

Appendix

Online demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/

The dual formulation (1)

Minimizing
$$\frac{1}{2} \| \mathbf{w} \|^2$$

subject to: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, \quad \forall i \in \{1, 2, ..., N\}$ (5)

Let $f(\mathbf{w}, b)$ be defined as follows:

$$f(\mathbf{w}, b) = \begin{cases} \frac{1}{2} \|\mathbf{w}\|^2, & \text{if } y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1, \quad \forall i \in \{1, 2, ..., N\} \\ \infty, & \text{otherwise} \end{cases}$$
(6)

Then $\min_{\mathbf{w},b} f(\mathbf{w},b)$ surely has the same minimum as (5). Now, $f(\mathbf{w},b)$ can be rewritten as follows (h_i 's are non-negative Lagrange multipliers):

$$f(\mathbf{w}, b) = \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1, \dots, N\}}} \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(7)

The dual formulation (2)

The original optimization problem is thus equivalent to:

$$\min_{\mathbf{w},b} \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1,..,N\}}} \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(8)

There holds that $\max_x \min_y f(x, y) \leq \min_y \max_x f(x, y)$. For our case,

$$\min_{\mathbf{w},b} \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1,..,N\}}} \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] \ge \\
\geq \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1,..,N\}}} \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(9)

For our problem, strong duality holds and the two terms are equal (duality gap is zero).

The dual formulation (3)

Lagrangian:

$$L(\mathbf{w}, b, \mathbf{h}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{N} h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(10)

 $\mathbf{h} = (h_1, h_2, ..., h_N)$ vector of non-negative Lagrange multipliers.

$$\min_{\mathbf{w},b} \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1,..,N\}}} L(\mathbf{w},b,\mathbf{h}) = \max_{\substack{\{h_i\}\\h_i \ge 0\\i \in \{1,..,N\}}} \min_{\mathbf{w},b} L(\mathbf{w},b,\mathbf{h})$$
(11)

Minimize $L(\mathbf{w}, b, \mathbf{h})$ over \mathbf{w} and b:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{N} h_i y_i \mathbf{x}_i = 0$$
(12)
$$\frac{\partial L}{\partial b} = \sum_{i=1}^{N} h_i y_i = 0$$
(13)

The dual formulation (4)

р

34/34

The optimal value for w is $\mathbf{w} = \sum_{i=1}^{N} h_i y_i \mathbf{x}_i$ and $\sum_i h_i y_i = 0$, thus

$$\min_{\mathbf{w},b} L(\mathbf{w}, b, \mathbf{h}) = \min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^N h_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1]$$
(14)
$$= -\frac{1}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^N h_i = \sum_{i=1}^N h_i - \frac{1}{2} \sum_{i=1}^N h_i h_i y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
(15)

$$= \mathbf{1}^{\top} \mathbf{h} - \frac{1}{2} \mathbf{h}^{\top} \mathbf{D} \mathbf{h}, \qquad D_{ij} = y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$
(16)

and the dual optimization problem is:

$$\max_{\{h_i\}} \mathbf{1}^\top \mathbf{h} - \frac{1}{2} \mathbf{h}^\top \mathbf{D} \mathbf{h}$$
(17)

subject to:
$$\sum_{i} h_i y_i = 0; \ h_i \ge 0, \ \forall i \in \{1, 2, ..., N\}$$
 (18)