
Multilayer Perceptron
= FeedForward Neural Network

 History
 Definition
 Classification = feedforward operation
 Learning = “backpropagation”

= local optimization in 
the space of weights 



Pattern 
Classification

Figures in these slides were taken from 
Pattern Classification (2nd ed) by R. O. 
Duda, P. E. Hart and D. G. Stork, John 
Wiley & Sons, 2000
with the permission of the authors and 
the publisher
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● Perceptron (Rosenblatt, 1956) with its simple learning 
algorithm generated a lot of excitement

● Minsky & Papert (1969) showed that even a simple XOR 
cannot be learnt by a perceptron, whichvlead to skepticism 
about their utility

● The problem was solved by “networks” of perceptrons (multi-
layer perceptrons, feedforward neural networks)

History
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A three layer perceptron
network implementing 
the XOR 
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● Net activation:

where the subscript i indexes units in the input layer, j in the 
hidden; wji denotes the input-to-hidden layer weights at the 
hidden unit j. 

● A single “bias unit” is connected to each unit other than the 
input units

● Each hidden unit emits an output that is a nonlinear function 
of its activation, that is: yj = f(netj)

● Each output unit similarly computes its net activation based 
on the hidden unit signals as:

where the subscript k indexes units in the ouput layer and nH
denotes the number of hidden units
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Multilayer Perceptron, terminology
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● The function f(.), the activation function, introduces 
nonlinearity  the a unit. The  first activation function 
considered  was the sign (as in perceptron):

● Unfortunately, a network with such f is difficult to train
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● Is a function of the following form

● Popularized in  1986, backpropagation learning bacame
possible for f continuous and differentiable

● We can allow the activation in the output layer to be 
different from the activation function in the hidden layer or 
have different activation for each individual unit

● We assume for now that all activation functions to be 
identical
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Multilayer Perceptron = FF Neural net
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● The vector of outputs is denoted zk. 
zk = f(netk)

● In the case of c outputs (classes), we can view the network 
as computing c discriminants functions 
zk = gk(x) and classify the input x according to the largest 
discriminant function gk(x)  ∀ k = 1, …, c
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Question: Can every decision be implemented by a three-layer 
network described by equation (1) ?

Answer: Yes (due to A. Kolmogorov)
“Any continuous function from input to output can be 
implemented in a three-layer net, given sufficient number of 
hidden units nH, proper nonlinearities, and weights.”

for properly chosen functions δj and βij
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Expressive Power of multi-layer Networks
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● Each of the 2n+1 hidden units δj takes as input a sum of d
nonlinear functions, one for each input feature xi

● Each hidden unit emits a nonlinear function δj of its total 
input

● Unfortunately: Kolmogorov’s theorem is not constructive; 
tells us very little about how to find the nonlinear functions 
based on data; this is the central problem in network-based 
pattern recognition

● Remarkably: Kolmogorov’s theorem proves that a continuous 
function in dimension n can be represented as a function of a 
sufficient number of one-dimensional functions

Expressive Power of multi-layer Networks
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● Network have two modes of operation:

● Classfication = Feedforward operation
The feedforward operations consists of presenting a 
pattern to the input units and passing (or feeding) the 
signals through the network in order to get outputs units 
(no cycles!)

● Learning
The supervised learning consists of presenting an input 
pattern and modifying the network parameters (weights) 
to reduce distances between the computed output and 
the desired output

Modes of operation of MLP



● is a gradient descent method. The cost function is, for a 
single training pattern:

● where tk is k-th target (or desired) output and zk be the 
k-th computed output

● with k = 1, …, c and w represents all the weights of 
the network

● Class k is represented as vector (0,0, ..1, …, 0), where 1 
is in the k-th position.

● For a “pure” output of the newural net, z=(0,..,1..,0), 
J(w ) is 0 or 1.
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15Learning: Backpropagation Cost function



● in gradient descent, the update of weights is in the 
direction of the gradient 

● the step size is found e.g. by line search (a search for a 
minimum in 1D). 

● w t +1 = w t + ∆w
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● Error on the hidden–to-output weights

where the sensitivity of unit k is defined as:

and describes how the overall error changes with the 
activation of the unit’s net
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Learning: Calculating the gradient
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Since netk = wk
t.y therefore:

Conclusion: the weight update (or learning rule) for the 
hidden-to-output weights is:

∆wkj = ηδkyj = η(tk – zk) f’ (netk)yj

● Error on the input-to-hidden units
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Similarly as in the preceding case, we define the 
sensitivity for a hidden unit:

which means that:“The sensitivity at a hidden unit is 
simply the sum of the individual sensitivities at the output 
units weighted by the hidden-to-output weights wkj; all 
multipled by f’(netj)” The learning rule for the input-to-
hidden weights is:
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Learning: Calculating the gradient
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● Calculating the gradient for the full training set is a sum 
of gradients, since the cost function is additive

● Stopping criterion:

{ e.g. The algorithm terminates when the change in the criterion 
function J(w) is smaller than some preset value θ

{ when cross-validation error goes up
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Learning: Calculating the gradient
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● Starting with a pseudo-random weight configuration, the 
stochastic backpropagation algorithm can be written as 
shown in the box.

● The evalution of J is stochastic to speed up the process

Begin initialize nH; w, criterion θ, η, m 
← 0

do m ← m + 1
xm ← randomly chosen pattern
wji ← wji + ηδjxi; wkj ← wkj + ηδkyj

until ||∇J(w)|| < θ
return w

End
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22Learning: Calculating the gradient
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● learning by local optimization: global minimum not  
guaranteed

● time-consuming learning. Many nested loops:
● repeat for different number of hidden units
● random restarts to deal with local minima
● iterations of the backpropagation algorithm

● many parameters, not easy to set for a non-
experienced users 

● a cost-function (quadratic loss) which is 
convenient, but not the classification error

Disadvantages of MLP
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● handles well problems with multiple classes

● handles naturally both classification and regression 
problems (estimating real values)

● after normalization, the output may be interpreted 
as aposteriori probability. We know the class with 
maximum response, but also the reliability of it.

Advantages of MLP
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Thank you
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