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Formulation of the Least-Squares Clustering Problem

Given: T = {xl}
L
l=1, the set of observations

K the number of desired cluster prototypes
Output: (ck )

K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}
L
l=1, Ti ∩ Tj = ∅ for i �= j

The result is obtained by solving the following optimization problem:

(c1, c2, ..., cK ; T1, T2, ...,TK ) = argmin
all c′

k
,T ′

k

J(c′1, c
′
2, ..., c

′
K ; T ′1 , T

′
2 , ..., T

′
K ) ,

where

J(c′1, c
′
2, ..., c

′
K ; T ′1 ,T

′
2 , ..., T

′
K ) =

K�

k=1

�

x∈T ′

k

�x− c′k�
2

over all 

clusters

over data in 

cluster k

Squared Euclidean 

distance of data point 

from its etalon



3

K-means:  Algorithm for the LS clustering problem

Given: T = {xl}
L
l=1, the set of observations

K the number of desired cluster prototypes
Output: (ck)

K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}Ll=1, Ti ∩ Tj = ∅ for i �= j

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , ||x− ck ||

2
2 ≤ ||x− cj ||

2
2}

3. Prototype optimization:
ck = 1

|Tk |

�
x∈Tk

x

4. Terminate if T t+1k = T tk , ∀k ; else go to 2



Number of clusters K=3

Initialization:
�� = random	��,

without replacement
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This image cannot currently be displayed.

Optimizing partitions:

Euclidean Distances
A B  C     D     E     F

c1

c2

c3

Sum of squares = J1(.) = 9.0

Optimizing prototypes:
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Optimizing partitions:

Euclidean Distances
A B  C     D      E       F

c1

c2

c3

Sum of squares = J2(.) = 1.78

Optimizing prototypes:

This image cannot currently be displayed.
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This image cannot currently be displayed.
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Optimizing partitions:

Euclidean Distances
A B  C     D     E     F

c1

c2

c3

Sum of squares = J3(.) = 0.31

Assignment unchanged ⇒

terminate
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K-means:  Convergence Properties

• If neither Step 3 nor Step 2 changes J(·), the algorithm termi-
nates.

• Step 3 (cluster centre optimization) reduces J(·), because for a
fixed assignment Tk , the mean over the data points in Tk is the
optimal solution for the squared error.

• Step 2 (assignment optimization) reduces J(·) because for every
xl , the contribution to the cost function either stays the same,
or gets lower.

• The fact that J(·) is reduced implies that no assignment is re-
peated during the run of the algorithm.

• Since there is a finite number of assignmens (how many?) the
k-means algorithm converges, in a finite number of steps, to
a local minimum.
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K-means:  Notes

• Alternatively, Tk is initialised, and steps 2. and 3. are swapped

• The k-means algorithm is not a guaranteed global minimum
optimizer. This is easily proved by a counter-example.

• Efficiency. The complexity of Step 2. (assignment optimiza-
tion) dominates, as for every observation the nearest prototype
is sought. Trivially implemented, this requires L×K operations.
Any idea for a speed-up?
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K-means Generalization

In: T = {xl}Ll=1, the set of observations
d(., .) ”distance function” (may not be a metric)

Out: (ck)
K
k=1, the set of cluster prototypes (etalons)

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj)}

3. Prototype optimization:
ck = arg minc

�
x∈Tk

d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2
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K-means Generalization: K-medians

In: T = {xl}Ll=1, the set of observations
d(., .) ||c− x||1, ie. d(., .) is the L1-metric

Out: (ck )
K
k=1, the set of cluster prototypes (etalons)

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj )}

3. Prototype optimization:
ck = median{Tk}

4. Terminate If T t+1k = T tk ,∀k ; else go to 2

Median is the minimizer of the L1-norm in a cluster, ie.
median{Tk} = c⋆k = arg minc

�
x∈Tk

||x− ck||1
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K-means Generalization: Clustering Strings

In: T = {xl}
L
l=1, observations xl are strings

d(s1, s2) is the Levenshtein distance, ie. the number of
edit operations to transform s1 into s2

Out: (ck)
K
k=1, the set of cluster prototypes, ck are strings

{Tk}Kk=1 the clustering (partitioning) of the data

1. Initialize ck

2. Assignment optimization:
Tk = {x ∈ T : ∀j , d(x, ck) ≤ d(x, cj )}

3. Prototype optimization:
ck = arg minc

�
x∈Tk

d(x, c)

4. Terminate If T t+1k = T tk ,∀k ; else go to 2

.
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K-means Generalization: Clustering Strings: Notes

• the calculation of d(., .) might be non-trivial

• It might be very hard to minimize
�

x∈Tk
d(x, c) over the space

of all strings.
The minimization can be restricted to c ∈ T .

• Is the algorithm guaranteed to terminate if Step 2. (Step 3.) is
only improving J(·), not finding the minimimum (given fixed T
or ck respectively)?
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K-means Generalization: Euclidean Clustering

Given: T = {xl}Ll=1, the set of observations
K the number of desired cluster prototypes

Output: (ck)
K
k=1, the set of cluster prototypes (etalons)

{Tk}
K
k=1 the clustering (partitioning) of the data

∪Kk=1 Tk = {xl}Ll=1, Ti ∩ Tj = ∅ for i �= j

1. Initialize ck (e.g. by assigning random xl to ck)

2. Assignment optimization:
Tk = {x ∈ T : ∀j , ||x− ck ||2 ≤ ||x− cj ||2}

3. Prototype optimization: no closed-form solution for geometric
median. Use e.g. iterative Weiszfeld’s algorithm.
ck = argminc

�
x∈Tk

�x− c�2

4. Terminate if T t+1k = T tk ,∀k ; else go to 2
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Thank you for your attention.
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