Learning for vision IV training & layers

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics Faculty of Electrical Engineering Czech Technical University in Prague

Outline

- layers:
 - convolutional layer
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Very important property of convolutional layer is:

Local gradient is also convolution !!!

Outline

- layers:
 - convolutional layer
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

• what happen to backprop gradient when weights are huge?

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
 - not zero-centered (pos. output)
- computationally expensive

$$\frac{\partial p}{\partial w_1} = \frac{\partial y_1}{\partial w_1} \frac{\partial v}{\partial y_1} \frac{\partial p}{\partial v} = 0$$

$$\frac{\partial p}{\partial w_2} = \frac{\partial y_2}{\partial w_2} \frac{\partial v}{\partial y_1} \frac{\partial p}{\partial v} = 0$$

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \frac{\partial p}{\partial \mathbf{w}} \cdot \frac{\partial \mathcal{L}(p)}{\partial p} \stackrel{>0}{<} 0$$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

- zero gradient when saturated
- not zero-centered (pos. output)
- computationally expensive

PyTorch: nn.Sigmoid()

tanh(x)

- zero gradient when saturated
- not zero-centered (only positive ouputs)
- computationally expensive

PyTorch: nn.Tanh()

ReLU $\max(0, x)$

- zero gradient when saturated (partially => dead ReLU!)
- not zero-centered (only positive ouputs)
- computationally expensive

PyTorch: nn.ReLu()

ReLU $\max(0, x)$

- zero gradient when saturated (partially => dead ReLU!)
- not zero-centered (only positive ouputs)

Leaky ReLU $\max(0.1x, x)$

- zero gradient when saturated
- not zero-centered (only positive ouputs)
- computationally expensive

Small gradient for negative values give tiny chance to recover

PyTorch: nn.LeakyReLU(negative_slope=1e-2)

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

- zero gradient when saturated (partially)
- not zero-centered (only positive ouputs)
- computationally expensive

PyTorch: nn.LeakyReLU(alpha=1)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - initialization
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Data preprocessing & initializations

 Pixels values shifted zero mean to avoid only positive inputs and the unwanted "zig-zag" behaviour

Data preprocessing & initializations

- Pixels values shifted zero mean to avoid only positive inputs and the unwanted "zig-zag" behaviour
- Weight initialization:
 - $\mathbf{w} = 0$ all gradients the same
 - $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma)$ diminishing gradients in backprop
 - $\mathbf{w}^{(i)} \sim \mathcal{N}(\mathbf{0}, \sigma * 1/N^{(i)})$ preserves variance of signal among layers (Xavier init [Glorot 2010])

Xavier initialization [Glorot 2010]

Signal in randomly initialized weights $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma)$ forward (and backward) pass

Xavier initialization [Glorot 2010]

• We want to preserve variance of signal among layers (i.e. $var(y) = var(x_i)$)

$$= \sum_{i=1}^{i=1} \operatorname{var}(w_i) \operatorname{var}(x_i) \approx N * \operatorname{var}(w_i) \operatorname{var}(x_i)$$

$$\Rightarrow N * \operatorname{var}(w_i) = 1$$

Xavier initialization [Glorot 2010]

Signal in Xavier initialized weights $\mathbf{w}^{(i)} \sim \mathcal{N}(\mathbf{0}, \sigma * 1/N^{(i)})$ forward (and backward) pass (better but not ideal)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - initialization
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

Batch is 4D tensor (visualization in 3D) of values x_i (cubes)

$$i = (i_N, i_C, i_H, i_W)$$
 is 4D index

Batch is 4D tensor (visualization in 3D) of values x_i (cubes)

$$i = (i_N, i_C, i_H, i_W)$$
 is 4D index

Set of cubes determined by indices $S_i = \{k \mid k_C = i_C\}$

$$\mathcal{S}_{1,1,1,1} = \{(1,1,1,1), (2,1,1,1), \dots (N,1,H,W)\}$$

 \vdots \vdots \vdots \vdots \vdots $\mathcal{S}_{N,1,H,W} = \{(1,1,1,1), (2,1,1,1), \dots (N,1,H,W)\}$

$$\mu_i = \frac{1}{m} \sum_{k \in \mathcal{S}_i} x_k, \quad \sigma_i = \sqrt{\frac{1}{m} \sum_{k \in \mathcal{S}_i} (x_k - \mu_i)^2 + \epsilon},$$

For each channel i compute mean a std

$$\mu_i = \frac{1}{m} \sum_{k \in \mathcal{S}_i} x_k, \quad \sigma_i = \sqrt{\frac{1}{m} \sum_{k \in \mathcal{S}_i} (x_k - \mu_i)^2 + \epsilon},$$

$$\hat{x}_i = \frac{1}{\sigma_i} (x_i - \mu_i)$$

Normalize all values in channel i by estimated mu and std

$$\mu_i = \frac{1}{m} \sum_{k \in \mathcal{S}_i} x_k, \quad \sigma_i = \sqrt{\frac{1}{m} \sum_{k \in \mathcal{S}_i} (x_k - \mu_i)^2 + \epsilon},$$

$$\hat{x}_i = \frac{1}{\sigma_i} (x_i - \mu_i)$$

$$y_i = \gamma \hat{x}_i + \beta,$$

In some cases biased values are needed => introduce trainable affine transformation initialized in gamma=1, beta =0

$$\mu_i = \frac{1}{m} \sum_{k \in \mathcal{S}_i} x_k, \quad \sigma_i = \sqrt{\frac{1}{m}} \sum_{k \in \mathcal{S}_i} (x_k - \mu_i)^2 + \epsilon,$$

$$\hat{x}_i = \frac{1}{\sigma_i} (x_i - \mu_i)$$

$$y_i = \gamma \hat{x}_i + \beta,$$

$$\psi_i = \mathbb{E}[x_i] \text{ and } \sigma_i = \mathbb{E}[(x_i - \mathbb{E}[x_i])^2]$$

• Testing phase: $\mu_i = \mathbb{E}[x_i]$ and $\sigma_i = \mathbb{E}[(x_i - \mathbb{E}[x_i])^2]$ estimated over the whole training set.

Good weight initialization

Bad weight initialization

fill-in backprop of BN

$$\frac{\partial y_i}{\partial x_i} = ?$$

 $y_i = \gamma \hat{x}_i + \beta,$

Why batch normalization helps?? https://arxiv.org/pdf/1805.11604.pdf

- Covariate shift: change in the distribution the input values during testing
- Original explanation: BN reduces covariance shift
- Experiment with injected noisy covariance shift reveals, that this is not the issue.

Why batch normalization helps?? https://arxiv.org/pdf/1805.11604.pdf [Santurkar, NIPS, 2019]

 They show that BN improves beta-smoothness (i.e. Lipschitzness in loss and gradient) and predictivness.

(a) loss landscape

(b) gradient predictiveness

(c) "effective" β -smoothness

Batch Normalization - conclusions

- Forward pass (no mini-batch available):
- The same, but $\mu_i = \mathbb{E}[x_i]$ and $\sigma_i = \mathbb{E}[(x_i \mathbb{E}[x_i])^2]$ estimated over the whole training set.
- suffers from training/testing discrepancy.
- **BN is reparametrization** of the original NN with the same expressive power.
- BN is model regularizer: one training example always normalized differently => small jittering
- Works well on classification problems, the reason is partially unclear (beta-smoothness or covariate shift).
- Not suitable for recurrent networks. Different BN for each time-stamp => need to store statistics for each timestamp.
- Does not work on generative netoworks. The reason is unclear.

Batch normalization layer [loffe and Szegedy 2015] https://arxiv.org/pdf/1502.03167.pd (over 6k citation)

Layer normalization [Ba, Kiros, Hinton 2016] https://arxiv.org/pdf/1607.06450.pdf

Layer normalization performs well on RNN

Layer Normalization - conclusions

- Forward pass (no mini-batch needed):
- => no trainin./testing dicrepancy as with BN.
- Work well on recurrent networks.
- Work well for small mini-batches

Instance normalization [Ulyanov, Vidaldi, Lempitsky 2017] https://arxiv.org/pdf/1607.08022.pdf

$$S_i = \{k \mid k_C = i_C, k_N = i_N\}$$

Instance Normalization - conclusions

- Idea: network should be insensitive to constrast
- Works well on style transfer and GAN networks
- It does not outperform BN on image classification tasks

Group normalization [Wu, He, 2018] https://arxiv.org/pdf/1803.08494.pdf

Group normalization performs well for style transfer (GANs) and RNN but does not outperform BN for image classification

Group Normalization - conclusions

 It achieves performance comparable with BN on image classification tasks (for mini-batch 32).

Group Normalization - conclusions

- GN is insensitive to mini-batch size.
- For smaller mini-batches it outperforms BN significantly

Group Normalization - conclusions

- Why GN works better?
- LN makes implicit assumption that all channels are of the same importance when computing the mean.
- This does not have to be right => GN allows to compute different statistics for different groups of channels => larger flexibility.

- BN good for classification, IN good for style transfer
- Idea is to combine both.

$$y = \left(\rho \cdot \hat{x}^{(BN)} + (1 - \rho) \cdot \hat{x}^{(IN)} \right) \cdot \gamma + \beta$$

- BIN combines BN and IN
- Three trainable parameters
- Suitable for both style transfer and classification

Classification results: ResNet-101 on CIFAR-100

$$y = \left(\rho \cdot \hat{x}^{(BN)} + (1 - \rho) \cdot \hat{x}^{(IN)} \right) \cdot \gamma + \beta$$

- BIN combines BN a IN
- Three trainable parameters
- Suitable for both style transfer and classification
 Classification results: ResNet-101 on CIFAR-100

$$y = \left(\rho \cdot \hat{x}^{(BN)} + (1 - \rho) \cdot \hat{x}^{(IN)} \right) \cdot \gamma + \beta$$

- BIN is learnable combination of BN a IN
- Three trainable parameters
- Suitable for both style transfer and classification

Style trasfer results: ResNet-101 on CIFAR-100

Batch normalization layer [loffe and Szegedy 2015] https://arxiv.org/pdf/1502.03167.pd (over 6k citation)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,
 - regularizations

max (1	3	0	2	1
	2	0	1	2	0
	0	3	1	3	2
	1	3	0	2	1
	2	0	1	2	0

3	3	2	2
3	3	3	3
3	3	3	3
3	3	2	2

image (5x5) output (**4 x 4**)

$$M = (N+2*pad-K) / stride + 1$$

The same as for convolution

image (NxN) output (M x M)

Atrous Spatial Pyramid Pooling (ASPP)

[Chen et al. TPAMI 2018] https://arxiv.org/pdf/1606.00915.pdf

Max-pooling summary

- Forward pass
 - similar to convolution but takes maximum over kernel
 - it has no parameters to be learnt!
- Backprop
 - propagate gradient only to active connections
- Main purpose is to reduce dimensionality and overfitting
- It seems that max pooling layers will disappear in future
 - should be avoided in generative models (GAN, VAE)
 - they can be replaced by conv-layers with larger stride in discriminative models https://arxiv.org/abs/1412.6806
 - Geoffrey Hinton: "The pooling operation used in convolutional neural networks is a big mistake and the fact that it works so well is a disaster." (Reddit AMA)

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)

$$L_2(\mathbf{w}) = \sum_i \|\mathbf{f}(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i\|_2^2$$
 PyTorch: nn.MSELoss()

$$L_1(\mathbf{w}) = \sum_i |\mathbf{f}(\mathbf{x}_i, \mathbf{w}) - \mathbf{y}_i|$$
 PyTorch: nn.L1Loss()

$$L_{1_{\text{smooth}}}(\mathbf{w}) = \sum_{i} |\mathbf{f}(\mathbf{x}_{i}, \mathbf{w}) - \mathbf{y}_{i}|^{2}, \quad \text{if } |\mathbf{f}(\mathbf{x}_{i}, \mathbf{w}) - \mathbf{y}_{i}| < 1.$$

$$\sum_{i} |\mathbf{f}(\mathbf{x}_{i}, \mathbf{w}) - \mathbf{y}_{i}| + 0.5, \quad \text{otherwise.}$$

PyTorch: nn.SmoothL1Loss()

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)
- (1) convert output to probability (softmax function)

$$\mathbf{s}(\mathbf{f}(\mathbf{x}, \mathbf{w})) = \begin{bmatrix} \exp(f_1(\mathbf{x}, \mathbf{w})) \\ \exp(f_2(\mathbf{x}, \mathbf{w})) \\ \vdots \\ \exp(f_N(\mathbf{x}, \mathbf{w})) \end{bmatrix} / \sum_{k=1}^{N} \exp(f_k(\mathbf{x}, \mathbf{w}))$$

(2) compute cross entropy torch.nn.CrossEntropyLoss

$$H(\mathbf{w}) = \sum_{i=1}^{n} -\log \mathbf{s}_{y_i}(\mathbf{f}(\mathbf{x}_i, \mathbf{w}))$$

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)

$$L(\mathbf{w}) = \sum_{i} \log \left[1 + \exp(-y_i f(\mathbf{x}_i, \mathbf{w}))\right]$$

PyTorch: nn.BCEWithLogitsLoss()

Derivative can be found here: https://deepnotes.io/softmax-crossentropy

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)
 - Kulback-Leibler loss

$$L_{KL}(\mathbf{w}) = \sum_{i} y_i \cdot \log (y_i - f(\mathbf{x}_i, \mathbf{w}))$$

PyTorch: torch.nn.NLLLoss()

- Regression:
 - L2 loss
 - L1 loss
- Classification:
 - cross entropy loss (N-output classifier f(x, w))
 - logistic loss (single output dichotomy classifier $f(\mathbf{x}, \mathbf{w})$)
 - Kulback-Leibler loss
- Ranking:
 - Ranking loss

$$L_{rank}(\mathbf{w}) = \sum_{(i,j)\in\mathcal{T}} \max\{0, -y_{ij} \cdot (f(\mathbf{x}_i, \mathbf{w}) - f(\mathbf{x}_j, \mathbf{w})) + \epsilon\}$$

PyTorch: torch.nn.Margin RankingLoss()

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

Regularization

- L2, L1 norms on weights (weight decay param. in SGD)
- Batch norm is regularization
- Drop out is regularization (it trains committee of experts)
- Jittering of training data is regularization

Outline

- SGD vs deterministic gradient
- what makes learning to fail
- layers:
 - activation function (i.e. non-linearities)
 - batch normalization layer
 - max-pooling layer
 - loss-layers
- regularizations
- summary of the learning procedure
 - train, test, val data,
 - hyper-parameters,

Training procedure

- Choose:
 - Weight initialization
 - Network architecture (ideally re-use pre-trained net)
 - Learning rate and other hyper-parameters.
 - Loss + regularization
- Divide data on three representative subsets:
 - Training data (the set on which the backprop is used to estimate weights)
 - Validation data (the set on which hyper-param are tuned)
 - Testing data (the set on which the error is only observed)

Weight initialization (Xavier)

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate
- Tst error>>Trn error => overfitting
 - increase strength of regularization
 - decrease model capacity
 - Tst data are too far from Trn data (should come from the same distribution)

- Weight initialization (Xavier)
- Trn error is huge =>underfitting
 - decrease regularization strength
 - increase model capacity
- Trn error explodes to infinity=> huge learning rate
 - decrease the learning rate
- Trn error is decreasing very slowly => small learning rate
 - increase learning rate
- Tst error>>Trn error => overfitting
 - increase strength of regularization
 - decrease model capacity
 - Tst data are too far from Trn data (should come from the same distribution)
- Trn error>>Tst error =>bad division on training/testing data

Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics