Support Vector Machines

Lecturer:
Jirí Matas

Authors:
Ondřej Drbohlav, Jiří Matas
Centre for Machine Perception Czech Technical University, Prague
http://cmp.felk.cvut.cz

Slide credits:
Alexander Apartsin

Last update: 13.11.2017

Perceptron Revisited:

\square Linear Classifier: $\quad y(x)=\operatorname{sign}(w x+b)$

Which one is the best?

Notion of Margin

- Distance from a data point to the boundary:

$$
r=\frac{|\mathbf{w} \cdot \mathbf{x}+b|}{\|\mathbf{w}\|}
$$

- Data points closest to the boundary are called support vectors
- Margin d is the distance between two classes.

Maximum Margin Classification

- Intuitively, the classifier of the maximum margin is the best solution
- Vapnik formally justifies this from the view of Structure Risk Minimization
- Also, it seems that only support vectors matter (is SVM a statistical classifier?)

Quantifying the Margin:

- Canonical hyper-planes:
- Redundancy in the choice of \mathbf{w} and b :

$$
\begin{aligned}
y(\mathbf{x}) & =\operatorname{sign}(\mathbf{w} \cdot \mathbf{x}+b) \\
& =\operatorname{sign}(k \mathbf{w} \cdot \mathbf{x}+k \cdot b)
\end{aligned}
$$

- To break this redundancy, assuming the closest data points are on the hyper-planes (canonical hyper-planes):

$$
w \cdot x+b= \pm 1
$$

- The margin is:

$$
d=\frac{2}{\|\mathbf{w}\|}
$$

- The condition of correct classification

$$
\begin{array}{ll}
\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}+b \geq 1 & \text { if } y_{i}=1 \\
\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}+b \leq-1 & \text { if } y_{i}=-1
\end{array}
$$

Maximizing Margin:

- The quadratic optimization problem:

Find \mathbf{w} and b such that

$$
\begin{gathered}
d=\frac{2}{\|\mathbf{w}\|} \text { is maximized; and for all }\left\{\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)\right\} \\
\mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}+b \geq 1 \text { if } y_{i}=1 ; \quad \mathbf{w} \cdot \mathbf{x}_{\mathbf{i}}+b \leq-1 \quad \text { if } y_{i}=-1
\end{gathered}
$$

- A simpler formulation:

Mimimizing $\frac{1}{2}\|\mathbf{w}\|^{2}$
Subject to: $y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1$, for $i=1, \ldots, N$

The dual problem (1)

- Quadratic optimization problems are a well-known class of mathematical programming problems, and many (rather intricate) algorithms exist for solving them.
- The solution involves constructing a dual problem:
- The Lagrangian L:

$$
L(\mathbf{w}, b ; \mathbf{h})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right]
$$

where $\mathbf{h}=\left(h_{1}, \ldots, h_{N}\right)$ is the vector of non - negative Lagrange multipliers

- Minimizing L over \mathbf{w} and b:

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{N} h_{i} y_{i} \mathbf{x}_{i}=0 \\
& \frac{\partial L}{\partial b}=\sum_{i=1}^{N} h_{i} y_{i}=0
\end{aligned}
$$

The dual problem (2)

- Therefore, the optimal value of \mathbf{w} is: $\quad \mathbf{w}^{*}=\sum_{i=1}^{N} h_{i} y_{i} \mathbf{x}_{i}$
- Using the above result we have:

$$
\begin{aligned}
& L(\mathbf{h})=\sum_{i=1}^{N} h_{i}-\frac{1}{2}\left\|\mathbf{w}^{*}\right\|^{2} \\
& =\sum_{i=1}^{N} h_{i}-\frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h} \\
& \text { where } \mathbf{D}=y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}
\end{aligned}
$$

- The dual optimization problem

Maximizing: $L(\mathbf{h})=\sum_{i=1}^{N} h_{i}-\frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h}$
Subject to $: \mathbf{h} \cdot \mathbf{y}=0$

$$
\mathbf{h} \geq 0
$$

Important Observations (1):

- The solution of the dual problem depends on the inner-product between data points, i.e., $\mathbf{x}_{i} \cdot \mathbf{x}_{j}$ rather than data points themselves.
- The dominant contribution of support vectors:
- The Kuhn-Tucker condition

At the solution, $\left(\mathbf{w}^{*}, \mathrm{~b}^{*}, \mathbf{h}\right)$, the follwoing relationships hold $h_{i}\left[y_{i}\left(\mathbf{w}^{*} \cdot \mathbf{x}_{i}+\mathrm{b}^{*}\right)-1\right]=0$, for $i=1, \ldots, N$

- Only support vectors have non-zero b values

$$
y_{i}\left(\mathbf{w}^{*} \cdot \mathbf{x}_{i}+b^{*}\right)=1, h_{i}>0
$$

Important Observations (2):

- The form of the final solution:

$$
\begin{aligned}
\mathbf{w}^{*} & =\sum_{i \in S V} h_{i} y_{i} \mathbf{x}_{i} \\
f(\mathbf{x}) & =\mathbf{w}^{*} \cdot \mathbf{x}+b^{*} \\
& =\sum_{i \in S V} h_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}+b^{*}
\end{aligned}
$$

- Two features:
- Only depending on support vectors
- Depending on the inner-product of data vectors
- Fixing b:

Choose any support vector, \mathbf{x}_{k},

$$
b^{*}=y_{k}-\mathbf{w}^{*} \cdot \mathbf{x}_{k}
$$

Soft Margin Classification

- What if data points are not linearly separable?
- Slack variables ξ_{i} can be added to allow misclassification of difficult or noisy examples.

The formulation of soft margin

- The original problem:

$$
\text { Mimimizing } \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

Subject to

$$
\begin{aligned}
& y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \\
& \xi_{i} \geq 0, \text { for } i=1, \ldots, N \\
& \text { for } i=1, \ldots, N
\end{aligned}
$$

- The dual problem:

$$
\begin{aligned}
& \text { Maximizing: } L(\mathbf{h})=\sum_{i=1}^{N} h_{i}-\frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h} \\
& \text { Subject to }: \mathbf{h} \cdot \mathbf{y}=0 \\
& \qquad 0 \leq \mathbf{h} \leq \mathrm{C} \\
& \text { where } D_{i j}=y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j}
\end{aligned}
$$

Linear SVMs: Overview

- The classifier is a separating hyperplane.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_{i} are support vectors with non-zero Lagrangian multipliers h_{i}.
- Both in the dual formulation of the problem and in the solution training points appear only inside inner-products.

Who really need linear classifiers

- Datasets that are linearly separable with some noise, linear SVM work well:

- But if the dataset is non-linearly separable?

- How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

- General idea: the original space can always be mapped to some higher-dimensional feature space where the training set becomes separable:

The "Kernel Trick"

- The SVM only relies on the inner-product between vectors $\mathbf{x}_{i} \cdot \mathbf{x}_{j}$
- If every datapoint is mapped into high-dimensional space via some transformation $\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$, the inner-product becomes:

$$
K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)=\varphi\left(\mathbf{x}_{\mathbf{i}}\right) \cdot \varphi\left(\mathbf{x}_{\mathrm{j}}\right)
$$

- $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is called the kernel function.
- For SVM, we only need specify the kernel $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, without need to know the corresponding non-linear mapping, $\varphi(\mathbf{x})$.

Non-linear SVMs

- The dual problem:

$$
\begin{aligned}
& \text { Maximizing: } L(\mathbf{h})=\sum_{i=1}^{N} h_{i}-\frac{1}{2} \mathbf{h} \cdot \mathbf{D} \cdot \mathbf{h} \\
& \text { Subject to }: \mathbf{h} \cdot \mathbf{y}=0 \\
& \qquad 0 \leq \mathbf{h} \leq \mathrm{C} \\
& \text { where } D_{i j}=y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

- Optimization techniques for finding h_{i} 's remain the same!
- The solution is:

$$
\begin{aligned}
\mathbf{w}^{*} & =\sum_{i \in S V} h_{i} y_{i} \varphi\left(\mathbf{x}_{i}\right) \\
f(\mathbf{x}) & =\mathbf{w}^{*} \cdot \varphi(\mathbf{x})+b^{*} \\
& =\sum_{i \in S V} h_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b^{*}
\end{aligned}
$$

Examples of Kernel Trick (1)

- For the example in the previous figure:
- The non-linear mapping

$$
x \rightarrow \varphi(x)=\left(x, x^{2}\right)
$$

- The kernel

$$
\begin{aligned}
& \varphi\left(x_{i}\right)=\left(x_{i}, x_{i}^{2}\right), \quad \varphi\left(x_{j}\right)=\left(x_{j}, x_{j}^{2}\right) \\
& K\left(x_{i}, x_{j}\right)=\varphi\left(x_{i}\right) \cdot \varphi\left(x_{j}\right) \\
& =x_{i} x_{j}\left(1+x_{i} x_{j}\right)
\end{aligned}
$$

- Where is the benefit?

Examples of Kernel Trick (2)

- Polynomial kernel of degree 2 in 2 variables
- The non-linear mapping:

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, x_{2}\right) \\
& \varphi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
\end{aligned}
$$

- The kernel

$$
\begin{aligned}
& \varphi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \\
& \begin{aligned}
\varphi(\mathbf{y})= & \left(1, \sqrt{2} y_{1}, \sqrt{2} y_{2}, y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right) \\
K(\mathbf{x}, \mathbf{y}) & =\varphi(\mathbf{x}) \cdot \varphi(\mathbf{y}) \\
& =(1+\mathbf{x} \cdot \mathbf{y})^{2}
\end{aligned}
\end{aligned}
$$

Examples of kernel trick (3)

- Gaussian kernel:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}
$$

- The mapping is of infinite dimension:

$$
\begin{aligned}
& \varphi(\mathbf{x})=\left(\ldots, \varphi_{\omega}(\mathbf{x}), \ldots\right), \quad \text { for } \omega \in R^{d} \\
& \varphi_{\omega}(\mathbf{x})=A e^{-B \omega^{2}} e^{-i w x} \\
& K(\mathbf{x}, \mathbf{y})=\int \varphi_{\omega}(\mathbf{x}) \varphi^{*}{ }_{\omega}(\mathbf{y}) d \omega
\end{aligned}
$$

- The moral: very high-dimensional and complicated non-linear mapping can be achieved by using a simple kernel!

What Functions are Kernels?

- For some functions $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)$ checking that $K\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}_{\mathfrak{j}}\right)=\varphi\left(\mathbf{x}_{\mathfrak{i}}\right) \cdot \varphi\left(\mathbf{x}_{\mathfrak{j}}\right)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

Examples of Kernel Functions

- Linear kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i} \cdot \mathbf{x}_{j}$
- Polynomial kernel of power p: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i} \cdot \mathbf{x}_{j}\right)^{p}$
- Gaussian kernel: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / 2 \sigma^{2}}$
- In the form, equivalent to RBFNN, but has the advantage of that the center of basis functions, i.e., support vectors, are optimized in a supervised.
- Two-layer perceptron:

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\tanh \left(\alpha \mathbf{x}_{i} \cdot \mathbf{x}_{j}+\beta\right)
$$

Lifting Dimension by Polynomial Mapping of Degree d

Let $d \in \mathbb{N}$ and $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]^{\top} \in \mathbb{R}^{D}$.
Let $\phi_{d}(\mathbf{x})$ denote the mapping which lifts \mathbf{x} to the space containing all monomials of degree $d^{\prime}, 1 \leq d^{\prime} \leq d$ in the components of \mathbf{x} :

For example, when $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top} \in \mathbb{R}^{2}$,

$$
\begin{align*}
& \phi_{1}(\mathbf{x})=\left[x_{1}, x_{2}\right]^{\top}, \tag{1}\\
& \phi_{2}(\mathbf{x})=\left[x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]^{\top}, \tag{2}\\
& \phi_{3}(\mathbf{x})=\left[x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right]^{\top} . \tag{3}
\end{align*}
$$

The number of monomials of degree d^{\prime} of $\mathbf{x} \in \mathbb{R}^{D}$ is $\binom{d^{\prime}+D-1}{d^{\prime}}$. The dimensionality L of the output space of $\phi_{d}(\mathbf{x})$ is thus

$$
\begin{equation*}
L=\sum_{d^{\prime}=1}^{d}\binom{d^{\prime}+D-1}{d^{\prime}} \tag{4}
\end{equation*}
$$

Lifting Dimension by Polynomial Mapping of Degree d

Feature space dimensionality D, lifting by $\phi_{d}(\mathbf{x})$

dimensionality of feature space after lifting (L)								
D 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 2 2 5 9 14 20 27 35 3 3 9 19 34 55 83 119$\| 164$								
4	4	14	34	69	125	209	329	494
5	5	20	55	125	251	461	791	1286
6	6	27	83	209	461	923	1715	3002
7	7	35	119	329	791	1715	3431	6434
8	8	44	164	494	1286	3002	6434	12869

Lifting by Polynomial Mapping of Degree d, Example
$d=1, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=2$ support vectors : 3

$$
f(\mathbf{x})=\mathbf{w} \cdot \phi_{d}(\mathbf{x})+b
$$

$$
\begin{gathered}
d=2, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=5 \\
\text { support vectors : } 5
\end{gathered}
$$

Lifting by Polynomial Mapping of Degree d, Example

$d=3, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=9$ support vectors : 5

$d=4, \operatorname{dim}\left(\phi_{d}(\mathbf{x})\right)=14$ support vectors : 6

SVM Overviews

- Main features:
- By using the kernel trick, data is mapped into a highdimensional feature space, without introducing much computational effort;
- Maximizing the margin achieves better generation performance;
- Soft-margin accommodates noisy data;
- Not too many parameters need to be tuned.
- Demos(http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml)

SVM so far

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for many benchmark datasets.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97].
- Most popular optimization algorithms for SVMs are SMO [Platt '99] and SVM ${ }^{\text {light }}$ [Joachims' 99], both use decomposition to handle large size datasets.
- It seems the kernel trick is the most attracting site of SVMs. This idea has now been applied to many other learning models where the inner-product is concerned, and they are called 'kernel' methods.
- Tuning SVMs remains to be the main research focus: how to an optimal kernel? Kernel should match the smooth structure of data.

Appendix

Online demo: http://cs.stanford.edu/people/karpathy/svmjs/demo/

The dual formulation (1)

$$
\begin{align*}
& \text { Minimizing } \frac{1}{2}\|\mathbf{w}\|^{2} \\
& \text { subject to: } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1, \quad \forall i \in\{1,2, \ldots, N\} \tag{5}
\end{align*}
$$

Let $f(\mathbf{w}, b)$ be defined as follows:

$$
f(\mathbf{w}, b)= \begin{cases}\frac{1}{2}\|\mathbf{w}\|^{2}, & \text { if } y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right) \geq 1, \quad \forall i \in\{1,2, \ldots, N\} \tag{6}\\ \infty, & \text { otherwise }\end{cases}
$$

Then $\min _{\mathbf{w}, b} f(\mathbf{w}, b)$ surely has the same minimum as (5). Now, $f(\mathbf{w}, b)$ can be rewritten as follows (h_{i} 's are non-negative Lagrange multipliers):

$$
\begin{equation*}
f(\mathbf{w}, b)=\max _{\substack{\left\{h_{i}\right\} \\ h_{i} \geq 0 \\ i \in\{1, . ., N\}}} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{7}
\end{equation*}
$$

The dual formulation (2)

The original optimization problem is thus equivalent to:

$$
\begin{equation*}
\min _{\mathbf{w}, b} \max _{\substack{\left\{h_{i}\right\} \\ h_{i} \geq 0 \\ i \in\{1, ., N\}}} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{8}
\end{equation*}
$$

There holds that $\max _{x} \min _{y} f(x, y) \leq \min _{y} \max _{x} f(x, y)$. For our case,

$$
\begin{align*}
& \min _{\mathbf{w}, b} \max _{\substack{\left\{h_{i}\right\} \\
h_{i} \geq 0 \\
i \in\{1, . ., N\}}} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \geq \\
& \geq \max _{\substack{\left\{h_{i}\right\} \\
h_{i} \geq 0 \\
i \in\{1, . ., N\}}} \min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{9}
\end{align*}
$$

For our problem, strong duality holds and the two terms are equal (duality gap is zero).

The dual formulation (3)

Lagrangian:

$$
\begin{equation*}
L(\mathbf{w}, b, \mathbf{h})=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{10}
\end{equation*}
$$

$\mathbf{h}=\left(h_{1}, h_{2}, \ldots, h_{N}\right)$ vector of non-negative Lagrange multipliers.

$$
\begin{equation*}
\min _{\mathbf{w}, b} \max _{\substack{\left\{h_{i}\right\} \\ h_{i} \geq 0 \\ i \in\{1, . ., N\}}} L(\mathbf{w}, b, \mathbf{h})=\max _{\substack{\left\{h_{i}\right\} \\ h_{i} \geq 0 \\ i \in\{1, . ., N\}}} \min _{\mathbf{w}, b} L(\mathbf{w}, b, \mathbf{h}) \tag{11}
\end{equation*}
$$

Minimize $L(\mathbf{w}, b, \mathbf{h})$ over \mathbf{w} and b :

$$
\begin{align*}
\frac{\partial L}{\partial \mathbf{w}} & =\mathbf{w}-\sum_{i=1}^{N} h_{i} y_{i} \mathbf{x}_{i}=0 \tag{12}\\
\frac{\partial L}{\partial b} & =\sum_{i=1}^{N} h_{i} y_{i}=0 \tag{13}
\end{align*}
$$

The dual formulation (4)

The optimal value for \mathbf{w} is $\mathbf{w}=\sum_{i=1}^{N} h_{i} y_{i} \mathbf{x}_{i}$ and $\sum_{i} h_{i} y_{i}=0$, thus

$$
\begin{align*}
\min _{\mathbf{w}, b} L(\mathbf{w}, b, \mathbf{h}) & =\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{N} h_{i}\left[y_{i}\left(\mathbf{w} \cdot \mathbf{x}_{i}+b\right)-1\right] \tag{14}\\
& =-\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i=1}^{N} h_{i}=\sum_{i=1}^{N} h_{i}-\frac{1}{2} \sum_{i, j=1}^{N} h_{i} h_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \tag{15}\\
& =\mathbf{1}^{\top} \mathbf{h}-\frac{1}{2} \mathbf{h}^{\top} \mathbf{D h}, \quad D_{i j}=y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \tag{16}
\end{align*}
$$

and the dual optimization problem is:

$$
\begin{align*}
& \max _{\left\{h_{i}\right\}} \mathbf{1}^{\top} \mathbf{h}-\frac{1}{2} \mathbf{h}^{\top} \mathbf{D} \mathbf{h} \tag{17}\\
& \text { subject to: } \tag{18}
\end{align*} \sum_{i} h_{i} y_{i}=0 ; \quad h_{i} \geq 0, \forall i \in\{1,2, \ldots, N\}
$$

