
K-means Clustering and its
Generalization

lecturer: J. Matas
authors: J. Matas, T. Werner, O. Drbohlav

2

Formulation of the Least-Squares Clustering Problem

Given: T = {xl}
L
l=1, the set of observations

K the number of desired cluster prototypes
Output: (ck)

K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}
L
l=1, Ti ∩ Tj = ∅ for i �= j

The result is obtained by solving the following optimization problem:

(c1, c2, ..., cK ; T1, T2, ...,TK) = argmin
all c′

k
,T ′

k

J(c′1, c
′
2, ..., c

′
K ; T ′1 , T

′
2 , ..., T

′
K) ,

where

J(c′1, c
′
2, ..., c

′
K ; T ′1 ,T

′
2 , ..., T

′
K) =

K�

k=1

�

x∈T ′

k

�x− c′k�
2

over all

clusters

over data in

cluster k

Squared Euclidean

distance of data point

from its etalon

3

K-means: Algorithm for the LS clustering problem

Given: T = {xl}
L
l=1, the set of observations

K the number of desired cluster prototypes
Output: (ck)

K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}Ll=1, Ti ∩ Tj = ∅ for i �= j

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , ||x− ck ||

2
2 ≤ ||x− cj ||

2
2}

3. Prototype optimization:
ck = 1

|Tk |

�
x∈Tk

x

4. Terminate if T t+1k = T tk , ∀k ; else go to 2

Number of clusters K=3

Initialization:
�� = random	��,

without replacement

1

1

2 4 5 8

5

6

A B

C D

E

F

1

1

2 4 5 8

5

6

c1 c2

c3

K-means: an Example (1/1)

This image cannot currently be displayed.

Optimizing partitions:

Euclidean Distances
A B C D E F

c1

c2

c3

Sum of squares = J1(.) = 9.0

Optimizing prototypes:

()3.2,3.2
3

511
,

3

421
1

=






 ++++
=c

()556
2

55

2

85
2

,.,c =






 ++
=

()6,5
3

=c

















2,314,18,54,6

1157,5

44,11

0

30

04,55

1

1

2 4 5 8

5

6

c1

c2

c3

1

1

2 4 5 8

5

6

A B

C

D

E

F

c1

c2

c3

K-means: an Example (2/4)

Optimizing partitions:

Euclidean Distances
A B C D E F

c1

c2

c3

Sum of squares = J2(.) = 1.78

Optimizing prototypes:

This image cannot currently be displayed.

()1,5.1
2

11
,

2

21
1

=






 ++
=c

()3.5,7.4
3

655
,

3

554
3

=






 ++++
=c

()5,8
2

=c

















2,38,54,6

8,15,15,268,6

3,65,48,31,3

011,4

1,5

1,41,9

1

1

2 4 5 8

5

6

c1

c3

c2

A B

C D

E

F

1

1

2 4 5 8

5

6

c1

c3

c2

K-means: an Example (3/4)

This image cannot currently be displayed.

















3,31,57,5

2,3342,71,8

6,71,63,57,4

0,70,50,7

0

0,50,5

1

1

2 4 5 8

5

6

A B

C
D

E

F

c1

c3 c2

K-means: an Example (4/4)

Optimizing partitions:

Euclidean Distances
A B C D E F

c1

c2

c3

Sum of squares = J3(.) = 0.31

Assignment unchanged ⇒

terminate

8

K-means: Convergence Properties

• If neither Step 3 nor Step 2 changes J(·), the algorithm termi-
nates.

• Step 3 (cluster centre optimization) reduces J(·), because for a
fixed assignment Tk , the mean over the data points in Tk is the
optimal solution for the squared error.

• Step 2 (assignment optimization) reduces J(·) because for every
xl , the contribution to the cost function either stays the same,
or gets lower.

• The fact that J(·) is reduced implies that no assignment is re-
peated during the run of the algorithm.

• Since there is a finite number of assignmens (how many?) the
k-means algorithm converges, in a finite number of steps, to
a local minimum.

9

K-means: Notes

• Alternatively, Tk is initialised, and steps 2. and 3. are swapped

• The k-means algorithm is not a guaranteed global minimum
optimizer. This is easily proved by a counter-example.

• Efficiency. The complexity of Step 2. (assignment optimiza-
tion) dominates, as for every observation the nearest prototype
is sought. Trivially implemented, this requires L×K operations.
Any idea for a speed-up?

10

K-means Generalization

In: T = {xl}Ll=1, the set of observations
d(., .) ”distance function” (may not be a metric)

Out: (ck)
K
k=1, the set of cluster prototypes (etalons)

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3. Prototype optimization:
ck = arg minc

�
x∈Tk

d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2

11

K-means Generalization: K-medians

In: T = {xl}Ll=1, the set of observations
d(., .) ||c− x||1, ie. d(., .) is the L1-metric

Out: (ck)
K
k=1, the set of cluster prototypes (etalons)

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3. Prototype optimization:
ck = median{Tk}

4. Terminate If T t+1k = T tk ,∀k ; else go to 2

Median is the minimizer of the L1-norm in a cluster, ie.
median{Tk} = c⋆k = arg minc

�
x∈Tk

||x− ck||1

12

K-means Generalization: Clustering Strings

In: T = {xl}
L
l=1, observations xl are strings

d(s1, s2) is the Levenshtein distance, ie. the number of
edit operations to transform s1 into s2

Out: (ck)
K
k=1, the set of cluster prototypes, ck are strings

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3. Prototype optimization:
ck = arg minc

�
x∈Tk

d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2

.

13

K-means Generalization: Clustering Strings: Notes

• the calculation of d(., .) might be non-trivial

• It might be very hard to minimize
�

x∈Tk
d(x, c) over the space

of all strings.
The minimization can be restricted to c ∈ T .

• Is the algorithm guaranteed to terminate if Step 2. (Step 3.) is
only improving J(·), not finding the minimimum (given fixed T
or ck respectively)?

14

K-means Generalization: Euclidean Clustering

Given: T = {xl}Ll=1, the set of observations
K the number of desired cluster prototypes

Output: (ck)
K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}Ll=1, Ti ∩ Tj = ∅ for i �= j

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , ||x− ck ||2 ≤ ||x− cj ||2}

3. Prototype optimization: no closed-form solution for geometric
median. Use e.g. iterative Weiszfeld’s algorithm.
ck = argminc

�
x∈Tk

�x− c�2

4. Terminate if T t+1k = T tk ,∀k ; else go to 2

15

Thank you for your attention.

sfmath.sty
cmpitemize.tex

macros rpz.tex

