Learning for vision IV training & layers

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Outline

- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

• what happen to backprop gradient when weights are huge?

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

$$\frac{\partial p}{\partial w_1} = \frac{\partial y_1}{\partial w_1} \frac{\partial v}{\partial y_1} \frac{\partial p}{\partial v} = 0$$

$$\frac{\partial p}{\partial w_2} = \frac{\partial y_2}{\partial w_2} \frac{\partial v}{\partial y_1} \frac{\partial p}{\partial v} = 0$$

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

$$\frac{\partial p}{\partial w_1} = x_1 \cdot \mathbf{1} \cdot \frac{\partial p}{\partial v} \stackrel{>0}{<0}$$

$$\frac{\partial p}{\partial w_2} = x_2 \cdot 1 \cdot \frac{\partial p}{\partial v} \stackrel{>0}{<} 0$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

tanh(x)

- zero gradient when saturated
- not zero-centered (only positive ouputs)
- computationally expensive

ReLU $\max(0, x)$

- zero gradient when saturated (partially => dead ReLU!)
- not zero-centered (only positive ouputs)
- computationally expensive

ReLU

 $\max(0, x)$

- zero gradient when saturated (partially => dead ReLU!)
- not zero-centered (only positive ouputs)

Leaky ReLU $\max(0.1x, x)$

- zero gradient when saturated
- not zero-centered (only positive ouputs)
- computationally expensive

Small gradient for negative values give tiny chance to recover

- zero gradient when saturated (partially)
- not zero-centered (only positive ouputs)
- computationally expensive

Summary

- Use ReLU and avoid undesired properties by
 - good weight initialization
 - data preprocessing
 - batch normalization
- Still you want to keep "reasonable values"
 (i.e. small but not too much and distributed around zero)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - initialization
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Data preprocessing & initializations

 Pixels values shifted zero mean to avoid only positive inputs and the unwanted "zig-zag" behaviour

Data preprocessing & initializations

- Pixels values shifted zero mean to avoid only positive inputs and the unwanted "zig-zag" behaviour
- Weight initialization:
 - $\mathbf{w} = 0$ all gradients the same
 - $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma)$ diminishing gradients in backprop
 - $\mathbf{w}^{(i)} \sim \mathcal{N}(\mathbf{0}, \sigma * 1/N^{(i)})$ preserves variance of signal among layers (Xavier init [Glorot 2010])

Xavier initialization [Glorot 2010]

Signal in randomly initialized weights $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma)$ forward (and backward) pass

Xavier initialization [Glorot 2010]

• We want to preserve variance of signal among layers (i.e. $var(y) = var(x_i)$)

$$= \sum_{i=1}^{N} \operatorname{var}(w_i) \operatorname{var}(x_i) + \operatorname{E}(w_i) \operatorname{var}(x_i) + \operatorname{Var}(w_i) \operatorname{var}(x_i)$$

$$= \sum_{i=1}^{N} \operatorname{var}(w_i) \operatorname{var}(x_i) = N * \operatorname{var}(w_i) \operatorname{var}(x_i)$$

$$\Rightarrow N * \operatorname{var}(w_i) = 1$$

Xavier initialization [Glorot 2010]

Signal in Xavier initialized weights $\mathbf{w}^{(i)} \sim \mathcal{N}(\mathbf{0}, \sigma * 1/N^{(i)})$ forward (and backward) pass (better but not ideal)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - initialization
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

- · Learning:
- Normalize each dimension of input feature map in each layer
- Learn parameters $\gamma^{(k)}$, $\beta^{(k)}$ for each dimension k

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$x_1 \dots x_m$$
 $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean

Batch normalization layer [loffe and Szegedy 2015] https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

- · Learning:
- Normalize each dimension of input feature map in each layer
- Learn parameters $\gamma^{(k)}$, $\beta^{(k)}$ for each dimension k

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$x_1 \dots x_m$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

- · Learning:
- Normalize each dimension of input feature map in each layer
- Learn parameters $\gamma^{(k)}$, $\beta^{(k)}$ for each dimension k

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$x_1 \dots x_m$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{ mini-batch variance}$$

$$\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{ normalize}$$

Batch normalization layer [loffe and Szegedy 2015] https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

- · Learning:
- Normalize each dimension of input feature map in each layer
- Learn parameters $\gamma^{(k)}$, $\beta^{(k)}$ for each dimension k

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

// scale and shift

- Inference: estimate $\mathbb{E}(x^{(k)})$ and $\mathrm{var}(x^{(k)})$
- Use learned parameters $\gamma^{(k)}$, $\beta^{(k)}$ and $\mathbb{E}(x^{(k)})$, $\mathrm{var}(x^{(k)})$

$$\mathbf{x} = [x^{(1)} \dots x^{(n)}]^{\top} \qquad \mathbf{y} = [y^{(1)} \dots y^{(n)}]^{\top}$$

$$\mathbf{y}^{(k)} = \gamma^{(k)} \left(\frac{x^{(k)} - \mathbb{E}(x^{(k)})}{\operatorname{var}(x^{(k)})} \right) + \beta^{(k)}$$

Good weight initialization

Bad weight initialization

Summary

- Normalize each dimension of input feature map in each layer independently.
- Different behaviour for learning and inference
- BN yields
 - Reduced learning time
 - Model regularizer (one training example always normalized differently => small jittering of each sample)
 - Reduce dependency on good weight initialization

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

	1	3	0	2	1
100 0 1/4	2	0	1	2	О
max (0	3	1	3	2
	1	3	0	2	1
	2	0	1	2	0

ന	3	2	2
3	3	3	3
റ	3	3	3
က	3	2	2

image (5x5) output (**4 x 4**)

$$M = (N+2*pad-K) / stride + 1$$

The same as for convolution

image (NxN) output (M x M)

Atrous Spatial Pyramid Pooling (ASPP)

[Chen et al. TPAMI 2018] https://arxiv.org/pdf/1606.00915.pdf

Max-pooling feed-forward

Max-pooling Backprop

Max-pooling feed-forward

Max-pooling Backprop

Max-pooling feed-forward

Max-pooling Backprop

Max-pooling summary

- Forward pass
 - similar to convolution but takes maximum over kernel
 - it has no parameters to be learnt!
- Backprop
 - propagate gradient only to active connections
- Main purpose is to reduce dimensionality and overfitting
- It seems that max pooling layers will disappear in future
 - should be avoided in generative models (GAN, VAE)
 - they can be replaced by conv-layers with larger stride in discriminative models https://arxiv.org/abs/1412.6806
 - Geoffrey Hinton: "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster." (Reddit AMA)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)

$$L_2(\mathbf{w}) = \sum_i \|\mathbf{f}(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i\|_2^2$$

$$L_1(\mathbf{w}) = \sum_i |\mathbf{f}(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i|$$

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)
- (1) convert output to probability (softmax function)

$$\mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{w})) = \begin{bmatrix} \exp(f_1(\mathbf{x}, \mathbf{w})) \\ \exp(f_2(\mathbf{x}, \mathbf{w})) \\ \vdots \\ \exp(f_N(\mathbf{x}, \mathbf{w})) \end{bmatrix} / \sum_{k=1}^{N} \exp(f_k(\mathbf{x}, \mathbf{w}))$$

(2) compute cross entropy

$$H(\mathbf{w}) = \sum -\log \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{w}))$$

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)

$$L(\mathbf{w}) = \sum_{i} \log \left[1 + \exp(-y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

Derivative can be found here: https://deepnotes.io/softmax-crossentropy

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)
 - other loss functions

https://en.wikipedia.org/wiki/Loss_functions_for_classification

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

Regularization

- L2, L1 norms on weights are simple regularizations
- Batch norm is regularization
- Drop out is regularization (it trains committee of experts)
- Jittering of training data is regularization

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

Training procedure

- Choose:
 - Weight initialization
 - Network architecture (ideally re-use pre-trained net)
 - Learning rate and other hyper-parameters.
 - Loss + regularization
- Divide data on three representative subsets:
 - Training data (the set on which the backprop is used to estimate weights)
 - Validation data (the set on which hyper-param are tuned)
 - Testing data (the set on which the error is only observed)

Weight initialization (Xavier)

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate
- Tst error>>Trn error => overfitting
 - increase strength of regularization
 - decrease model capacity
 - Tst data are too far from Trn data (should come from the same distribution)

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate
- Tst error>>Trn error => overfitting
 - increase strength of regularization
 - decrease model capacity
 - Tst data are too far from Trn data (should come from the same distribution)
- Trn error>>Tst error =>bad division on training/testing data

