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Outline

* Avoid overfitting by search tor the NN model suitable for
image processing [Hubel and Wiesel 1960].
* Feedforward and Backprop in ConvNets.
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The Tungsten Electrode [Hubel-Science-1957]

http://braintour.harvard.edu/archives otfolio—items hubel-and-wiese|
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[Hubel and Wiesel 1959]  Féctrical signal
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* Experiment with anaesthetised paralysed cat
* Recording of electrical signal reveals:
1. Nearby neurons process information from nearby
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[Hubel and Wiesel 1960]

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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[Hubel and Wiesel 1960]
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https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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1. Nearby neurons process information from nearby visual field
(topographical map).
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* Processing of visual information in cortex is not fully
connected.
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1. Nearby neurons process information from nearby visual field
(topographical map).
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* What is dimensionality reduction for N-pixel image and
n-dimensional spatial neighbourhood?
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2. Neurons with similar function organized into columns

* There are neurons which detect an edge on the left and there
are different neurons which detect the same edge on the righ

https://knowingneurons.com/2014/10/29/hubel-and-wiesel-the-neural-basis-of-visual-perception/
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2. Neurons with similar function organized into columns
- G KD ——
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2. Neurons with similar function organized into columns
. @WT@ .
. @wT@ .
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* What is dimensionality reduction for N pixel image and
n-dimensional spatial neighbourhood?
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2. Neurons with similar function organized into columns
. @WT@ .
. @wT@ .
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* NA2 vs n (it does not depend on the image resolution)
* |t corresponds to convolution of image x with kernel w
followed by activation function
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2. Neurons with similar function organized into columns
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* NA2 vs n (it does not depend on the image resolution)
* |t corresponds to convolution of image x with kernel w
followed by activation tunction
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 1

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 2

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 3

[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 4
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[Zeiler and Fergus, ECCV, 2014]
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3. Neurons are sensitive to edges and its orientation

Inputs which maximized output of layer 5

[Zeiler and Fergus, ECCV, 2014]
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Hubel and Wiesel experiments in 1950s and 1960s
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* Nobel Prize in Physiology and Medicine in 1981
 Dr. Hubel: “There has been a myth that the brain cannot
understand itselt. It is compared to a man trying to lift
himself by his own bootstraps. We feel that is nonsense.
The brain can be studied just as the kidney can.”
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Convolution forward pass y = conv(x, w)

kernel/filter

filter response/

output map
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Convolution forward pass y = conv(x, w)

L11 | L£12 | L£13 w1 | wio
J1L | 12 :conv( L21 | £22 | X23
Y21 | Y22 W21 | W22
L31 | £32 | L33

Y11 = W11T11 + W12T12 + W21T21 + W22T29
Y12 = W11L12 + W12T13 + W21TL22 + W22 23

Y21

W11T21 + W12X22 + W21X31 + W22I39

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y21 | Y22

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Yo1 = W11T21 + W12T29 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11
Y21 | Y22

— Cconv (

Y11 = W11T11 + W12T12 + W21T21 + W22T29

Yo1 = W11T21 + W12T29 + W21T31 + W22T32

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11 | Y12
Y22

Y11 = W11T11 + W12T12 + W21T21 + W22T29

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Yoo = W11T22 + W12T23 + W21TL32 + W22T33
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Convolution forward pass y = conv(x, w)

Y11 | Y12 — conv(
Y21

Y11 = W11T11 + W12T12 + W21T21 + W22T29

Y12 = W11T12 + W12T13 + W21T22 + W22T23

Yo1 = W11T21 + W12T29 + W21T31 + W22T32
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Convolution layer properties - output size
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image kernel output
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Convolution layer properties - output size

conv
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image kernel output
(5x5) (2x2) (? x ?)
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Convolution layer properties - output size
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image kernel output
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Convolution layer properties - output size

(T g T

image kernel output
(5%3) (2x2) (? x ?)
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Convolution layer properties - output size

o ( )

image kernel output
(5X5) (2x2) (4x4)
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conv (

Convolution layer properties - stride

kerne
—

stride = 1

| moves by 1 pixel

T

sl

image
(5x5)

kernel
(2x2)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels
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image kernel output
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels

) =0

conv
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image kernel output
(9%3) (2x2) (? x ?)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels
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Convolution layer properties - stride

stride = 3
kernel moves by 3 pixels
—>
image kernel output
(5x5) (2x2) (? x ?)
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Convolution layer properties - stride

stride = 3

kernel moves by 3 pixels
—>
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image kernel output
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Convolution layer properties - stride
M = (N-K) / stride + 1

stride
—

(b

conv

=0

image kernel output
(NxN) (KxK) (MxM)

e.9.M=(52)/3+1=2
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Convolution layer properties - pad

pad = 1
0Tololololol o] 4 added border of size 1
: ]
0 0
conv 0 0 ,D —
0 0
0 0
0[0]0]0]0[0|O0O
image kernel output
(5x5) (2x2) (6X0)
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Convolution layer properties - pad

M = (N+2*pad-K) / stride + 1

added border of size

0/0/0{0|0
; .
0 0
conv ( 0 Ol , D ) —
0 0
0 0
0/0]0]0]0]0]0
image kernel output
(N+2*pad)X(N+2*pad) (KxK) (MxM)
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Multl-channel convolution

o (11 ITsu)

RGB image kernel output
(5%x5x3) (2x2%3) (4x4x71)
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Multl-channel convolution

(I ) = T

RGB image kernel output
(5x5x3) (2x2x3) (4x4x1)
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Multl-channel convolution

(I [y - A

RGB image kernel output
(5x5x3) (2x2x3) (4x4x1)
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Multl-channel convolution

(I -

RGB image kernel output
(5x5x3) (2x2x3) (4x4x1)
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Multi-channel convolution

o ( B ) -

RGB image kernel output
(5x5x3) (2x2x3) (4x4x1)
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—— W1 Convolutional layer
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—— W1 Convolutional layer
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—— W1 Convolutional layer
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Convolutional network (ConvNet)
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Convolution backward pass

Learning of convolutional neuron => backpropagation

W11 | W12
W21 | W22
L11 | £12 | X13 \
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Convolution backward pass
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Convolution backward pass

Byll 8y12 UpStream
Op Op gradient

T21 | T22 | T23 |—> COHV(&@ O
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Convolution backward pass

Op _ dp Oy | JOp 0y12 | dp OYa1 , Op Oyao
Ow11 Oy11 Owiq Oy12 Owiq Oya1 Owiq O0Ya2 Ow1q
w w Op Op
wll w12 8?/11 6y12 UpStream
21 22 Op Op gradient
0Y21 0Y22

31 32 | X33 Y11 Y12 P
Y21 | Y22
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Convolution backward pass
~ Op Oy Jp Oya Op Oy22

Oy12 Owiq | Oya1 Owiq |

Op  Op
Ow1y 0Y11

O0Ya2 Ow1q
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Convolution backward pass

8y11 8y12 UpStream
Op Op gradient

93 }: conv(X, @ O

L11 | L12 | L13
L21 | L£22
X31 | L32
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Op

Ow11 B 0Y11

Convolution backward pass
op op Op

L11 X12

I | le |
0Y12 0Y21

0Y22

Op Op
8C'J11 82912
Op Op
8C'J21 82922
L11 | L12 | L13
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X31 | L32
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Convolution backward pass

Op op. ., 9 . Op . Op
— 11 12 7 21 22
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Convolution backward pass

Op  Op e op e op e op N
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Convolution backward pass

ap — 8]9 11 ap T19 8p 21 8]9 L22
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Convolution backward pass

Op Op Op Op N Op N
= T12 T13 22 23
Ow12 3?/11 3912 3?/21 3922
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— T21 T22 31 32
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= 22 223 392 33
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Convolution backward pass
Op Op Op op Op

0Y22

T11 T12

0Y12
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Convolution backward pass

Op  Op ] op e op e op N
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Convolution backward pass

Op  Op ] op e op e op N
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Convolution backward pass wrt weights

 Backpropagation in convolutional layer wrt weights Is:
“‘convolution of input feature map with upstream gradient’

Op Op 11 | 12 | 213 8810 8819
Yy Yy
ag” 8;}12 — Conv( To1 | T22 | T23 | a; 8: )
p p
Owai | Owas L31 | £32 | 433 Oy21 | Oyao
w11 w192 Op Op
Wo1 | Woo 0y11 0y12 upstream
Op Ip gradient
Jy21 Oy22
L11 | L12 | L13
To1 | T22 | T23 _,@nv(x,@ O g
31 xr32 | I33 Yi1 | Y12 P
Y21 | Y22
» il; Czech Technical University in Prague
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Convolution backward pass wrt input feature map

Backpropagation in convolutional layer is:
“‘convolution of padded upstream gradient with mirrored

weights”
Jp dp op U 0 0 0
0x11 Ox12 0x13 op op
aO’p adp 8dp _COIlV( 0 Oy11 0y12 0 W22 | W1 D
T2] L22 L2z ™ Ip op
Jp Jp op 0 Oy21 Oy22 0 pL W12 | Wi
0xr3q Ox39 0x33 (0 0 0 0
w11 | W12 Op Op
W21 | W22 |
dp Op gradient
0y21 Oy22
11 | L12 | L13
T21 | T22 | T23 _,@nv(x,@ O »
T31 | T32 | T33 Y11 | Y12 P
Y21 | Y22
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Convolutional net

» Convolutional network (ConvNet) is concatenation of
convolutional layers

* Backprop in ConvNet is convolution of feature maps or
kernels with upstream gradient.

 Feed-forward and backprop are concolutions =>
efficient implementation on GPU
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LeCun’s letter recognition 1998 (over 13k citations !!1)

C3:f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

Al 6@28x28
rl_ C5: layer F6: layer  QUTPUT

32x32 S2: f. maps
120

r

FuII conAectuon Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connection

e

_eCun et al, Gradient based learning applied to document
recognition, IEEE, 1998
nttp://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet on ImageNet 2012 (over 27k citations !!!)

X .‘\»77 | ‘ ." y y
N \ 192 192 128 2048 \ / 20a8 \dense
57 128
5“‘.“‘ . - ““‘ \
‘ 3\ Ny, | - | dense| [dense q
[y 27 AN N
Lol ‘J 1000
. , 192 192 128 Max
| - : 2048 2048
\{[Stride Max 128 Max pooling
“of 4 pooling pooling
3 48

Alex Krizhevsky et al, Imagenet classification with deep
convolutional neural networks, NIPS, 2012

hitps://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

IMAGENET

Classification results
http://image-net.org/challenges/LSVRC/2017/index
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IMA&GENET

Classification results
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Classification Error
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IMAGENET

Classification results
AlexNet
0.3 3 layers
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Demo

e convnet demo from Karpathy:
https://cs.stanford.edu/people/karpathy/convnetjs/demo/
citar10.html
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Next lecture

« gradient learning (what make it tough)
» other layers:

@ Sy
— -‘--/Al

.",}é /-,1?(;::7(5

Ade\+

|| .;T.'

[ ',‘gr. Py
y ) & —

activation function,
batch normalization,
drop out,

loss layers
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