
Principal Component Analysis



Why Principal Component Analysis?
• Motivation

– Find bases which has high variance in data

– to remove components containing low/no 
information.

– Encode data with small number of bases with low MSE

• Applications:
– feature extraction
– visualization
– compression



•In the Principal Component Analysis (PCA) the goal 
is to find direction w, where the variance of the data is 
largest. 
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• Find a basis in a low dimensional sub-space:
− Approximate vectors by projecting them in a low dimensional 

sub-space:
(1) Original space representation:

(2) Lower-dimensional sub-space representation:

• Note: if K=N, then               

What is subspace? (1/2)



What is subspace? (2/2)

• Example (K=N):



Centered data points x in n-dimensional space:  

µ is mean value of the vector x. 
Covariance matrix C for the centered data:

{ } ( )

{ }.

,......'xxC

,

1

1

jiji

n

n

xxc

xx
x

x

Ε=
















⋅















Ε=Ε=



,...x
1
















=

nx

x
 { }
















=Ε=

0
...
0

xμ 

Here E{f(x)} is expectation value of f(x).
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The variance of the projection on to the direction w:
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So,                    

The vector w should be normalized:

Hence, finding the normalized direction of maximal 
variances reduces to the following computation.

Maximizing variance: The normalized direction w that 
maximizes the variance can be found by solving the 
following problem:
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The constrained optimization problem is reduced to 
unconstrained one using method of Lagrange 
multipliers:
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Condition for maximum of the function:

We have to solve the following equation:

wCw λ=
and find eigenvalues λi and eigenvectors wi of  the 
covariance matrix C. 



Covariance matrix C is symmetric, so the equation has n
distinct solutions:  
• n eigenvectors (w1,w2, …, wn) that form orthonormal 
basis in n dimensional space:

• n positive eigenvalues that are the data variances   
along the corresponding eigenvectors: 

λ1≥ λ2≥ … ≥ λn ≥0.
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• Direction of the maximum variance is given by the
eigenvector w1 corresponding to the largest eigenvalue λ1

and the variance of the projection  on to the direction is 
equal to the largest eigenvalue  λ1.
• The direction w1 is called the first principal axes.
• The direction w2 is called the second principal axes, 
and so on.
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•Another names for PCA:
1) Karhunen-Loewe Transformation (KLT);
2) Hotelling Transformation.

•Properties of PCA

1) Data decorrelation;
2) Dimensionality reduction.



2) PCA dimensionality reduction:
•The objective of PCA is to perform dimensionality 
reduction while preserving as much of the data in high-
dimensonal space as possible:

* for visualization,
* for compression,
* to cancel data containing low/no information.

.



2) PCA dimensionality reduction: Main idea
• Find the m first eigenvectors corresponding to the m
largest eigenvalues. 
• Project the data points into the subspace spanned on to 
the first m eigenvectors:
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• Input data: 
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• Data projected into the subspace spanned on to the first 

m eigenvectors:

• Error caused by the dimensionality reduction:
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• Varianc of the error is equal to the sum of eigenvalues 
for dropped-out  dimensions:

• The PCA used to a some sense optimal representation  
of data in a low-dimensional subspace of the original 
high-dimensional pattern space. PCA provides the 
mimimal mean squared error among all other linear 
transformations.
• This subspace is spanned by the first m eigenvectors 
of covariance matrix C corresponding to m largest 
eigenvalues.



PCA on Faces.



Optimal Reconstruction

q=1 q=2 q=4 q=8

q=16 q=32 q=64 q=100…
Original 
Image
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Dimensionality Reduction (1/2)
Can ignore the components of less 

significance. 

You do lose some information, but if the eigenvalues are small, 
you don’t lose much
– n dimensions in original data 
– calculate n eigenvectors and eigenvalues
– choose only the first p eigenvectors, based on their eigenvalues



Dimensionality Reduction (2/2)

Variance

Dimensionality



How to work in practice? 
•We have training set X of size l (l n-dimensional vectors):
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•Evaluate covariance matrix using the training set X: 

•Find eigenvalues and eigenvectors for the covariance 
matrix. 



Principal Component Analysis  (PCA)

takes an initial subset of the principal axes of the 
training data and project the data (both training and 
test) into the space spanned by this set of eigenvectors. 

•The data is projected onto subspace spanned by m
first  eigenvectors of covariance matrix. The new 
coordinates are known as principal coordinates with  
eigenvectors referred as principal axes. 



Algorithm:

Input: Dataset X={x1, x2, …, xl}⊆ℜn,  
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Example: 8 vectors in 2-D space
X=[1,2; 3,3; 3,5; 5,4; 5,6; 6,5; 8,7; 9,8];

•Mean values:

• Centered data: [-4,-3; -2,-2; -2,0;  0,-1;  0,1; 1,0; 3,2; 4,3]

• Covariance matrix C:
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Example: 8 vectors in 2-D space
X=[1,2; 3,3; 3,5; 5,4; 5,6; 6,5; 8,7; 9,8];
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Find eigenvalues and eigenvectors of the covariance 
matrix C:

wCw λ=

Covariance matrix C:



1) Find eigenvalues
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2) Find eigenvectors for the eigenvalues:
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Check  orthogonality: ( ) 0
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Orthonormal basis:
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Transfromation (projection) into new basis:
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The example with Matlab
X=[1,2; 3,3; 3,5; 5,4; 5,6; 6,5; 8,7; 9,8];
X1=X(:,1); 
X2=X(:,2);
X1=X1-mean(X1); % Centered data

X2=X2-mean(X2); % Centered data

C=cov(X1,X2); eval C;
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Eigenvectors do not depend on scaling of covariance matrix, eigenvalues do.
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Derivation of PCs
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Limitations of PCA

Are the maximal variance dimensions the 
relevant dimensions for preservation?



Linear Discriminant Analysis (1/6)
• What is the goal of LDA?

− Perform dimensionality reduction “while preserving as much of 
the class discriminatory information as possible”.

− Seeks to find directions along which the classes are best 
separated.

− Takes into consideration the scatter within-classes but also the 
scatter between-classes.

− For example of face recognition, more capable of distinguishing 
image variation due to identity from variation due to other 
sources such as illumination and expression.



Linear Discriminant Analysis (2/6)
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Linear Discriminant Analysis (3/6)

− c.f. Since  Sb has at most rank C-1, the max number of 
eigenvectors with non-zero eigenvalues is C-1 (i.e., max 
dimensionality of sub-space is C-1)

• Does Sw
-1 always exist?

− If Sw is non-singular, we can obtain a conventional eigenvalue 
problem by writing:

− In practice, Sw is often singular since the data are image 
vectors with large dimensionality while the size of the data set 
is much smaller (M << N )
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Linear Discriminant Analysis (4/6)
• Does Sw

-1 always exist? .
− To alleviate this problem, we can use PCA first:

1) PCA is first applied to the data set to reduce its dimensionality.

2) LDA is then applied to find the most discriminative directions:
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