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®& Formulation of the Least-Squares Clustering Problem

Given: T = {x/}_,, the set of observations
K the number of desired cluster prototypes
Output:  (cx)f,, the set of cluster prototypes (etalons)
{Te} e, the clustering (partitioning) of the data

Ui Te = {xi} iy, TiN Ty =0 for i #

The result is obtained by solving the following optimization problem:

(c1,€,.cci; T2, To, ..., Tk) = argmin J(ci, ¢, ..., b T, 7o .. Tie)

/ /
all ck,Tk

where

K
ey, o € T TS Ti) =D Y lIx— €]

k=1 xE’Tk’
/ f Squared Euclidean
over all over data in distance of data point

clusters cluster k from its etalon 2



WS K-means: Algorithm for the LS clustering problem

Given: T = {x/}5,, the set of observations
K the number of desired cluster prototypes
Output:  (ck)p_;, the set of cluster prototypes (etalons)
{Te e, the clustering (partitioning) of the data

Ullleﬁ = {X/}IL:I' TinT = 0 for i # j

1. Initialize ¢k (e.g. by assigning random x; to cg)

2. Assignment optimization:
T ={x €T :Vj[x— ez < [[x — ¢l |3}

3. Prototype optimization:
1
Ck — W erﬁ X

4. Terminate if 7/ = T}, Vk ; else go to 2



K-means: an Example (1/1)

- Number of clusters A=3

Initialization:

HEieE! c, = random x;,

without replacement




K-means: an Example

(2/4)

Optimizing partitions:

Euclidean Distances
A B C

D
a (5 45 0 1
o 157 5 1 0 1 3
o (64 58 14 1 0 32
Sum of squares = J}(.) = 9.0

Optimizing prototypes:

cl=(1+2+4,1+1+5 _(2323)
3 3
548 5+5

= : =(6.5,5

e = (222225 )- 659)

C3 = (5.6)



K-means: an Example

(3/4)

s

Optimizing partitions:

Euclidean Distances
A B C D E F

¢ (1,9 1,4 31 38 45 63
168 6 25 15 18 L5
s \64 58 14 1 0 32)

Sum of squares = J2(.) = 1.78
Optimizing prototypes:

Cl:(1+2’1;1j:(1.5’1)

2

G = (895)

‘. :(4+§+5,5+§+6J:(4.7,503)




K-means: an Example

(4/4)

C

D

€2
F@

Optimizing partitions:

Euclidean Distances
A B C D E F

Cy

0,5 05 477 53 61 7,6
2181 72 4 3 32 0
c; \57 51 0,7 0,5 0,7 33

Sum of squares = J3(.) = 0.31

Assignment unchanged =

terminate




K-means: Convergence Properties

CENTER FOR MACHIN
PTI
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If neither Step 3 nor Step 2 changes J(-), the algorithm termi-
nates.

Step 3 (cluster centre optimization) reduces J(-), because for a
fixed assignment 7T, the mean over the data points in 7 is the
optimal solution for the squared error.

Step 2 (assignment optimization) reduces J(-) because for every
X;, the contribution to the cost function either stays the same,
or gets lower.

The fact that J(-) is reduced implies that no assignment is re-
peated during the run of the algorithm.

Since there is a finite number of assignmens (how many?) the
k-means algorithm converges, in a finite number of steps, to
a local minimum.



K-means: Notes

e Alternatively, 7 is initialised, and steps 2. and 3. are swapped

e The k-means algorithm is not a guaranteed global minimum
optimizer. This is easily proved by a counter-example.

e Efficiency. The complexity of Step 2. (assignment optimiza-
tion) dominates, as for every observation the nearest prototype

is sought. Trivially implemented, this requires L X K operations.
Any idea for a speed-up?



K-means Generalization

CENTER FOR MACHIN
TI
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In: T ={x}_,, the set of observations
d(.,.) "distance function” (may not be a metric)
Out: (ck)f,, the set of cluster prototypes (etalons)
{Te} e, the clustering (partitioning) of the data

1. Initialize ck (e.g. by assigning random x; to cy)

2. Assignment optimization:
T =4{x €T :Vj,d(x,c) <d(x¢c)}

3. Prototype optimization:
Cx = argming ) - d(x,c)

4. Terminate If T,)"t = T/t Vk ; else go to 2
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K-means Generalization: K-medians

In: T = {x;}_;, the set of observations
d(.,.) lc — x||1, ie. d(.,.) is the L1-metric
Out: (cx)py, the set of cluster prototypes (etalons)
{T} e, the clustering (partitioning) of the data

1. Initialize cx (e.g. by assigning random x; to c)

2. Assignment optimization:
Tk ={xe€ T :Vj,d(x,ck) <d(x,¢cj)}

3. Prototype optimization:
cx = median{7}

4. Terminate If T,/t* = Tf,Vk ; else go to 2

Median is the minimizer of the L1-norm in a cluster, ie.
median{7,} = ¢ = argminc > |[x — c||1 11



K-means Generalization: Clustering Strings

In: T = {x;}5_,, observations x; are strings
d(s1,s2) is the Levenshtein distance, ie. the number of
edit operations to transform s; into s,
Out: (cx)f,, the set of cluster prototypes, cj are strings
{T 5, the clustering (partitioning) of the data
1. Initialize c,
2. Assignment optimization:
77< — {X c T : \V/_/, d(X, Ck) < d(X, Cj)}
3. Prototype optimization:
Ck = argming ) . -+ d(x,c)
4. Terminate If T/71 = Tt Vk ; else go to 2

12



K-means Generalization: Clustering Strings: Notes

e the calculation of d(.,.) might be non-trivial

e It might be very hard to minimize } , - d(x, c) over the space

of all strings.
The minimization can be restricted to c € 7.

e Is the algorithm guaranteed to terminate if Step 2. (Step 3.) is
only improving J(-), not finding the minimimum (given fixed T
or ¢y respectively)?

13



K-means Generalization: Euclidean Clustering

PERCE

Given: T ={x/}L_,, the set of observations
K the number of desired cluster prototypes
Output:  (ck)&,, the set of cluster prototypes (etalons)
{Te e, the clustering (partitioning) of the data

Uiy T = {xi}jy, TNTj=0fori#j

1. Initialize ¢ (e.g. by assigning random x; to cy)

2. Assignment optimization:
Te=A{xeT V), [|x —ckll2 < [[x — ¢jl|2}

3. Prototype optimization: no closed-form solution for geometric
median. Use e.g. iterative Weiszfeld's algorithm.

Ck =argminc ), 7. [[x — ¢

4. Terminate if T'™' = T;!,Vk ; else go to 2
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Thank you for your attention.
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