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Tasks often formalised as MDP

States: x & R"

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics



Both tasks formalised as reinforcement learning
problems

States: xcR" a

Actions: a&e R™
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Both tasks formalised as reinforcement learning

States:

Actions:

Model:

problems

X
x € R" a s
acR™ "X

p(x'|x, a)
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Both tasks formalised as reinforcement learning
problems

States: x & R" . -2
Actions: a € R™ "X
Model:  p(x'|x,a)

Rewards: r(x,a,x’) € R
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Both tasks formalised as reinforcement learning
problems

States; x & R" o 2 /
Actions: aeR™
Model:  p(x|x, a)
Rewards: r(x,a,x’) € R

Policy:  m(alx)
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Both tasks formalised as reinforcement learning
problems

States: x € R" o % /
Actions: aeR™
Model:  p(x|x,a)
Rewards: r(x,a,x’') € R
Policy:  m(alx)

-

Goal T = ars max % (e.9. Jr =E Z’f’t )
| t=0
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Challenges in real tasks

States: xeR" incomplete, noisy
Actions: a c R™ continuous high-dimensional
Model:  p(x|x,a) inaccurate model

Rewards: r(x,a,x’) € R hard to engineer

Policy:  m(alx) execution endanger the robot
-7 i,
X
Goal: T = alglllax S (e.g. J =E re| )
=0 _
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Challenges in real tasks

» Can | learn something without the model p(x’|x, a)
just from interactions?
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Taxonomy of policy search methods

* Direct policy search (primal task)
e.g. gradient ascent for 7 = arg max ]

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

grey zone

e Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + "y max Q(x',a’)

7 = arg max Q(x,a)
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Value-based methods: Q-learning
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Value-based methods: Q-learning
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Value-based methods: Q-learning
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State-action value function

Q(x,u): X xU —=R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

e Search for the Q, which satisfies Bellman equation
r(x,u,x’)

Q(x,u) = x') + max Q(x', u')
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State-action value function

Q(x,u): X xU —=R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

e Search for the Q, which satisfies Bellman equation
Q(x,u) = r(x,u,x’) + max Q(x', u’)

 Once we find it, we can control optimally as follows:

7" (x) = argmax Q(x,u) = arg max J,
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State-action value function

Q(x,u): X xU —=R

The best sum of rewards |
can get, when following
action u In state x and then
controlling optimally

e Search for the Q, which satisfies Bellman equation
Q(x,u) = (x,u,x') + max Q(x', u')
 Once we find it, we can control optimally as follows:
7" (x) = argmax QQ(x,u) = arg max J
e Search without model is based on collecting trajectories
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T1 -

(a, R,-1), (b, R,-1), (¢, R,10)

R - right D - down

?
? 7
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Having a trajectory, each

? transition gives one eguation

? 7
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Having a trajectory, each

? transition gives one eguation

? 7
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(a, R,-1), &b,D,-l),

(d, R,-1), (e, i,-10)
Q(e,R) = r(e)
Q(b,R) = r(b) —I—mI?XQ(d,u)

Having a trajectory, each

? transition gives one eguation

? 7
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)
Q(e,R) = 7(e)
Q(b,R) =7(b) + max Q(d,u)
Q(d,R) =r(d) + max Q(e,u)
Q(a,R) =r(a) + max Q(b,u)

Having a trajectory, each
transition gives one equation

?
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I:I unknowns

Having a trajectory, each
transition gives one equation
?
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

0
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( ) Substitute transitions and
current Q-values to the right
side and solve for left side.
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(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

(2) Repeat several times
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(searcn for the fixgd point
of the Rellman qwerator)

O Q= 5@
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To .

(

(b,R) = b)—%rnaX(Q( u)
(B)’Mﬂ+mwQ®m)
(a,R) = (a)+maXQ( u)

(1) Substitute transitions and
current Q-values to the right
side and solve for left side.

)
e,R) = r(e)

(

(

lterations of the Bellman __ _
operator always converge to (2) Repeat several times

a fixed point !!! (search for the fixed point
Wn operator)
Q =B(Q)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics




A

¢
NN
AN

al UNniversity in Prague
Faculty of Electrical Engineering, Department of Cybernetics




Bellman equation

Q(x,u) = r(x,u,x') + max Q(x', u’)
reward for transition the best you can do from
the following state

Which path is better?
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Bellman equation

Q(x, 1) = r(x,u,x') + ymax Q(x', u')

/

reward for transition the best you can do from
the following state

discount factor v € |0; 1]
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Q-learning

1. Collect trajectories 71, 72,73, ...
2. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
3. Repeat from 1 N
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Q-learning

1. Collect trajectories 71, 72,73, ...
2. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
3. Repeat from 1 N

e Curse of dimensionality
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Q-learning

1. Collect trajectories 71, 72,73, ...
2. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
3. Repeat from 1 "

e Curse of dimensionality
* Replace table Q(x,u) by function Qy(x, u)
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Q-learning

1. Collect trajectories 71, 72,73, ...
2. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
3. Repeat from 1 N

e Curse of dimensionality
* Replace table Q(x,u) by function Qy(x, u)
Approximate Q-learning

1. Collect trajectories 71,10, 73, ..., initialize 6 = rand
. Estimate y = r(x,u,x’) +ymax Qy(x’, u’)
Update parameters by learning

argmin » [|Qp(x,u) — |

X7u7y

W N

P

Repeat from 2
. Repeat from 1
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Q-learning

1. Collect trajectories 71, 72,73, ...
2. Solve Q(x,u) = r(x,u,x’) + Y max Q(x',u’)
3. Repeat from 1 N

e Curse of dimensionality
* Replace table Q(x,u) by function Qy(x, u)
Approximate Q-learning

1. Collect trajectories 71,10, 73, ..., initialize 6 = rand
Estimate y = r(x,u,x’) +vmax Qp(x', u’)
Update parameters by learning

argmin »  [|Qp(x, u) — |

X, U,y
Repeat from 2 Approximated Q-learning does not
. Repeat from 1have, to conyerges to a fixed-point !!!
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~ Mnih et al. Nature 2015
e 26000 atarl games

» state space: pixels (e.g. VGA resolution)
e action space: discrete joystic actions (8 direction +
8 direction with button + neutral action)
e replay buffer (decorrelates samples to be “more 1.1.d")
e two Q-networks (suppress oscilations)

Convolution Convolution Fully connected
v v v
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Mnih et al. Nature 2015

e 2600 atari games

» state space: pixels (e.g. VGA resolution)

e action space: discrete joystic actions (8 directions +
8 directions with button)

e collection of control tasks: https://gym.openai.com
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https://gym.openai.com

Mnih et al. Nature 2015

Video Pinball |
Boxing |
Breakout |
Star Gunner |
Robotank |
Atlantis |
Crazy Climber |
Gopher |
Demon Attack |
Name This Game |
Krull '}
Assault |
Road Runner |
Kangaroo |
James Bond |
Tennis |
Pong |
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master |
Freeway |
Time Pilot |
Enduro |
Fishing Derby |
Up and Down |
Ice Hockey |
Q*bert |
H.E.R.O. |
Asterix |
Battle Zone |
Wizard of Wor |
Chopper Command |
Centipede |
Bank Heist |
River Raid |
Zaxxon |
Amidar |
Alien ]|
Venture |
Seaquest |
Double Dunk |
Bowling |
Ms. Pac-Man |
Asteroids |
Frostbite |} 6%
Gravitar |[5% DQN

Private Eye |h2% :
Montezuma's Revenge || 0% .
I I I I I T |
100 200 300 400 500 600 1,000 4,500%
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Hessel et. al Rainbow DQN, 2017

DQN

- DDQN

- Prioritized DDQN
— Dueling DDQN f
200%} A3C

— Distributional DQN
- Noisy DQN

== Rainbow |

100%

Median human-normalized score
L
Y
.
= -
2%

/4 1
o/ WL i | J
0% 7 44 100 200

Millions of frames
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn

e Half cheetah:
e sparse rewards (for reaching the goal position fast)
e dense rewards (for velocity)

B Czech Technical University in Prague
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn

e Half cheetah:
e gsparse rewards (for reaching the goal position tfast)
e dense rewards (for velocity)

T 4 sparse rewards
7T
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn

e Half cheetah:
e gsparse rewards (for reaching the goal position tfast)
e dense rewards (for velocity)

T 4 well-chosen dense rewards
7T

>
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn

e Half cheetah:
e gsparse rewards (for reaching the goal position tfast)
e dense rewards (for velocity)

74 badly chosen dense rewards

=
p
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Reward shaping

e Sparse rewards are easier to design correctly
* Dense rewards are easier to learn

e Half cheetah:
e gsparse rewards (for reaching the goal position tfast)
e dense rewards (for velocity)

74 badly chosen dense rewards

e
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Reward shaping

Sparse rewards are easier to design correctly

Dense rewards are easier to learn

Boat racing (lbad dense rewards):

e gparse rewards (winning the race)

* dense rewards (collecting powerups, checkpoints ...)
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Source: Peter, Past-q,,r
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup
1. Collect expert trajectories 7,745,753, ...

2. Find policy argm@in Z Hw@(xi)—a?;H%

(X’i 7ai)ET*
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 74,75, T3, ..

2. Find policy argm@in Z ||7T9(X¢)—3¢H3

(Xi ,a?;)ET*

* |nverse reinforcement learning setup
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 74,75, T3, ..

2. Find policy argm@in Z ||7T9(X7;)—az'H3

(X’i 73?)67*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,745,735, ...
2. Find reward function 7

arg min ||WH%
W

subject to: Z re(x,u,x) < Z re(X,u,x’)

(x,ux’')er* (x,u,x’)e{T\7*}
ﬁ’%ﬁ%@ Czech Technical University in Prague
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Learning from expert demonstrations
e Sometimes easier to provide good trajectories
than good rewards.

* |Imitation learning setup (statistically inconsistent+ blackbox)
1. Collect expert trajectories 74,75, T3, ..

2. Find policy argm@in Z ||7T9(X7;)—az'H3

(X’i 73?)67*

* |nverse reinforcement learning setup

1. Collect expert trajectories 7,75,75,- -
2. Find reward function ry

arg min ||WH%
W

subject to: Z re(x,u,x) < Z re(X,u,x’)

(x,u,x’)eT* (x,u,x’)e{T\7*}

3. Solve underlying RL task

f&?)\b Czech Technical University in Prague
AVpS Faculty of Electrical Engineering, Department of Cybernetics
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Abbeel et al. IJRR 2010

* inverse reinforcement learning

» state space: angular and euclidean position,
velocity, acceleration

e action space: motor torgues

e |earning reward function from expert pilot

’h\.\\
’«r, o~

. B ?q;'.-f
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Abbeel et al. IJRR 2010
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Silver et al. IUJRR 2010

.
v

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdt
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Silver et al. [IURR 2010

input image (state) learned reward function
(traversability map)

http://www.dtic.mil/dtic/tr/fulltext/u2/a525288.pdf
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Taxonomy of policy search methods

* Direct policy search (primal task)

e.g. gradient ascent for 7 = arg max ]

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

grey zone

e Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + "y max Q(x',a’)
7 = arg max (J(x,a)

) Czech Technical University in Prague
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Primal task

1. Randomly initialize policy 7
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Primal task

1. Randomly initialize policy 7
2. Collect trajectories 7 with policy 7
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Primal task

1. Randomly initialize policy 7
2. Collect trajectories 7 with policy 7
3. Denote p(7|mg)probability of 7 occurs when following e

: Czech Technical University in Prague
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W=

Ra
Co
De

De

Primal task

ndomly initialize policy ¢
lect trajectories 7 with policy 7
note p(7|mg) probability of 7 occurs when following my

INe criterion | N

J0) = Ernptrimp Ir(r)} = [ p(rlma)r(r)dr = 5 > -r(r)

TeT =1
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Primal task

Randomly initialize policy e

Collect trajectories 7 with policy e

Denote p(7|mg) probability of 7 occurs when following g
Detine criterion

W=

1 N

J0) = Ernptrimp Ir(r)} = [ p(rlma)r(r)dr = 5 > -r(r)
TeT 1=1

5. Optimize criterion (e.g. gradient descent)

0" = arg mgin J(6)

6. Repeat from 2

)

S Czech Technical University in Prague
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Primal task

N
1
J(0) = Erp(rize)11(T)} = / p(T|mg)r ~ N Z
TET =1
0" = argmin J(0)

y YON
 What do | need for gradient descent optimization” ¥
* Perturb parameters by Af; and estimate J(0 + A6;)

8J(0) "
J(0+ Ab;) = J(0) A0b;
9.7 (6) 0
AO; = J(6) — J(6 + A6;)

00
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Primal task

N
1
J(0) = Erp(rize)11(T)} = / p(T|mg)r ~ N Z
TET =1
0" = argmin J(0)

y YON
 What do | need for gradient descent optimization” ¥
* Perturb parameters by A6, and estimate J(0 + AG;)

0J (6
J(0+ Ab;) = J(0) () A0,
2J(6) 0
Ab; — (6) — J(0 + Ab;)
A0 "J(0) — J(6 + A6y))
.| 9J(0) _ .
. 06 o .

AQ! J(0) — J(O+ Ab,))
< - — —
matrix A vector b

j%@ Czech Technical University in Prague

J Wi Faculty of Electrical Engineering, Department of Cybernetics



AGT

AOT
A, _

matrix A

Primal task

.7 (6)

00

NG

AQ !

"J(0) — J(0+ A8)))

Jwyﬂﬂd+A%»

N————

vector b

J(0) — J(0+ Abq))

J(0) — J(0+ AB,))

Czech Technical University in Prague
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Primal task

1. Randomly initialize 6

2. Collect trajectories randomly perturbed policy To+as,

—
3. Compute gradient a‘g(j) using pseudo-inverse
AT [J0) — J(0 + Aby))
or0) |~ () (. 1))
90 | 3
A6, | | J(0)—J(O+ Ab,))
4. Update parameters
9.7 (6)
60— 0
— U+« Y.
//S“L/ Czech Technical University in Prague
J Wi Faculty of Electrical Engineering, Department of Cybernetics



Primal task

REINFORCE: better gradient approximation
e stochastic policy

mo(ulx) : X x U — [0;1]

e gradient of the criterion

Vo (0) = / Vop(r|0)r(r)dr
T
* |ikelihood ratio trick express gradient of the prob distr.
Vop(7|0) = p(7|0)Vglog p(7|6)

: Czech Technical University in Prague
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Primal task
o after substitution

V0J(6) = | p(rlo)Vologp(rio)r(r)dr =

N
1
= E[Vglog p(]0)r( N; o log p(7;|0)r(7;)

* where prob distribution simplified using MDP assumption

p(7]0) = p(xo) HP(Xk+1|Xk, u)mo (U xg)
k

Vo log p(7]0) = V[ log p(x0)+ ) _10g p(Xkr1|Xk, ur)+ ) _log mo(ug|xy) |
k k

= Z Vo log mg(uk|xx)
k

J M@ ] UUUILy Vi =lIUUVLITVALD L] IHIIIUUIIII&, UUHUI LITINnVEIL VI VyUUIIIULIU\J



Primal task
REINFORCE algorithm:

* collect N trajectories

T1 = [(111,1, X1,1) ..« UM, 1, XM,1)]

™ = [(W1 Ny X1 N)--- UM N, XM.N)]

e compute gradient

1 N M
VoJ (0 =N 2:‘ 2: o log mo (g ;| Xk ;)
e uUpdate parameters
0« 0+ &8J(9)
00
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Primal task
 No motion model required

» Converges to local optima (good initialization needed)
* High-dimensional parameters are requires many samples
e |mitation learning from expert trajectories

* [here are better gradient approximations [Deisenroth 2013]
(e.g. REINFORCE, GPREPS, ...)

[Deisenroth 2013] M. Deisenroth, G. Neumann and J. Peters,
A Survey on Policy Search for Robotics, NOW, 2013

%@%’) 4 Czech Technical University in Prague
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Peters et al. NOW 2013

e mitation learning from human demonstration

» state space: joint positions, velocities, acceler.
e action space: motor torgues

* gradient minimization in policy parameter space

\

-

zech Technical University in Prague
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Primal task
No motion model required

Converges to local optima (good initialization needed)
High-dimensional parameters are requires many samples
Imitation learning from expert trajectories

There are better gradient approximations [Deisenroth 201 3]
(e.g. REINFORCE, GPREPS, ...)

[Deisenroth 2013] M. Deisenroth, G. Neumann and J. Peters,
A Survey on Policy Search for Robotics, NOW, 2013

f motion model is available then trajectory optimization
Tassa 2013] Tassa, Synthesis and Stabilization of Complex
Behaviors through Online Trajectory Optimization, IROS2013

ﬁi} “ Czech Technical University in Prague
RS Faculty of Electrical Engineering, Department of Cybernetics



Taxonomy of policy search methods

* Direct policy search (primal task)
e.g. gradient ascent for 7 = arg max ]

Episodic REPS [Peters, 2010
PILCO [Deisenroth, ICML 2011
Actor-critic (e.g. DPG [Silver,JMLR 2014])

Deep Q-learning (e.g. [Mnih,Nature 2015])

D
-
N
>

9

e Value-based methods (dual function [Kober, 2013])
e.g. search for Q(x,a) =r(x,a,x’) + "y max Q(x',a’)
7 = arg max (J(x,a)

‘ Czech Technical University in Prague
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Actor-critic methods

1. Collect trajectories 71,1, 73, .,.nitialize 6§ = rand
2. Estimate y = 7(x,u,x’) +ymax Qp(x’,u’)
3. Update parameters by learning

QG(Xv 11) o yH

Approximated Q-learning

Czech Technical University in Prague
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Actor-critic methods

1. Collect trajectories 71,1, 73, .,.nitialize 6§ = rand
2. Estimate y = r(x,u,x) +ymax Qy(x’,u’)
3. Update parameters by learning

arg min Z |Qo(x,u) -y

earn policy 7w which do actions maximizing the
state-action value function on the collected trajectories

arg max Z Qo (x, 7, (X))

XCT

Direct policy optimization on Q
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Unrolling in time

1. Collect trajectories  71,7,73,..., Nl # = rand w = rand
2. Estimate motion model

remn 3 pa)
x, X' )erT*

3. Learn policy maximizing the rewards on model-based
trajectories

arg mBXZ T(pe( ‘e Ww(Pe(Xop Ww(XO)))))

e >

e penalizing distance from training trajectories
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[Tassa |ROS 201 3] https://homes.cs.washington.edu/~todorov/papers/TassalROS12.pdf

3D humanoid

6 aparial

-~ = 2 abdomen
Degrees-ot-freedom: 22 222 shonlders

2:1 elbows
2:2 hips
21 knees
2:1 ankles

Control dimensions: 16 all joints

- a ~ - ™

-
CoM over torso 1.5m

s lo1so over ' ‘ :
Cost: mean of feet, + CoM (in xy) + over mean ol

(in xy) feet (in z)

9 \, J \, w

r Y
mimimizc

. IIUINIINZe
+ honzontal + .
actation

torso velocity

\

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics


https://homes.cs.washington.edu/~todorov/papers/TassaIROS12.pdf

[Heess 2017] https://arxiv.org/albs/1707.02286

This agent, trained on several terrain types, has
never seen the "see-saw" terrain.

»
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~
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Levine et al IMLR 2016

e guides policy gradient method by optimal trajectories
» state space: RGB camera images
e action space: motor torgues

(a) hanger (b) cube (c) hammer (d) bottle

RGB image conv1 conv2 conv3 spatial softmax feature motor

points torques

N 3 channels = 64 filters : : PR,
g, 77 CONV \ N32fiters |- N 32filters [ \32 distributions| .. fully fully fully
2 i | SUriE 2 oX5 conv a2 conv expected connected [if| connected [ connected 4 %
" RetY | RelU I RelU 2D position |8 ReLU ReLU linear Mool
i | ===
1 W e 240 .| (A S
i 117 113 109 64 40 40 7

240
M7 113 109 robot
configuration ; —
39
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Levine et al JIMLR 2016

Learned Visuomotor Policy: Bottle Task
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Boston dynamics - Atlas - NO RL AT ALL
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Boston dynamlcs Big dog - NO RL AT ALL
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Known RL successes

AlphaGo/Alpha Zero https://en.wikipedia.org/wiki/AlphaZero
SearchTrees has no chance in huge state-action spaces
e AlphaGo:
* beat professional Go player
e 9 dan professional ranking
* Alpha Zero: Top Chess Engine Championship 2017
* Oh of selt-play, no openingbooks nor endgames tables
* 1 minute per move, 1GB RAM
e 28 wins, 72 withdraws
DOTA 2 openAl+ bot https://blog.openai.com/dota-2/
AutoML https://cloud.google.com/automl/
o [Zoph 2016] REINFORCE learns RCNN policy which
generates deep CNN architectures.
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Summary

e |f accurate differentiable motion model and reward functions
are known, than optimal control in MDP Is straightforward
optimization problem (efficiently tackled by DP or DDP)

e State-action value function is dual variable wrt policy. It
serves as auxiliary function in the policy optimization:

e actor-critic methods

* heuristic in planning methods (LQR trees)
* Holy grail is to efficiently combine motion

model, state-action value function and the
policy optimization with efficient exploration
 RL will be much more usetul for motion
control, when accurate domain transter
methods (from simulators to reality) become

avallable.
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