

K-means Clustering and its Generalization

authors: J. Matas, T. Werner lecturer: V. Franc

 $\begin{array}{ll} \text{In:} & \mathcal{T} = \{\mathbf{x}_{\mathbf{l}}\}_{l=1}^{L}, & \text{the set of observations} \\ \text{Out:} & (\mathbf{c}_{\mathbf{k}})_{k=1}^{K}, & \text{the set of cluster prototypes (etalons)} \\ & \{\mathcal{T}_{k}\}_{k=1}^{K} & \text{the clustering (partitioning) of the data} \end{array}$

Formulation of the least squares clustering problem:

$$\frac{J(\mathbf{c_1}, \mathbf{c_1}, \dots, \mathbf{c_K}) = \sum_{i=1}^{L} \min_k ||\mathbf{x_l} - \mathbf{c_k}||_2^2}{(\mathbf{c_1^*}, \mathbf{c_1^*}, \dots, \mathbf{c_K^*}) = \arg\min J(.)}$$

Alternative formulation:

$$J'(\mathbf{c_1}, \mathbf{c_1}, \dots, \mathbf{c_K}; \mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_K) = \sum_{k=1}^K \sum_{\mathbf{x} \in \mathcal{T}_k} ||\mathbf{x} - \mathbf{c_k}||_2^2$$

where $\mathcal{T}_k = \{\mathbf{x_l} \in \mathcal{T} |\forall j ||\mathbf{x} - \mathbf{c_k}||_2^2 \le ||\mathbf{x} - \mathbf{c_j}||_2^2\}$

K-means: Algorithm for the LS Clustering Problem

ln:	$\mathcal{T} = \{\mathbf{x_l}\}_{l=1}^L$,	the set of observations, $\mathbf{x} \in \mathbb{R}^D$
Out:	$(\mathbf{c_k})_{k=1}^K$	the set of cluster prototypes (etalons), $\mathbf{c} \in \mathbb{R}^D$
	$\{\mathcal{T}_k\}_{k=1}^{K}$	the clustering (partitioning) of the data

- 1. Initialize c_k (e.g. by assigning random x_l to c_k)
- 2. Assignment optimization: $\mathcal{T}_k = \{\mathbf{x} \in \mathcal{T} : \forall j, ||\mathbf{x} - \mathbf{c_k}||_2^2 \le ||\mathbf{x} - \mathbf{c_j}||_2^2\}$
- 3. Prototype optimization: $\mathbf{c_k} = \frac{1}{|\mathcal{T}_k|} \sum_{\mathbf{x} \in \mathcal{T}_k} \mathbf{x}$
- 4. Terminate If $\mathcal{T}_k^{t+1} = \mathcal{T}_k^t$, $\forall k$; else go to 2

Number of clusters K=3

Initialization: $c_k = random(x_l)$,

without replacement

K-means: an example

Optimizing partitions: Euclidean Distances A B C D E F $c_1 \begin{pmatrix} 5 & 4,5 & 0 & 1 & 1,4 & 4 \\ 5,7 & 5 & 1 & 0 & 1 & 3 \\ 6,4 & 5,8 & 1,4 & 1 & 0 & 3,2 \end{pmatrix}$ Sum of squares = J¹(.) = 9.0

K-means: an example

m

Optimizing partitions:

Euclidean Distances

	Α	В	С	D	Е	F
<i>c</i> ₁	(1,9	1,4	3,1	3,8	4,5	6,3
c ₂	6,8	6	2,5	1,5	1,8	1,5
<i>C</i> 3	6,4	5,8	1,4	1	0	3,2
Su	m of s	squar	es =	$J^{2}(.)$	= 1.7	78

Optimizing prototypes:

$$c_{1} = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1.5,1)$$

$$c_{2} = (8,5)$$

$$c_{3} = \left(\frac{4+5+5}{3}, \frac{5+5+6}{3}\right) = (4.7,5.3)$$

K-means: an example

(4/4)

Optimizing partitions: Euclidean Distances A B C D E F $c_1 = \begin{pmatrix} 0,5 & 0,5 & 4,7 & 5,3 & 6,1 & 7,6 \\ 8,1 & 7,2 & 4 & 3 & 3,2 & 0 \\ c_3 & 5,7 & 5,1 & 0,7 & 0,5 & 0,7 & 3,3 \end{pmatrix}$

Sum of squares = $J^3(.) = 0.31$

Assignment unchanged \Rightarrow Terminate

- if neither Step 3. nor Step 2. changed J(.), the algorithm terminates, else
- Step 3. reduces J(.), because for a fixed assignment, the mean is the global minimizer of J(.).
- Step 2. reduces J(.), because for every **x**_I the contribution to the cost function either stays the same or gets lower.
- The fact that J(.) is reduced implies that no assignment is repeated during the run of the algorithm.
- Since there is a finite number of assignmens (how many?) the k-means algorithm converges in a finite number of steps, to a local minimum.

- Alternatively, $\boldsymbol{c_k}$ is initialised, and steps 2. and 3. are swapped
- For a fixed assignment, the mean is the global minimizer of $\frac{1}{|\mathcal{T}_k|} \sum_{\mathbf{x} \in \mathcal{T}_k} \mathbf{x} = \mathbf{c}_{\mathbf{k}}^{\star} = \arg\min_{\mathbf{c}} \sum_{\mathbf{x} \in \mathcal{T}_k} ||\mathbf{x} \mathbf{c}_{\mathbf{k}}||_2^2$, (you should be able to prove this)
- the algorithm also solves the following minimization problem: $J(\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_K) = \sum_{k=1}^K \sum_{\mathbf{x_i}, \mathbf{x_j} \in \mathcal{T}_k} ||\mathbf{x_i} - \mathbf{x_j}||_2^2,$
- The k-means algorithm does not reach a global minimum. This is easily proved by a counter-example.
- Efficiency. The complexity of Step 2. (assignment optimization) dominates, as for every observation the nearest prototype is sought. Trvially implemented, this requires $L \times K$ operations. Any idea for a speed-up?

ln:	$\mathcal{T} = \{\mathbf{x_l}\}_{l=1}^L$,	the set of observations
	d(.,.)	"distance function" (may not be a metric)
Out:	$(\mathbf{c_k})_{k=1}^K$,	the set of cluster prototypes (etalons)
	$\{\mathcal{T}_k\}_{k=1}^{K^-}$	the clustering (partitioning) of the data

- 1. Initialize c_k (e.g. by assigning random x_l to c_k)
- 2. Assignment optimization: $\mathcal{T}_k = \{ \mathbf{x} \in \mathcal{T} : \forall j, d(\mathbf{x}, \mathbf{c_k}) \leq d(\mathbf{x}, \mathbf{c_j}) \}$
- 3. Prototype optimization: $\mathbf{c_k} = \arg\min_{\mathbf{c}} \sum_{\mathbf{x} \in \mathcal{T}_k} d(\mathbf{x}, \mathbf{c})$
- 4. Terminate If $\mathcal{T}_k^{t+1} = \mathcal{T}_k^t$, $\forall k$; else go to 2

ln:	$\mathcal{T} = \{\mathbf{x}_{\mathbf{I}}\}_{I=1}^{L}$,	the set of observations
	d(.,.)	$ \mathbf{c}-\mathbf{x} _1$, ie. $d(.,.)$ is the L1-metric
Out:	$(\mathbf{c_k})_{k=1}^{K}$,	the set of cluster prototypes (etalons)
	$\{\mathcal{T}_k\}_{k=1}^{K^-}$	the clustering (partitioning) of the data

- 1. Initialize c_k (e.g. by assigning random x_l to $c_k)$
- 2. Assignment optimization: $\mathcal{T}_k = \{ \mathbf{x} \in \mathcal{T} : \forall j, d(\mathbf{x}, \mathbf{c_k}) \le d(\mathbf{x}, \mathbf{c_j}) \}$
- 3. Prototype optimization: $\mathbf{c_k} = \text{median}\{\mathcal{T}_k\}$
- 4. Terminate If $\mathcal{T}_k^{t+1} = \mathcal{T}_k^t$, $\forall k$; else go to 2

Median is the minimizer of the L1-norm in a cluster, ie. median $\{\mathcal{T}_k\} = \mathbf{c}_{\mathbf{k}}^{\star} = \arg\min_{\mathbf{c}} \sum_{\mathbf{x} \in \mathcal{T}_k} ||\mathbf{x} - \mathbf{c}_{\mathbf{k}}||_1$

- - 1. Initialize $\mathbf{c}_{\mathbf{k}}$
 - 2. Assignment optimization: $\mathcal{T}_k = \{ \mathbf{x} \in \mathcal{T} : \forall j, d(\mathbf{x}, \mathbf{c_k}) \le d(\mathbf{x}, \mathbf{c_j}) \}$
 - 3. Prototype optimization: $\mathbf{c_k} = \arg \min_{\mathbf{c}} \sum_{\mathbf{x} \in \mathcal{T}_k} d(\mathbf{x}, \mathbf{c})$
 - 4. Terminate If $\mathcal{T}_k^{t+1} = \mathcal{T}_k^t$, $\forall k$; else go to 2

K-means Generalization: Clustering Strings: Notes

- the calculation of d(.,.) might be non-trivial
- It might be very hard to minimize ∑_{x∈Tk} d(x, c). over the space of all strings.
 The minimisation can be restricted to c ∈ T.
- Is the algorithm guaranteed to terminate, if Step 2. (Step 3.) is only improving J(.), not findind the minimum (given fixed \mathcal{T} or $\mathbf{c_k}$ respectively)?

macros_rpz.tex
sfmath.sty
cmpitemize.tex

Thank you for your attention.