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States:

Tasks often formalised as MDP

X € R"
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Both tasks formalised as reinforcement learning
problems

States: x & R" u

Actions: ue&e R™
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Both tasks formalised as reinforcement learning
problems

States: x & R" . . X
Actions: u € R™ T X

Model:  p(x'|x,u)
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Both tasks formalised as reinforcement learning
problems

States: x & R" . » X
Actions: u € R™ T X
Model: p(X/\Xa u)

Rewards: r(x,u,x’) € R

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Yy

>
Pl
%ﬂ‘(‘z‘(_
"Nl |
)‘“ﬂ _}g\,‘, Yig,
ﬁ j - ‘L\ ‘.\'-__.J
~4 &3



Both tasks formalised as reinforcement learning
problems

States: x e R” o X /
Actions: u € R™
Model: p(x'|x,u)
Rewards: 7(x,u,x') € R

Policy:  m(u|x)
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Both tasks formalised as reinforcement learning
problems

States: x e R" o X /
Actions: ueR™
Model: p(x'|x,u)
Rewards: 7(x,u,x') € R
Policy:  m(u|x)

T
Goal: 7 =argmax.Jr  (eqg. Jr=E|» r|)

s
| t=0 _
II:‘?L- ._i):.'f_‘_:j’,/n')"c T . . . .
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Challenges in real tasks

States: x e R" incomplete, noisy
Actions: u e R™ continuous high-dimensional
Model:  p(x'|x,u) inaccurate model

Rewards: r(x,u,x’) € R hard to engineer

:::::' —
—
w’ﬁt&‘*

f

,.
~ o\
WIS,

Faculty of Electrical Engineering, Department of Cybernetics

Policy:  m(u|x) execution endanger the robot
-7 _

Goal: 7 =argmax Jr  (e.g.J, =E re | )
L1=0 _
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Challenges in real tasks

« Can | learn something without the model p(x’|x, u)
just from interactions?

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

| S



Taxonomy of policy search methods

* Direct policy search (primal task)
e.g. gradient ascent for 7" = arg max .

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

grey zone

* Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + ymaxQ(x’,a’)

" = argmax Q(x,a)
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Value-based methods: Q-learning
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Value-based methods: Q-learning
Actions
2
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Value-based methods: Q-learning
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Terminal states

Rewards
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* Search for the Q,
Q(x,u) = r(x,u,x’) + max Q(x’,u’)

wh
x')

State-action value function

Q(x,u): X xU =R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

ich satisfies Bellman equation
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State-action value function

Q(x,u): X xU =R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

* Search for the Q, which satisfies Bellman equation
Q(x,u) = r(x,u,x’) + max Q(x’,u’)

Once we find it, we can control optimally as follows:

7 (x) = argmax (Q(x,u) = arg max J
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State-action value function

Q(x,u): X xU =R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

* Search for the Q, which satisfies Bellman equation
Q(x,u) = r(x,u,x’) + max Q(x’,u’)

Once we find it, we can control optimally as follows:
7 (x) = arg max Q(x,u) = arg max J

Search without model is based on collecting trajectories
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T1 -

(a, R,-1), (b, R,-1), (¢, R, 10)

R - right D - down
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To .
(a, R,-1), (b, D,-1),
(d, R,-1), (e, R,-10)

Having a trajectory, each

? transition gives one eguation

? 7
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Having a trajectory, each

? transition gives one eguation

? 7
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To .
(a, R,-1), (b, D,-1),
(d, R,-1), (e, R,-10)

Having a trajectory, each
transition gives one equation
?
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Having a trajectory, each
transition gives one equation
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To .

Having a trajectory, each
transition gives one equation

?
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I:I unknowns

Having a trajectory, each
transition gives one equation
?
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0

%g)é Czech Technical University in Prague
/ MNP Faculty of Electrical Engineering, Department of Cybernetics



(1) Substitute transitions and
current Q-values to the right
side and solve for left side.
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0

%g)é Czech Technical University in Prague
/ MNP Faculty of Electrical Engineering, Department of Cybernetics



(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

(2) Repeat several times
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(searcn for the fixgd point
of the Rellman qwerator)

Q= 5@
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To .

(d, R,—l), (e,R 1())
Qe,R) =r(e)
Q(b,R) = r(b) + max Q(d, u)
Q(d,R) = r(d) + max Q(e, u)
Q(a,R) = r(a) + max Q(b, u)

(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

Iterations of the Bellman __ _
operator converge to a fixed (2) Repeat several times

point !!! (search for the fixed point
O ellman operator)
Q =B(Q)
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Bellman equation

Q(x,u) = r(x,u,x’) + max Q(x’,u’)
reward for transition the best you can do from
the following state

Which path is better?

Czech Technical University in Prague
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Bellman equation

Q(x, 1) = r(x,u,x') + ymax Q(x', u')

/

reward for transition the best you can do from
the following state

discount factor v € |0; 1]
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Q-learning

1. Collect trajectories 71, 72,73, - ..
2. Solve Q(x,u) =r(x,u,x’) +ymax Q(x’,u’)
3. Repeat from 1 "
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Q-learning

1. Collect trajectories 71, 72,73, - ..
2. Solve Q(x,u) =r(x,u,x’) +ymax Q(x’,u’)
3. Repeat from 1 "

e Curse of dimensionality
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Q-learning

1. Collect trajectories 71, 72,73, - ..
2. Solve Q(x,u) =r(x,u,x’) +ymax Q(x’,u’)
3. Repeat from 1 "

e Curse of dimensionality
* Replace table Q(x,u) by function Qy(x, u)
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Q-learning

. Collect trajectories 71,72, 73, ...
. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
Repeat from 1 -

Curse of dimensionality
Replace table Q(x,u) by function Qg (x, u)
Approximate Q-learning

Collect trajectories 11,712,713, ..., initialize 8 = rand
Estimate y = 7(x,u,x’) + v max Qp(x’, u’)
Update parameters by learning

arg min > 1Qo(x,u) — |

x7u7y

Repeat from 2
Repeat from 1

Czech Technical University in Prague
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Q-learning

1. Collect trajectories 71, 72,73, - ..
2. Solve Q(x,u) =r(x,u,x’) +ymax Q(x’,u’)
3. Repeat from 1 "

e Curse of dimensionality
* Replace table Q(x,u) by function Qy(x, u)
Approximate Q-learning

1. Collect trajectories 11,72, 73,..., Initialize 6 = rand
. Estimate y = r(x,u,x") + ymax Qg(x’, u’)
Update parameters by learning

arg min > 1Qo(x,u) — |

X, U,y
Repeat from 2 Approximated Q-learning does not
5. Repeat from 1 have to converge to a fixed-point !!!
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~ Mnih et al. Nature 2015
2000 atari games

state space: pixels (e.g. VGA resolution)

action space: discrete joystic actions (8 direction +

8 direction with button + neutral action)

replay buffer (decorrelates samples to be "more i.i.d")
two Q-networks (suppress oscilations)

Convolution Convolution Fully connected
v v v

Czech Technical University in Prague
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Mnih et al. Nature 2015

e 2000 atari games

» state space: pixels (e.g. VGA resolution)

» action space: discrete joystic actions (8 directions +
8 directions with button)

» collection of control tasks: https://gym.openai.com

RS Czech Technical University in Prague
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https://gym.openai.com

Mnih et al. Nature 2015

Video Pinball |
Boxing 7]
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber 7]
Gopher |
Demon Attack |
Name This Game |
Krull |
Assault |
Road Runner |
Kangaroo |
James Bond |
Tennis |
Pong 7]
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien |
Venture |
Seaquest |
Double Dunk |
Bowling 7]
Ms. Pac-Man |
Asteroids |
Frostbite || 6%
Gravitar | [:5% DQN

Private Eye : h2% :
Montezuma's Revenge || 0% )
I I I I I 0T |
100 200 300 400 500 600 1,000 4,500%
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Median human-normalized score

Hessel et. al Rainbow DQN, 2017
Average of different estimates helps a lot
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Value function

If model available it is often better to train the state-
value function.
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T1

C (a, R,-1), (b, R,-1), (¢, R,10)
Ty

(a, R,-1), (b, D,-1),

(d, R,-1), (e, R,-10)

Return of a trajectory starting from the state x:
G =ry+yry +v°rs + ...
T G =(=1)+~v(=1) +~%10
o Gy = (—1) +7( 1) +7%(=1) +~77(-10)

(x) = Eg~rlG] ~ Z G

f% Czech Technical University in Prague
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V(x) =Eqo,r[G] ~ ~ N

Such estimate has high variance =>
re-use older estimates of V(x) and estimate exponentially
weighting average

Czech Technical University in Prague
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i 1
V(x) = Egrl[Gl ~ N

Such estimate has high variance =>

re-use older estimates of 1/ (x) and estimate exponentially
weighting average

Vix)~ (1—a)V(x)+aG; =V (x)+ a(G; — V(x))

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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i 1
V(x) = Egrl[Gl ~ N

Such estimate has high variance =>

re-use older estimates of 1/ (x) and estimate exponentially
weighting average

Vix)~ (1—a)V(x)+aG; =V (x)+ a(G; — V(x))

Such estimate has smaller variance but is still bad =>

G = 1y + yrg +42rg + ...

G®) =1y +rs + 7V (x3)
GWY =r| + 4V (x2)

Czech Technical University in Prague
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i 1
V(x) = Egrl[Gl ~ N

Such estimate has high variance =>

re-use older estimates of 1/ (x) and estimate exponentially
weighting average

Vix)~ (1—a)V(x)+aG; =V (x)+ a(G; — V(x))

Such estimate has smaller variance but is still bad =>

- , MC estimate:
G =71 +9r2 + 773+ .. high variance, no bias

G®) =71y +r2 + 7V (x3)

G = r1 + vV (x2) 1D estimate;
small variance,

RS2 Czech Technical University in Prague '
R y in Prag yiijro ng bias
) R )

Faculty of Electrical Engineering, Department of erne



G = | + yrg + 7213 + ...

G®) =1y +re + 77V (x3)
GWY =r| + vV (x2)

Convex combination of all possible return estimates

G)\ _ (1 . )\) Z )\n—lG(n) _
n=1

= (1-NGY + (1 - MG + (1 =126 + ...

coeffs sums to

;@Li}s Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics



GM=(1-X) A'GM =
n=1

= (NG HEZAAC + A= NXC 1.
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G)\ _ (1 . )\) Z )\n—lG(’n) _
n=1

= (1-NGY + (1 -G + (1 -G + ...
(1 =)A=

* |n reality, sequences have finite length

123... N

coeff

@5 Czech Technical University in Prague
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G)\ _ (1 . )\) Z )\n—lG(’n) _
n=1

= (1-NGY + (1 -G + (1 -G + ...

D N2) (N -1) (N1 (W)
(1= M)A g +AN-Dg

* |n reality, sequences have finite length

* |Last coeft sums up all coeffg from N to infinity.

coeff

123... N

%{;}é Czech Technical University in Prague
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G)\ _ (1 . )\) Z )\n—lG(n) _

n=1

= (1-NGY + (1 -G + (1 -G + ...
(A= )AL L AINED G

TD()\) learning algorithm

1. collect trajectories

2. for each state x estimate G*

3. Update state-value function:
V(x) =V(x)+a(G* - V(x))

4. repeat from 1

.' fi% Czech Technical University in Prague
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State value function V(x1) is approximated from traj. which
e started Iin x4

G = | + yrg + 7213 + ...

G =r + Y72 T WQV(X:S)

G =r; + 9V (x2)
Similarly state-action function Q(x1,u1) can be approximated
but only from trajectories which

e started In X3
e followed action uj

Q(OO) =T —|—’Y7°2-|-’VQ7“3—|—...

QW =1y + YV (x2)

ﬁ‘f“‘g Czech Technical University in Prague
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* Learning has been shown to be possible in simulation
* put can | use it on a real robot”?
o Il millions (or billions) of real-world trials are needed

e Czech Technical University in Prague
S] Faculty of Electrical Engineering, Department of Cybernetics
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exteroceptive sensors are not usead ana terrain Is

]trivial, then transfer from accurate simulation/is osible
,\ | —
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[Hwangbo, ETH Zurich, Science Robotics, 2018]
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[Levine IJRR 2017] https://arxiv.org/abs/1603.02199
Another option is to avoid simulation completely !!!

manipulator+ RGB camera

%ﬁ% Czech Technical University in Prague
/ MNP Faculty of Electrical Engineering, Department of Cybernetics


https://arxiv.org/abs/1603.02199

[Levine IJRR 2017] https://arxiv.org/abs/1603.02199

Source: Peter '>5- o
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https://arxiv.org/abs/1603.02199

Learning from expert demonstrations
* Sometimes easier to provide good trajectories
than good rewards.
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

Imitation learning setup

e Czech Technical University in Prague
S] Faculty of Electrical Engineering, Department of Cybernetics
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

e |mitation learning setup
1. Collect expert trajectories 74,75, 75, . .
2. Find policy arg mein Z 7o (x;) — ai”%
(Xiaa’i)ET*
*?{?3 Czech Technical University in Prague

/RS Faculty of Electrical Engineering, Department of Cybernetics



Learning from expert demonstrations
Sometimes easier to provide good trajectories
than good rewards.

Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7, 75,73, ...

2 Find polic ' ) — a;ll3
9 Y argmem Z ||7T9(Xz) a7,||2

(Xz' ,a?;)ET*

Inverse reinforcement learning setup

SR Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics



Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7, 75,73, ...

2. Find policy argmein Z 7o (x:) — a;l|3

(Xi 73?)67*

* |nverse reinforcement learning setup

1. Collect expert trajectories 74,795,735, .-
2. Find reward function r

arg min ||WH%
W

subject to: Z re(x,u,x) < Z re(x,u,x’)

(x,u,x’)eT* (x,u,x’)e{T\7*}
TR Czech Technical University in Prague
| TS Faculty of Electrical Engineering, Department of Cybernetics



Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 7, 75,73, ...

2 Find polic ' ) — a;ll3
9 Y argmem Z ||779(Xz) az||2

(Xi 73?)67*

* |nverse reinforcement learning setup

1. Collect expert trajectories 71,75,73,. ..
2. Find reward function rw

arg min ||WH%
W

subject to: Z re(x,u,x) < Z re(x,u,x’)

(x,u,x’)eT* (x,u,x’)e{T\7*}

3. Solve underlying RL task
*Evf:% Czech Technical University in Prague
O 2]

/% Faculty of Electrical Engineering, Department of Cybernetics



Abbeel et al. IJRR 2010

* |nverse reinforcement learning

» state space: angular and euclidean position,
velocity, acceleration

e action space: motor torgues

e |earning reward function from expert pilot

r\\

LB o
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Abbeel et al. IJRR 2010
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Silver et al. IUJRR 2010

.
v

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdt

%ﬁ} Czech Technical University in Prague
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Silver et al. [IURR 2010

input image (state) learned reward function
(traversability map)

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are easier to learn
e Half cheetah:
* sparse rewards (for reaching the goal position fast)
* dense rewards (for velocity)

y -

o A

-
.. J

\ Czech Technical University in Prague
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are ea
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are easier to learn

| ]
O O
|

|
O
L]

X2 3 4 5

Sparse rewards 0O 0 0 10

Dense rewards 2 2 2 2 2
‘?’53% Czech Technical University in Prague

NP Faculty of Electrical Engineering, Department of Cybernetics



Reward shaping

e Sparse rewards are easier to design correctly

e Dense rewards are easler to learn
3 / ~

Czech Technical University in Prague
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are easier to learn

T 4 sparse rewards
W

.
T

;@f:f?g Czech Technical University in Prague
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are easier to learn

T 4 well-chosen dense rewards
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Reward shaping

e Sparse rewards are easier to design correctly
 Dense rewards are easier to learn

J 4 badly chosen dense rewards

-
p

NV

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

PG

A\ =
LA \.\' \ov]
2y

P, -

IO S
(U J—‘v',i-f-.s. =
S—d =



Reward shaping

Dense reward allows to easier find the corresponding
action but they are more likely to introduce bias.

Boat racing (lbad dense rewards):
* gparse rewards (winning the race)
* dense rewards (collecting powerups, checkpoints ...)

Czech Technical University in Prague
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Disadvantages of value-based methods

* Resulting policy Is deterministic => exploration
unclear=> eps-greedy exploration is often inefticient

 Handling continuous action-space Is complicated
(requires online optimization during inference)

e [ earning of value based methods minimize estimation
error of Q-function (does not directly maximize policy
rewards).
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Taxonomy of policy search methods

* Direct policy search (primal task)

e.g. gradient ascent for 7" = arg max .

Episodic REPS [Peters, 2010

% PILCO
. Actor-c
D
@))

‘Deisenroth, IC

ritic (e.g. DPG

ML 2011

Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

* Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + ymaxQ(x’,a’)

N
51
IR
PG
O

" = argmax Q(x,a)
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Primal task

S.tochastic policy for | —
discrete control:
11|X

* et us consider episodic setting:
* |nitialize in some start state
* Run the policy in the envornment
 (Generate trajectory T
 Obtain reward for the generated trajectory r(7)
* Update policy parameters

Example:
* Throwing a ball into a basket (what is suitable reward?)
TR Czech Technical University in Prague
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1.

Primal task - episodic setting

Randomly initialize policy 7o
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Primal task - episodic setting

1. Randomly initialize policy ¢
2. Collect trajectories 7 with policy e

SR Czech Technical University in Prague
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Primal task - episodic setting

ndomly initialize policy 7o
lect trajectories 7 with policy 7o

note p(7|mg) probability of 7 occurs when following g
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Primal task - episodic setting

1. Randomly initialize policy ¢
2. Collect trajectories 7 with policy 7
3. Denote p(7|my) probability of 7 occurs when following 7o
4. Define criterion
N
] 1
J0) = Ernpirim Ir(r)} = [ p(rlma)r(r)dr ~ 5 3 -r(r)
TET =1
*?{?3 Czech Technical University in Prague
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Primal task - episodic setting

Randomly initialize policy 7o

Collect trajectories 7 with policy e

Denote p(7|my) probability of 7 occurs when following 7o
Detine criterion

J0) = Ermpirien{r(0)} = [ prlmoir(r)dr ~ 5 3 r(r)
TeT 1=1

5. Optimize criterion (e.g. gradient descent)

0" = arg m@in J(6)

W=

6. Repeat from 2

e Czech Technical University in Prague
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Primal task - episodic settlng

N
1
10 =Ermrn (f} = [ plrlrayrr)ar = L3 2rte
TeT =1
0" = arg min J(0)
’ 9J(0) "
 What do | need for gradient descent optimization” =5
* Perturb parameters by A#; and estimate J(0 + A6;)
8J(0) "
J(O+ Ab;) = J(0) A 50 Ab;

+0J(6)
Ab, Y = J(0) — J(0 + Ab;)
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Primal task - episodic settlng

N
1
10 =Ermrn (f} = [ plrlrayrr)ar = L3 2rte
TET 1=1
0" = arg min J(0)

’ 9J(0) "
 What do | need for gradient descent optimization” =5
* Perturb parameters by A#; and estimate J(0 + Ab;)

0
J(0+ A6;) = J(0) I ) Ab;
2J(9) %
AG Y (0) — J(0 + AB;)
A " J(0) — J(0+ A6y))”
| 9J(0) .
) 06 o :
AG! J(0) — J(O+ Ab,))
matrix A vector b
SR Czech Technical University in Prague
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Primal task - episodic setting

A, J(0) — J(0 + AGy)) ]
"N ose (0) (. 1))
. o6 o .
AG ! J(0)— J(0+ Ab,))
_ - _ -
matrix A vector b

— —I—_ _|_ — - -
5I(0) Aél J(0) J(.9 + Abp))
o0 | - 3
A0, J(0) — J(0+ Ab,,))
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Primal task - episodic setting

1. Randomly initialize ¢

2. Collect trajectories randomly perturbed policy To+As,

-
3. Compute gradient 8?)(@9) using pseudo-inverse
07(6) AT [J(0) — J(O + AOy))
o0 | 5
A0 | | J(0)— J(0+ Ab))

4. Update parameters
0J(0)

0 < 6
%Jrozae
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Primal task - episodic setting

REINFORCE: better gradient approximation
* stochastic policy mg(u|x) : X x U — [0;1]

e criterion

J(0) = /T p(r|me)r(r)dr

* gradient of the criterion
0J(0) _ [ Op(7|me)
5 —/T 5 r(7)dT
* |ikelihood ratio trick expresses gradient of the prob distr.

*@{}‘3 Czech Technical University in Prague
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Primal task - episodic setting

REINFORCE: better gradient approximation
* stochastic policy mo(ulx) : X x U — [0;1]

e criterion

J(0) = /T p(r|me)r(r)dr

* gradient of the criterion
0J(0) _ [ Op(7|me)
5 —/T 5 r(7)dT
* |ikelihood ratio trick%sses gradient of the prob distr.

Op(T|mg) 0log p(7|me)
o~ PUIm)—5,

*@{“&3 Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics



Primal task - episodic setting
e after substitution

N

0log p(7|m) 1 Z 510gp(7i|’ﬂ9)r(7,)
00 ’

— K

J’rrvp(’r|779)[ Y. T(T)] ~ N

1=1
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Primal task - episodic setting
e after substitution

N

. O log p(7|my) 1 0 log p(7i|me)
”TNp(’7'|7T9)[ BY: T(T)] ~ N Z o0 T(TZ)

1=1

e where prob distribution simplitied using MDP assumption

p(7|me) = p(x0) | | (ks xk, up)mo (w|xuc)

k
alng TI17T O
aé ‘ 6’) — @[IOgP(XO) =+ zk:log(p(xk_l_ﬂxk’uk))_'_
alogﬂ' U | X
+ ¥ log(mp(ug|xi)] = » g(@ k| Xk )
g k

s Czech Technical University in Prague
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Primal task - episodic setting
e after substitution

. 810gp(7_|ﬂ_9)7“(’7‘)] ~ i i alogp(’rihr@)r(n)

p(rlmo) | g N 0

1=1

e where prob distribution simplitied using P assumption

k
01 0
OggéT‘ﬂ-Q) — % [logp(Xo) —+ ; lOg(p(Xk+1 |X ] U.k))‘|‘
0 log mg (U | X}
£ log(mo(ug )] = 3 2080wk xk)
00

k k
S Czech Technical University in Prague
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Primal task - episodic setting
e after substitution

2o = | i) BRIy -

00 00

0log p(7|my) r(r)] ~ 1

(i) | g ~ N

i alng(Tih_Q) T(T')
00 Z

1=1

O
0 log 7T9 ukz\sz
LL DIUCTESD

zlkl J=1

) «*“‘3 Czech Technical University in Prague
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Primal task - discrete control in episodic settings
e policy (random ini)

e collect N trajectories

T1 = {(X11, 1111), (X21, 1121), ceey (XM1, 11M1)}

TN = {(X1N,111N), (X2N7u2N)a Ceey (XMNauMN)}

. Compute gradient
M

LL 310%?@ ukz\sz ZT i x0)

z—l k=1 1=1

* update parameters
0+ 0+

Czech Technical University in Prague
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Primal task - discrete control in episodic settings

policy (random ini) —»» — H u

collect N trajectories To(u|x) =

T1 = {(X11, 1111), (X21, 1121), ceey (XM1, 11M1)}

TN = {(X1N,111N), (X2N7u2N)> Ceey (XMNauMN)}

Compute gradient
M

LL (910g7rg ukz‘X]m Z’}“ uj,“X]z

z—l k=1 1=1

update parameters
0+ 0+

Czech Technical University in Prague
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Primal task - discrete control in episodic settings

¢ policy (random ini) —» —»ﬁ

e collect N trajectories mo(u|x) =

T1 = {(X11,1111), (X21,1121), ceey (XM1,11M1)}

TN = {(X1N,111N), (X2N7u2N)> ey (XMNauMN)}
. Compute gradient

ZZ L{f ) Uy ) .Zr(uji7Xj7;)

zlkl 1=1

* update parameters
00+ « Minus cross-entropy loss

*%“WS Czech Technical University in Prague
 Wresy Faculty of Electrical Engineering, Department of Cybernetics
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Primal task - continuous control in episodic settings

policy (random ini) —> » —>u \"':_f_jﬂi‘.:-;,

_ u)2
collect N trajectories mo(ulx) = C - exp 2
o
T1 = {(X11,1111) (X21,1121) (XM1,11M1)}
TN = {(X1N,111N), (X2N7u2N)> Ceey (XMNauMN)}
Compute gradient
M
8log7tg ukZ‘X]%
LL ZT uﬂ’X]z
z—l k=1 1=1

update parameters
0+ 0+

Czech Technical University in Prague
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Primal task - continuous control in episodic settings

» policy (random ini) —>>—>u \"':_f_‘;i‘.:-;,
2

u)
e collect N trajectories me(ulx) = C' - exp )

T1 — {(X11,1111) (X21,1121) (XM1,11M1)}

TN = {(X1N,111N), (X2N7u2N)> Ceey (XMNauMN)}

e compute gradient

LL O f(x —um||2 Z r(wi, %)

’lel

* update parameters
0+ 0+

e Czech Technical University in Prague
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Peters et al. NOW 2013

e mitation learning from human demonstration

» state space: joint positions, velocities, acceler.
e action space: motor torgues

* gradient minimization in policy parameter space

\
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Primal task - REINFORCE alternatives
[Schulman et al 2016]

. temporal coherence

=\
A
o
d

L gy dlogmaltniban) | (§5 ()
1=1

z—lk 1
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Primal task - REINFORCE alternatives
[Schulman et al 2016]

. temporal coherence

=\
A
o
d

Ly dlogmatiuiban) | (§5 ()
1=k

z—lk 1
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Primal task - REINFORCE alternatives
[Schulman et al 2016]

. temporal coherence

LL alOgﬂ'Q uk@‘sz (ir u]“X]Z )
1=Kk

z—lk 1

e state-action function:

LL 5’10g7T9 Uk2|sz) - Q (g, Xpi )

z—lk 1

RS Czech Technical University in Prague
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Primal task - REINFORCE alternatives
[Schulman et al 2016]

e temporal coherence

1 N‘\ OOﬂ (910g7rg(uk7;\xm >
_NLL 006 (Zkruﬂ’xﬂ>
J:

1=1 k=1

e state-action function:

LL 310g7r9 umxm) Q (g, Xgi)

zlkl

° baseHne

LL 8log7m ukz\xm) | (Q(uki,xm) _ V(in))

——— o
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Advantage function
When deciding optimally it is enough to decide which

of the actions yields higher Q-values.

Estimation of exact Q-values is not necessary

When Q(x,a1) = 99 and Q(x,a2)=101, it is enough to
estimate that Q-value of a2 is bigger then Q-value of
al.

Predicting such values by a deep neural network
causes that most of the weights will be sacrificed to
unimportant information that Q-values are around 100.
Consequently advantage function is introduced.

A(x,u) = Q(x,u) — V(x)

Generalized Advantage Estimation yields lower
variance and faster learning

https://arxiv.org/pdf/1506.02438.pdf

Czech Technical University in Prague
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https://arxiv.org/pdf/1506.02438.pdf

Generalized Advantage function Estimation [ICLR 2016}
https://arxiv.org/pdf/1506.02438. pdf

A(x,u) = Q(x,u) — V(x)

/

AW (x1,u) = =V (x1) + 11 + 7V (x2)
AP (x1,u) = =V (x1) + 11 + Y2 + 2V (x3)

AM (3, 1) = —V (1) + 11 + 72 + o+ 4V V(xx)

O

AAY — (1—\) Z A\ =1 4(n) advantage estimate |
from state-value function

n=1
lambda sets trade-off between variance and bias
*i‘f“‘g Czech Technical University in Prague
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https://arxiv.org/pdf/1506.02438.pdf

Generalized Advantage function Estimation [ICLR 2016}
https://arxiv.org/pdf/1506.02438. pdf

’a Cart-pole learning curves (at ~=0.99) Cart-pole performance after 20 iterations

cost

A \\\ N :\\“—\\,\;_:~’\\/\
=19 . A \*w\\ﬁis >
) 10 20 33 40
number of policy iterations
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Primal task
No motion model required

Converges to local optima (good initialization needed)
High-dimensional parameters requires many samples
Imitation learning from expert trajectories

s Czech Technical University in Prague
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Summary RL
No motion model required

Converges to local optima (good initialization needed)
High-dimensional parameters => requires many samples
Imitation or Inverse RL learning from expert trajectories

f motion model is available then trajecto
Tassa 2013] Tassa, Synthesis and Stabi
Behaviors through Online Trajectory Opt

TR Czech Technical University in Prague
RS Faculty of Electrical Engineering, Department of Cybernetics
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Taxonomy of policy search methods

* Direct policy search (primal task)
e.g. gradient ascent for 7" = arg max .

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

D
-
N
>

9

* Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + ymaxQ(x’,a’)
" = argmax Q(x,a)

e Czech Technical University in Prague
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DDPG actor-critic method [Lilicrap et al. 2015]

1. Collect trajectories 71,70, 73,...nitialize 6 = rand
2. Estimate y =7(x,u,x") +ymaxQy(x’,u’)
3. Update parameters by learning

Qo(x, 1) —y|

Approximated Q-learning

%{;}é Czech Technical University in Prague
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DDPG actor-critic method [Lilicrap et al. 2015]

. Collect trajectories 1,7, 73,.,.nitialize 8 = rand
2. Estimate y =r(x,u,x’) + Y max Qo(x',u’)
3. Update parameters by learning

arg min Z |Qo(x,u) — ¥y

earn policy 7w which do actions maximizing the
state-action value function on the collected trajectories

arg max Z Qo(x, 7, (X))

XCT

Direct policy optimization on Q

) L,Mgi Czech Technical University in Prague
/ w/f& &) Faculty of Electrical Engineering, Department of Cybernetics



Known successes of RL - locomotion in simulation

[Heess 2017] https://arxiv.org/abs/1707.02286

This agent, trained on several terrain types, has
never seen the "see-saw" terrain.
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https://arxiv.org/abs/1707.02286

Known successes of RL - Starcraft |l

o Starcraft || (Deepmind AlphaStart beaten top-end
professional human gamers 5:0)

v w
STARLRAFT

o ’ 4 > 7 xS
3 = o & % i L '8
v 4 [ = - \ __".“ - .
& A § | ‘< g T © Decping
. P ) “ 4 ' o " »
, - e ¥/t
LI | \ [ a y N » 2

4
DEMONSTRATION

12:03 4 REPLAY

P Alphastar

https://medium.com/mimemoirs/deepminds-ai-alphastar-
showcases-significant-progress-towards-agi-93810c94tbe9

B Czech Technical University in Prague
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Known successes of RL

AlphaGo/Alpha Zero https://en.wikipedia.org/wiki/AlphaZero
SearchTrees has no chance in huge state-action spaces
e AlphaGo:
* beat professional Go player
* O dan professional ranking
* Alpha Zero: Top Chess Engine Championship 2017
* Oh of self-play, no openingbooks nor endgames tables
* 1 minute per move, 1GB RAM
o 28 wins, 72 withdraws
DOTA 2 openAl+ bot https://blog.openai.com/dota-2/
AutoML https://cloud.google.com/automl/
o [Zoph 2016] REINFORCE learns RCNN policy which
generates deep CNN architectures.

RS Czech Technical University in Prague
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Known successes of RL

* Application on real robots Is still questionable since
e transfer from simulator suffers from domain bias
e direct training on robots is iImpossible due to sample
inefficiency of state-of-the-art methods.

Czech Technical University in Prague
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Levine et al IMLR 2016

e guides policy gradient method by optimal trajectories
» state space: RGB camera images
» action space: motor torgues

(a) hanger (b) cube (c) hammer (d) bottle

RGB image conv1 conv2 conv3 spatial softmax feature motor

- ) points torques
64 filters i ] st
— . 7x7 conv \ N 32 filters | N 32 filters | N32 dlstrlbutlonsl fully fully fully i
[aSE B | stride 2 9x5 conv 9x5 conv expected connected connected connected N T
.. RelLU RelLU RelLU 2D position Rel U Rel U linear 70,51
A ?” :\Io E‘
' 240
17 ) 113 109 109 64 40 40 7
117 113 109 109 robot
configuration . —
39
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Levine et al JIMLR 2016

Learned Visuomotor Policy: Bottle Task
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Can we use it in real world problems?

Sl

[Hwangbo, ETH Zurich, Science Robotics, 2018]

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics




I\/Iot|on and Comphance Control of fl|ppers
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[3] Pecka, Zihmermnn Svoboda, et al.
IROS/RALfrIE(IF—G) 2015-2018
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Boston dynamics - Atlas - NO RL AT ALL
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Boston dynamlcs Big dog - NO RL AT ALL
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Summary

e |f accurate differentiable motion model and reward functions
are known, than optimal control in MDP Is straightforward
optimization problem (efficiently tackled by DP or DDP)
State-action value function is dual variable wrt policy. It
serves as auxiliary function in the policy optimization:

e actor-critic methods

heuristic in planning methods (LQR trees)
* Holy grail is to efficiently combine motion

model, state-action value function with ‘m
efficient planning, learning and exploration. H YGrﬁll

e RL will be much more useful for motion e =
control, when accurate domain transter
methods (from simulators to reality) become
available.

,éL /:?5 Czech Technical University in Prague
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