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Why the C-space based planning stands efficient?

• Reduces complexity of the planning approach/solution for robots with physical 

dimensions (many constraints) in Euclidean space        substitute of complex 

constrains/cases by multi-dimensional space (C-space) and point-like robot (simplifies 

implementation of the planning approach, reduces number of the planning constraints 

by additional C-space dimensions, that stand for these constraints) process.

• C-space stands for unified framework good for comparison and evaluation of various 

planning algorithms

Major drawback(s): 

• The motion and path planning is continuous from principle (given by the C-space 

definition)

Which can be resolved via: 

– Making the planning space discrete (the C-space)

– Making the trajectory discrete

– Discretizing both the previous items  
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Complexity of  the path-planning

• Complete kind of path planning (rare) is computationally intensive. A „complete planner“ 
either: (a) finds an admissible solution (path), or (b) reports, that a solution doesn‘t exist

...which needs to search through the whole state space.

• More common approaches rely on incomplete methods (approximate methods), that: 

(a) fetch at least „some“ solution (mainly not very optimal) but being delivered in much 

shorter time (or in a given time, „any time algorithms“)  

or 

(b) do not find any solution at all (nevertheless, any confidence, that there is no 

solution does not still exists in such cases)

• Essentially, the complete methods exhibit a computational complexity of: 

–Exponential order with the C-space dimension (corresponds to degrees of freedom)

–Polynomial order with the complexity of Cobst in the C-space (obstacles, number of 

their borders, the order of their algebraic description)
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2+1 basic (and complete) ways to resolve a planning problem 

(1) A complete decomposition of the workspace (an exact cell-decomposition)

• Double-exponential complexity  ~       , where d stands for space dimension

• Based on the principle of decomposing the Cfree into simple unique regions 

(= elementary cells, pixels or other primitives) and related connectivity relation

between these (i.e. a graph of neighborhood) 

(2) A method of roadmaps

• Simple-exponential complexity ~      , where d denotes the space dimension

• Relies on computation of a „silhouette“ of the Cfree space. Represents 

connectivity in Cfree by a graph in a form of a network of 1D curves (transitions 

inbetween nodes, or roads)

The previous holds for a complete planning (which is not very practical), so simplification 

makes the task easier to compute: 

• Simplifying geometry/shape of the robot/obstacles via their approximation

• Limiting of number of DoFs         constraining the dimension of the workspace 

• Simplifying of road(s) description(s), decreasing the order of trajcetories, i.e to 

linear segments, etc.
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Therefore the planning is typically performed as a 2-step procedure as: 

(1) Determination of the connectivity of the free workspace Cfree and representing it as 

a graph (or as a function)

(2) Search for the final path in the graph (or search along the function values) 

Following the afore aspects, the other possible method for planning enables to approach 

the problem as an (objective) function optimization problem - a „potential field“ 

approach 

The potential field approach 

• Takes the advantage of a potential field kind of functions (harmonic potentials), 

continuos and smooth functions that satisfy the additional Laplace condition: 

denoting the           as a conservative field function, which is differentiable at any point 

and exhibits monotonic and steady sinking (or rising) behavior and has only a single

and global extreme at the loci of the target configuration (position).  

Ñ2 f x( ) = 0

f x( )
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• As to the afore mentioned approach, the optimal path can be determined by performing a 

steepest descent (or ascent) search along the function values. 

• Computational complexity of the solution is proportional (linear) to the path length (or 

number of transitions/steps if the case of discrete representation of the path)

• The idea of the potential field approach is bases on creating vector (gradient) field (i.e. a 

force-field of virtual forces) using the aforementioned potential (differentiable) function 

:   Cfree , so that

• The afore force field then attracts the robot to the goal position, whilst it does not 

guarantee, that the robot will move right along an obstacle border - a problem (!).

Can be resolved by using yet another potential field, that repulses the robot from

the obstacle border, so that: 

U ¾®¾Â F(q) = -ÑU q( )

U

F(x)

F x( ) = Fatt +F rep = -ÑUatt -ÑUrep
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(a) The scene setup, (b) Attractive potential, (c) Repulsive
potential, (d) Superposition of the repulsiveand attractive
potentials, (e) Equivalent potentials lines, (f) Force vector field

The basic situation for the potential

field planning.
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Building the potentials 

Example 1: 

(a) The electric field in homogenous conductive environment (i.e. rezistive foil (2D), or 

liquid (3D)) The obstacles represented by insulated regions.

(b) A liquid flowwing through an environment. The obstacles represented physically by 

themselves.

Example 2:  The „harmonic“ potential function is denoted by the additional condition 

(a conservative field) does not exhibit any local extremes and assures

finding of the solution always. The harmonic field is far more costly to be computed. 

Electric or gravitation field are conservative and generate harmonic potentials. 

Magnetic field is not conservative and denotes simple potential field. 

The potential filed for path planning usage is normally generated in an arificial way, an 

example of possible buildup: 

The attractive field:                                           , where ξ denotes scale

and the term      stands for Euclidean distance

Besides, always                     and                           as well as         is continuously 

differentiable                  , so that always exists: 

Ñ2 f (x) = 0

Uatt q( ) =
1

2
x q-qgoal
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Uatt q( ) ³ 0 Uatt qgoal( ) = 0 Uatt
"qÎC free Fatt q( ) = -ÑUatt q( ) = -x q-qgoal( )
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The repulsive field: 

• Creates a barrier in a vicinity of the obstacle to prevent the robot to get too close to, and 
collide with the obstacle

• Frequent common requirement is, that a robot in sufficiently large distance is not 
influsenced by the repulsive field at all:

, othewise

Wherereis stands for the distance of influence and the squared term above denotes

the inverted distance between the robot and the obstacle such that:

and featuring: as for the distance of influence 

and as for the obstacle

Since the boundary of the obstacle is at least piecewise continuously differentiable, 

the repulsive force stands:

, otherwise
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Computation of the robot path using the potential field approach

The main steps: 

(1) Discretization of the robot workspace Cfree

(2) Computation of the potentila function over the robot workspace with the minimal value posed 

at qgoal

(3) Search for the optimal (steepest descent) path from teh current standpoint to the goal qgoal

(gradient driven optimization, best-first search, greedy approach, etc. )

Further remarks

• In the case of using regular (non-harmonic) potential function the search procedure may 

stuck in local extreme of the force-field. This can be resolved in multiple ways: restart of the 

search with modified initial conditions, simulated anealing, etc.

• Application of a „randomized potential – a combination of a „potential-based“ method and a 

„random walk“ method as:

Random Walk BacktrackBest First

Reset i to 0

Initialization i = 0

Stuck and i<K

Increment i Stuck and i=K


