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e |layers:
e convolutional layer
e activation function (i.e. non-linearities)
e pbatch normalization layer
e max-pooling layer
e |oss-layers
* summary of the learning procedure
e train, test, val data,
* hyper-parameters,
e regularizations
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2D convolution forward pass
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2D convolution forward pass
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# initialise
import torch.nn as nn
# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=2,
kernel size=2, stride=1,
padding=1)
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2D convolution forward pass
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also number

# initialise of kernels

import torch.nn as nn
# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=3,
kernel size=2, stride=1,
padding=1)
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2D convolution forward pass

X

5x5x3

also number

# initialise of kernels

import torch.nn as nn

# define 2D convolutional laxer

first layer = nn.Conv2d(in channels=3, out channels=2,
kernel size=2, stride=1,

padding=1)
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2D convolution forward pass
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Very important property of convolutional layer is:
Local gradient is also convolution !!!
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Activation functions

Sigmoid | Leaky RelL U )
o(z) = —1 max(0.1z, x)
1+e—°

tanh Maxout

tanh(z) . ° max (wi « + by, was x + by)

RelLU ELU

>
max(0, ) v w2l
= § \a(e‘l —-1) z<0 -=—— 10
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* what happen to backprop gradient when weights are huge”

Sigmoid | * zero gradient when saturated

o(T) = = * not zero-centered (pos. output)
e pa— ~» computationally expensive

Op _ Oy dv Op _0 Op _ Oy dv Op 0
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Activation functions

Sigmoid | * zero gradient when saturated
o(z) = —L * not zero-centered (pos. output)
e .+ computationally expensive

-10

OL(w)  Op OL(p) >0

Ow N Ow ap <0

[ O0L

Undesired zig-zag behaviour ~ Wopt Tw
G2 . : o B - Opt
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Activation functions

1

Sigmoid * zero gradient when saturated
o(z) = —1 * not zero-centered (pos. output)
t+e /., * computationally expensive
) Lﬁ?ég Czech Technical University in Prague .
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Activation functions

1

Sigmoid * zero gradient when saturated
o(z) = —1 * not zero-centered (pos. output)
t+e /. s computationally expensive

PyTorch: nn.Sigmoid()
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Activation functions

tanh l

tanh(z) o

e zero gradient when saturated

e computationally expensive

Pylorch: nn.Tanh()
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Activation functions

10

RelLU
max (0, x)

—-10

* Zero-gracienrtwhen-saturated (partially => dead Rel U!)

* Not zero-centered (only positive ouputs)

» cormputatonaly-expenstve

Pylorch: nn.ReLu()
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Activation functions

10

RelLU
max (0, x)

-10 10

o Zero-gradientwhen-saturated (partially => dead Rel.U!)

* Not zero-centered (only positive ouputs)

* computatenaty-expensive
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Activation functions

10

Leaky RelLU

max(0.1z, x)

1 10

Small gradient for negative values give tiny chance to recover

PyTo rch: nn.LeakyReLU(negative slope=le-2)
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Activation functions

10

ELU
T z >0
ae®—1) <0 - : 0

o zero-gradientwhen-saturated (partially)
) tonl . ;

e computationally expensive

PyTorch: nn.LeakyReLU(alpha=1)
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Outline

 SGD vs deterministic gradient
« what makes learning to fall
e |layers:
e activation function (i.e. non-linearities)
e [nitialization
e patch normalization layer
e max-pooling layer
e |oss-layers
* summary of the learning procedure
 train, test, val data,
* hyper-parameters,
e regularizations
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Data preprocessing & initializations

* Pixels values shifted zero mean to avoid only positive
Inputs and the unwanted “zig-zag” behaviour
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Data preprocessing & initializations

* Pixels values shifted zero mean to avoid only positive

o Weight initialization:

5~
|'|'_§"l = sNA T
,\ A S vlﬁ.-_‘."/-'w
AT

Inputs and the unwanted “zig-zag” behaviour

« w =0 all gradients the same

« w~ MN(0,0) diminishing gradients in backprop

e w) ~ N(0,0%1/NW) preserves variance of
signal among layers (Xavier init [Glorot 2010])
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Xavier initialization [Glorot 2010]

Signal in randomly initialized weights w ~ A (0, o) forward
(and backward) pass

Layer: 1 Layer: 2 Layer: 3 Layer: 4 Layer: 5 Layer: 6 Laysr. 7 Layer: 8 Layer: 9 Layer: 10
Mezn: 0.0002 Mean: C.0001 Mean: -0.0000 Mean: 00000 Mean -0.0000 Mean: 0.0000 Mean:0.0000 Mean: 0.0000 Mean:0.0000 Mean: -0.0000
Std: 0.138282 Std: 0.019431  Std: 0.002762 Std: 0.000392 Std: C.0000&6 Std: 0.000008 Std: 0.000001 Std: 0.000000 Std: 0.000000 Std: 0.000000

0 1 =1 0 1l =1 0 1 =1 0 il =7 0 1 =1 0 il =4 0 1
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Xavier initialization [Glorot 2010]

* We want to preserve variance of signal among layers
(i.e. var(y) = var(x;) )

_ Z L () *var(w;) + E(w;)*var(z;) + var(w;z;) =

- Zvar(wi)var(xi) ~ N * var(w;)var(z;)

= N x var(w;) =1

B Czech Technical University in Prague
4 o ,\-J‘t:r‘ . . . . 23
NS Faculty of Electrical Engineering, Department of Cybernetics



Xavier initialization [Glorot 2010]

Signal in Xavier initialized weights w'*) ~ N(0,0  1/N™)
forward (and backward) pass (better but not ideal)

Layer: 1 Layer: 2 Layer: 3 Layer: 4 Layer: § Layer: 6 Layer: 7 Layer: 8 Layer: 9 Layer: 10
Mean: -0.0047 Mean: 00001 Mean:0.0002 Mean: -0.0023 Mean: 0.0004 Mean: 0.0007 Mezn:; -00005 Mean:;-0.0013 Mean: 0.0005 Mean: .0008
Std: 0.627367 Std: 0.484867 Std: 0.406623 Std: 0.356070 Std: 0.321102 Std: 0.296671 Std: 0.278827 Sid: 0.268218 Std: 0.258245 Stc: 0.240942

-1 0 1 =1 0 1T - 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 =1 0 1
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« what makes learning to fall
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Batch is 4D tensor (visualization in 3D) of values =i (cubes)

1 = (iNviC7iH77;W)
1S 4D Index

A

H, W
7 7777

yavi
4 L4

%5)) Czech Technical University in Prague o6

,// "
e

; %\.’?@j Faculty of Electrical Engineering, Department of Cybernetics


https://arxiv.org/pdf/1502.03167.pd

Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Batch is 4D tensor (visualization in 3D) of values =i (cubes)

1 = (iN7i07iH7iW)
1S 4D Index

H, W

Set of cubes determined by indices
S; =4k | ko =ic}

5.1,1,1,1 — {(17 17 17 1)7 (27 17 17 1)7 I (N7 17 H7 W)}

SN,l,H,W — {(17 ]-7 17 1)7 (27 17 ]-7 1)7 I (N7 17H7 W)}
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
[TT T 777
[T 7777
(T 7777

M
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
L L L L L LS
AV AE
L S L [ L)

M

Normalize all values in channel | by estimated mu and std
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W

Yi = YT; + B,

In some cases blased values are needed => Introduce
trainable affine transtormation initialized in gamma=1, beta =0

%ﬁé Czech Technical University in Prague
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

\

H, W
77777

m L - L - y) — )

/7

e Testing phase: wi =E[z;] and 0; = E[(z; —
estimated over the whole training set.
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https://arxiv.org/pdf/1502.03167.pd

Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Good weight initialization

- \fanlilla network

——— Batch Ncrmalized network —_—
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

Bad weight initialization

1.0
/ |
(& /
0.6
— Vanila network
e Batch Normalized network
0.4
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Computational graph of BN

Czech Technical University in Prague
aculty of Electrical Engineering. Department of Cybernetics 34




Homework:
fill-in backprop of BN

0y,

=7
ox 7
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Why batch normalization helps®??
https://arxiv.org/pdf/1805.11604. pdf

* Covariate shift: change in the distribution the input values
during testing

* Original explanation: BN reduces covariance shift

* Experiment with injected noisy covariance shitt reveals,
that this is not the issue.
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https://arxiv.org/pdf/1805.11604.pdf

Why batch normalization helps”??
https://arxiv.org/pdf/1805.11604.pdf

[Santurkar, NIPS, 2019]

* They show that BN improves beta-smoothness (i.e.
Lipschitzness in loss and gradient) and predictivness.

1
10 B Standard 250 s Standard 45 - Standard
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c 200
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o v
" T 100
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0
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(a) loss landscape (b) gradient predictiveness (c¢) “effective” S-smoothness
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Batch Normalization - conclusions
 Forward pass (no mini-batch available):

.|

o The same, but p; = E[z;] and 0i = E[(z; — E[x;])°]
estimated over the whole training set.
» suffers from training/testing discrepancy.

BN is reparametrization of the original NN with the same

expressive power.
BN is model regularizer: one training example always

normalized differently => small jittering
 Works well on classification problems, the reason is

partially unclear (beta-smoothness or covariate shift).

* Not suitable for recurrent networks. Different BN for
each time-stamp => need to store statistics for each time-
stamp.

 Does not work on generative netoworks. The reason Is
unclear.

7 [5 20 g
4 2 __-;___,:P..c]

RS Czech Technical University in Prague 18
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

H, W
L L L L L LS

m L - L - y) — )
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Layer normalization [Ba, Kiros, Hinton 2016]
https://arxiv.org/pdf/1607.06450.pdf

NAVANRVAWAY

(AR
AN

Layer normalization performs well on RNN

J?ﬁ Czech Technical University in Prague 40
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https://arxiv.org/pdf/1607.06450.pdf

Tesl Err.

Layer Normalization - conclusions
 Forward pass (no mini-batch needed):
* => no trainin./testing dicrepancy as with BN.
 Work well on recurrent networks.
- Work well for small mini-batches
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Instance normalization [Ulyanov, Vidaldi, Lempitsky 2017]
https://arxiv.org/pdf/1607.08022. pdf

Si =ik | kc =ic,kn =in}

Batch lflorm
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Instance Normalization - conclusions

e |dea: network should be insensitive to constrast

 \Works well on style transfer and GAN netvvorks
e |t does not L BB -

outperform BN on
image
classification tasks




Group normalization [Wu, He, 2018]
hitps://arxiv.org/pdt/1803.08494. pdf

Group normalization performs well for style transfer (GANS)
and RNN but does not outperform BN for image classification

Batch Norm Layer Norm Instance Norm
S B S
/<§5\§§ > /(% >
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L R = N [ ,// =1
\‘ \\ [ A aP= [
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http://www.apple.com/uk

Group Normalization - conclusions

* |t achieves performance comparable with BN on image
classification tasks (for mini-batch 32).

lrain error
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Group Normalization - conclusions

* GN is insensitive to mini-batch size.
e For smaller mini-batches it outpertorms BN significantly

Batch Norm (BN)

640 a0
—BN, 32 ims/gpu —GN, 32 ims/gpu
ss | —BN, 16 ims/gpu 55 — GN, 16 ims/gpu
— BN, 8 ims/gpu — @GN, 8 ims/gpu
0T — BN, 4 ims/gpu 30 r —GN, 4 ims/gpu
— BN, 2 ims/gpu —GN, 2 ims/gpu
45 F 45
5
w40 v 40
£ £
15 | A St W 35 |
30 F ~ 30
—_—
23 o —— 25}
T N——
20 1 1 1 J 20 1 1 L |
i [ 20 R 40 S0 i) JU bl ) S 100 i L 21} R a0 S0 Hl 0 bl ) 1O
epochs epochs
%‘?&5 Czech Technical University in Prague 46
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Group Normalization - conclusions

 Why GN works better?

LN makes implicit assumption that all channels are of the
same Importance when computing the mean.

* This does not have to be right => GN allows to compute
different statistics for different groups of channels =>
larger tlexibility.

\
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Batch-lnstance normalization
https://arxiv.org/pdf/1805.07925.pdf

BN good for classification, IN good for style transfer
e |dea is to combine both.

Batch Norm Instance Norm

SO >
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Nd <. N /,>
~ —~ 1
- /"
5, \\ 5 \\ | L~
anll | ) 1 | A
N N =
. N i //
N ~ /’ 1
~ N 1
/-,
N
%fg? Czech Technical University in Prague
/ 0 ] Faculty of Electrical Engineering, Department of Cybernetics

48


https://arxiv.org/pdf/1805.07925.pdf

Batch-Instance normalization
https://arxiv.org/pdf/1805.07925. pdf

y=(p- &PV 4+ (1= p)-20N) oy 45
e BIN combines BN and IN

* Three trainable parameters
e Suitable for both style transfer and classification

Classification results: ResNet-101 on CIFAR-100

100 =
.‘:"JE 80 B .‘,53 60 T
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® &
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925. pdf

y=(p- &PV 4+ (1= p)-20N) oy 45

e BIN combines BN a IN

* Three trainable parameters
e Suitable for both style transfer and classification

Classification results: ResNet-101 on CIFAR-100
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Batch-Instance normalization
https://arxiv.org/pdf/1805.07925.pdf

y=(p- &PV 4+ (1= p)-20N) oy 45
BIN is learnable combination of BN a [N

* Three trainable parameters
e Suitable for both style transfer and classification

Style trasfer results: ResNet-101 on CIFAR-100

Rain Princess Candy Udnie
5.2 : e
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8 | e BN<+IN > 9¢ J . oS 4 | . .
.45 | “\V_ o 3.75 #M_ |N 205 h* BN+IN
T 4.4 <3 E
W, : :
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Batch normalization layer [loffe and Szegedy 2015]
https://arxiv.org/pdf/1502.03167.pdf (over 6k citation)

o :: v, B
:: Y1 llllllll_ \ _llllllll _llllllll
i L@ —C D=,
5x5x3 Ax4x3 Ax4x3 Ax4x3
feature feature feature feature
map map map map
layer: layer: layer: layer:
conv BN nonlin conv?
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Outline

 SGD vs deterministic gradient
« what makes learning to fall
e |layers:
e activation function (i.e. non-linearities)
e patch normalization layer
e max-pooling layer
e |0ss-layers
* summary of the learning procedure
e train, test, val data,
* hyper-parameters,
e regularizations

TR Czech Technical University in Prague
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max (

%ﬁ

Max-pooling

02 |1

112 |0

1132 2X¢)=

02 |1

112 |0
image output
(5x5) (? x ?)

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling

max (

image output
(5x5) (? x ?)

%g’/j’ Czech Technical University in Prague
w/f&@ Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling

max (

N|—= O |[—

image output
(5x5) (? x ?)

%g’/j’ Czech Technical University in Prague
w/f&@ Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling

1131012 |1 3312 |2

2/0[1]2 |0 3131313

max (31132 22)= 3131313

113102 |1 31312 |2
21011210

image output

(5x5) (4 x 4)

;éL;ri?t% Czech Technical University in Prague

A Faculty of Electrical Engineering, Department of Cybernetics



max (

5~
.'{‘ i _f,:_f)p 3
NN =7
1’ }}4\(}/;{/
I

RS

Max-pooling
M = (N+2*pad-K) / stride + 1

The same as for convolution

o KxK) =

image output
(NxN) (M x M)

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Atrous Spatial Pyramid Pooling (ASPP)

rate = 18

rate = 6 - —

e

mER I |
-

rate = 12

Atrous Spatial Pyramid Pooling

Input Feature Map - /E 7

[Chen et al. TPAMI 2018] https://arxiv.org/pdf/1606.00915.pdf

/ J? Czech Technical University in Prague
NS

Faculty of Electrical Engineering, Department of Cybernetics >


https://arxiv.org/pdf/1606.00915.pdf

Max-pooling teed-torward

max (

NG| WOIND
NG| WD

Max-pooling Backprop

max (

N|W|W|—
N|W| WA~

e Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics



Max-pooling teed-torward

max (

NG| WOIND
NG| WD

Max-pooling Backprop

max (

N|W|W|—
N|W| WA~

e Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics



max (

max (

@ L;E““tss
{ Ad={ (=
JRIAS

Tl
%ﬂﬂ{e J

Max-pooling teed-torward

1131012 |1 3312 |2
2001112 1|0 3131313
03132’2X2): 31313 |3
113|012 |1 31312 |2
210111]2 10

Max-pooling Backprop

upstream gradient

21311

N
X
N
|

OV
N |IW|H~

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Max-pooling teed-torward

13 33|22
2| O 3131373
max (311312 %)= [31313 (3
113102 (1 31312 |2
21011210
Max-pooling Backprop
max (
;éL;ri?t% Czech Technical University in Prague

A Faculty of Electrical Engineering, Department of Cybernetics
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R Czech Technical University in Prague
NS Faculty of Electrical Engineering, Department of Cybernetics

Max-pooling summary

Forward pass

e similar to convolution but takes maximum over kernel

e |t has no parameters to be learnt!

Backprop

e propagate gradient only to active connections

Main purpose is to reduce dimensionality and overfitting

It seems that max pooling layers will disappear in future

* should be avoided in generative models (GAN, VAE)

e they can be replaced by conv-layers with larger stride
INn discriminative models
https://arxiv.org/abs/1412.6806

» (Geoffrey Hinton: “The pooling operation used in
convolutional neural networks is a big mistake and the
fact that it works so well is a disaster.” (Reddit AMA)
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https://arxiv.org/abs/1412.6806

Outline

 SGD vs deterministic gradient
« what makes learning to fall
e |layers:
e activation function (i.e. non-linearities)
e patch normalization layer
 max-pooling layer
e |oss-layers
* regularizations
e summary of the learning procedure
 train, test, val data,
* hyper-parameters,

TR Czech Technical University in Prague
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Loss functions
* Regression:
e | 2l0SS
e |.1loss
o Classification:
* cross entropy loss (N-output classifier f(x,w) )
e |ogistic loss (single output dichotomy classifier f(x, w) )

Z (%, w y’LHQ PyTorch: nn.MSELoss()
= Z f(x;, W) — yil PyTorch: nn.LlLoss ()

Ly (W) = Zz 0.5]|f(x;, w) _YiH%v if [f(xi, w) —yil <1.
smooth > |f(x;,w) —y;| + 0.5, otherwise.
PyTorch: nn.SmoothLlLoss()

RSTIR Czech Technical University in Prague 56
[ ]

Faculty of Electrical Engineering, Department of Cybernetics



| oss functions

* Regression:
e | 2l0SS
e |L1loss
o Classification:
* cross entropy loss (N-output classifier f(x,w) )
e |ogistic loss (single output dichotomy classifier f(x, w) )

(1) convert output to probability (softmax function)
i
exp X, W
s(f(x,w)) = 2: / Zexp(fk(x, w))
' k=1
N eXp(fN(Xv W)) _

(2) compute cross entropy torch.nn.CrossEntropyLoss

H(w) =Y ~logs,, (£(x;, w))

BT ¢ Czech Technical University in Prague
. 'T:
|

Faculty of Electrical Engineering, Department of Cybernetics o



| oss functions

* Regression:
e | 2l0SS
e |L1loss
o Classification:
* cross entropy loss (N-output classifier f(x,w) )
e |ogistic loss (single output dichotomy classifier f(x, w) )

PyTQrch; nn.BCEWithLogitsLoss ()

Derivative can be found here;
hitps://deepnotes.io/softmax-crossentropy

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics o
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| oss functions

Regression:
e | 2l0SS
L1 loss
Classification:
* cross entropy loss (N-output classifier f(x,w) )
e |logistic loss (single output dichotomy classifier f(x, w) )
e Kulback-Leibler loss

Lgr(w Z yi - log (yi — f(xi, w))

PyTorch: torch.nn.NLLLoss()

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics o



| oss functions

* Regression:
e | 2l0SS
e |L1loss
o Classification:
* cross entropy loss (N-output classifier f(x,w) )
e |logistic loss (single output dichotomy classifier f(x, w) )
 Kulback-Leibler loss
* Ranking:
e Ranking loss

, W) — f(%5,W)) + €}

|
=
Qo
o~
—~—
\’O
|
S
<
=~
ke

Lrank (W)

Pylorch: torch.nn.Margin RankingLoss ()

Czech Technical University in Prague

Faculty of Electrical Engineering, Department of Cybernetics 0
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Outline

 SGD vs deterministic gradient
« what makes learning to fall
e |layers:
e activation function (i.e. non-linearities)
e patch normalization layer
 max-pooling layer
e |oss-layers
e regularizations
e summary of the learning procedure
 train, test, val data,
* hyper-parameters,

TR Czech Technical University in Prague
| WS Faculty of Electrical Engineering, Department of Cybernetics



Regularization

2, L1 norms on weights (weight decay param. in SGD)
Batch norm Is regularization

Drop out Is regularization (it trains committee of experts)
Jittering of training data is regularization

ST Czech Technical University in Prague
Y Faculty of Electrical Engineering, Department of Cybernetics
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Outline

SGD vs deterministic gradient

what makes learning to fall

layers:

e activation function (i.e. non-linearities)
e patch normalization layer
 max-pooling layer

e |oss-layers
regularizations

summary of the learning procedure
e train, test, val data,

* hyper-parameters,

SRS Czech Technical University in Prague
| WS Faculty of Electrical Engineering, Department of Cybernetics
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Training procedure

 Choose:
 Weight initialization
 Network architecture (ideally re-use pre-trained net)
e |earning rate and other hyper-parameters.
* Loss + regularization
* Divide data on three represenatative subsets:
* Training data (the set on which the backprop is used to
estimate weights)
« Validation data (the set on which hyper-param are tuned)
» Testing data (the set on which the error is only observed)

RS Czech Technical University in Prague
Jy .’l T

Faculty of Electrical Engineering, Department of Cybernetics r



Hyper parameters tuning

* \Weight initialization (Xavier)

a8

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Hyper parameters tuning
* \Weight initialization (Xavier)
e Trn error is huge =>underfitting
» decrease regularization strength
* Increase model capacity

SR Czech Technical University in Prague
A\ Faculty of Electrical Engineering, Department of Cybernetics
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Hyper parameters tuning
* Weight initialization (Xavier)
e Trn error is huge =>underfitting
» decrease regularization strength
* Increase model capacity
* [rn error explodes to infinity=> huge learning rate
e decrease the learning rate

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Hyper parameters tuning
* \Weight initialization (Xavier)
e Irn error is huge =>underfitting
» decrease regularization strength
* Increase model capacity
* [rn error explodes to infinity=> huge learning rate
e decrease the learning rate
* [rn error is decreasing very slowly => small learning rate
* INncrease learning rate

RST8 Czech Technical University in Prague

/W] Faculty of Electrical Engineering, Department of Cybernetics |



‘g Czech Technical University in Prague
| TS Faculty of Electrical Engineering, Department of Cybernetics

Hyper parameters tuning

Weight initialization (Xavier)
Trn error is huge =>undertfitting

» decrease regularization strength

* Increase model capacity
Trn error explodes to infinity=> huge learning rate
e decrease the learning rate
rn error iIs decreasing very slowly => small learning rate
* INncrease learning rate
Tst error>>1rn error => overfitting

* Increase strength of regularization

e decrease model capacity

e [st data are too far from Trn data

(should come from the same distribution)

79



Hyper parameters tuning
* \Weight initialization (Xavier)
e Irn error is huge =>underfitting
» decrease regularization strength
* Increase model capacity
* [rn error explodes to infinity=> huge learning rate
e decrease the learning rate
* [rn error is decreasing very slowly => small learning rate
* INncrease learning rate
e [st error>>1Trn error => overfitting
* Increase strength of regularization
e decrease model capacity
» [st data are too far from Trn data
(should come from the same distribution)
* Trn error>>Tst error =>bad division on training/testing data

R Czech Technical University in Prague
;":2'\.(';'
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True Positive Rate
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ROC curve
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