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Linear classifier and neuron

| abels RGB images
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| Computational graph of linear classitier
def classify( E):

wl

# [ Inear classifier

X = vec( E ) :c/v@ /!
D=0 (WTX) w2 @_"_’

return P :Ez/v@
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Example |: given trained neuron, and input, what is output?

Wo = + 1
\
To = +1/@
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Example |: given trained classifier, and input, what is output?
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Relation to biological neuron

Dendrites

Axon
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Relation to biological neuron
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Modeling dynamic neuron behaviour

2 Membrane Potential
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Activation functions o(v)

10

Sigmoid | Leaky ReLU
_ 1 max(0.1z, z)

O-(x) l14+e—=

tanh Maxout

tanh(z) ) max(wi = + b1, w3 T + b)

RelLU ELU

max (0, x) K >0

-10 10 \O’,(el‘ - 1) r < O - e 10
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

@ ”:'1,ﬁ20'27 => max

_1 W1
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

@ v:—1>ﬁ:0.27 => max

_1 W1
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

@ v:—1>ﬁ:0.27 => max

Op  Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

®v——1 ﬁzO.Z? => max
Wo=+1 ®/_IV/'§U =0.2

/ 2=
Ty =+1 Local gradient:
- Op op _ do(v) _ | _
w1 — W1 1 w1 Ov O O-(U)( O-(U))

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p

Sigmoid Function Derivative of Sigmoid
1.00
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Local gradient:

Op Oo(v)
5 = g — o)1 —0o())
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

®v——1 ﬁzO.Z? => max
Wo=+1 ®/_IV/'§U =0.2

/ 2=
Ty =+1 Local gradient:
- Op op _ do(v) _ | _
w1 — W1 1 w1 Ov O O-(U)( O-(U))

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wl——1 + 77

Y1=-2
$1—/
V=- p:O.27 => max
ayl @ 8p

Wo—= +1 a__o 2
Ty =+1 Local gradient:
1 LT 901 oY1 01

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
wy=-1+ 77

01 B
du w3 =7
L1=+ i\:‘]‘ v=-1 p=0.27/ => max
(93/1 @ ap > _>
5 .

QUQZN® . —v:O 2
Ty =+1 Local gradient:

ap % _ a(w1$1) S
Wi = w1 A Owl 8w1 811]1

- " . h@_@p@vf)w
ain-rule in computational grap Ow;  Ov Oy Owy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
w1:-1

o1 _5

8w1
$1:/

p=0.2/ => max
(a(vD—

Ty =+1 Edge gradient:
op @ — Op Ov
w1 = Wy - Il 01 ov 0y

Op  Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p

w1=-1 ap -=0.4 9P _4x0.0-0.2
(9y1 B ayl

8101 ?/1—‘
371—/ @ — p2027 => Max
01?

QUQ:N® 7 1 8__0 2

Ty =+1 Edge gradient:
op @ — Op 9y

w1 = Wi - ow; Oy Ow;
Owl

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p

_1 9
wi=1 P _04 9P _1502-00
Y1

3—101 @ y1=—2

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p

’U}1:—1 ﬁ:o4

L=+ \@ v:—1>£20-27 => max

Wo=+1 @ /1'

$2:+1

w1 = Wi

Op  Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
w1=-0.6

@ Y1
T1=1 \ v p
H— C—

w2:+1 @ 2/7

Y

$2:+1

w1 — U I

Op  Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
w1=-0.6

L1=+ \ p
w2:+1 @ /1'

$2:+1

w1 = Wi

Op  Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
w1=-0.6

@ y1=-1.2
1= \CDU_ 0.2 _p=0.45

Wa=+1 @ /(wl)A

Yo=1 D
045 kN =
YA
w1 = W1 op >
LT dwl 1 -0.6 w1

op Op Ov Oy

Chain-rule in computational graph dw,  Ov Oyy Oy
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Example |I: given z1,z2,w1,w2, change weight wi to increase p
Wy =- O e

yl—-1 2

"31‘/ @U— 0. 2 p=0.45

Wo=+1 ®/
/

Lo = =+

Discussion:

e edge_gradient = upstream_gradient * local_gradient
e what is maximum P (bounds)? can | also update <17
e relation to learning (max p for positive samples)
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Computational graph of the learning- adding loss layer

Y1=-2
$1—/ v=-1 p=0.27

Wo= +1 6;1
/@

Lo = =+

MAP estimate actually says:
Positive sample => p should be huge => minimize — log(p)
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Computational graph of the learning from a positive sample
?Ul——1

Y1=-2
xl—/ v=1 _p=027 __ £=057

<:> »w‘ll!)—a{fjogQéZ)—a»
() "'1/'@4;1

Lo = =+

MAP estimate actually says:
Positive sample => p should be huge => minimize — log(p)
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Computational graph of the learning from a positive sample
w1 =-

/

Lo = =+

MAP estimate actually says:
Positive sample => p should be huge => minimize — log(p)
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Computational graph of the learning from a negative sample
wl——1

Y1=-2
:1;1_/ v=-1  p=0.27 £=0.13

Do @
Wo +1/V® 6;1

Lo = =+

MAP estimate actually says:
Negative sample => p should be small => minimize—log(1 — p)
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Computational graph of the learning from a positive sample
w1 =-

MAP estimate actually says:

\—_—

Negative sample => p should be srﬁall => minimize— 102;(11_ D)
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Computational graph of the learning- adding loss layer
wl——1

Y1=-2
51;1—/ v=- p=0.27
CD > @ (0D~
h H/v® 4;1

Lo = =+

MAP estimate actually says:

Positive sample => p should be huge => minimize —log(p)
Negative sample => p should be small => minimize—log(1 — p)

We will unity computational graph for both cases as follows.
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Computational graph of the learning from a positive sample
?Ul——1

Y1=-2
xl—/ v=1 _p=027 __ £=057

<:> »w‘lll}—afzjogQEZ)—a»
o H/VC’D 6;1

Lo = =+
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Computational graph of the learning from a negative sample
wl——1

Y1=-2
:1;1_/ v=-1  p=0.27 £=0.13

CD > @(0D—Tog(1 — P>
. H/.@ e

Lo = =+
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Computational graph of the learning

/

Lo = =+

y=+1 e

Computational graph for training on a positive sample
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Computational graph of the learning

Computational graph for training on a negative sample
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Computational graph of the learning

Tog=+
‘ning means:
Y=-1 teratively change all weights w to minimize £
oL(w)] ' oL [oL or
WEWSa e | W 5w T Gy awy
RO Czech Technical University in Prague
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Computational graph of the learning

T~

L inear function

Y1=-2

®

| To=+1
Y =-1
n’—j};

i
0

i f oo
V -« 4.__,,,

Czech Technical University in Prague
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Computational graph of the learning

T1=+ ™~ _ 7=} v=1 p=073 _ =013

DD — @D—~THD>—~

X9 = =+
Loss layer —log(o(yz))
Y=
S8 Czech Technical University in Prague
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Backprop in vector representation

£=0.13

O ooz >

$2:+1
Loss layer —log(o(yz))
Y =-1
S8 Czech Technical University in Prague
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Backprop in vector representation

L inear function

\® Y1=-2
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Backprop in vector representation

w1:-1

L inear function

£=0.13

—log(o(y2))

] 1l \ Y \ )
) R )
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Backprop in vector representation

vectorized
iINnputs

Y =
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Backprop in vector representation

oL

Ow
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Backprop in vector representation

9% 4y
OW oL
w=[-1 1] 5, X1

£=0.13

Z=-

~ _
WX — —log(o(yz))
/( >— g(o(y

X=[+2,+1]

3_£ B oL 0z
Y= ow 0z Ow
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Backprop in vector representation

9% 4y
OW oL
wW=[-1 1] 5, X1

~_ 1 £=0.13
X o ool D
X=[+2,+1]

G_E B oL 0z
Y=-1 ow 0z Ow

Learning from multiple training samples means summing up
the gradient over all samples

ng—iﬁé Czech Technical University in Prague
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Multiple neurons and layers

neuron o(w; X)
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Multiple neurons and layers

o(w, X
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Multiple neurons and layers

o(w, X
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Multiple neurons and layers

> (0(wy X) >
L9 — Y2
L3 Y3
“Co(wi XD ——
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Multiple neurons and layers

- G 3D —— (YD

NS

( {4 ~
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Multiple neurons and layers
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Multiple neurons and layers
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Multiple neurons and layers

* What is dimensionality of weights”

wéng Czech Technical University in Prague
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Learning of fully connected neural network

s A g D
L
(o(w3 ) Colvs @*@i@g(ﬂ(y@
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Learning of fully connected neural network

G @D
GoTD Y GoTD~ - Citeud
oD 4G

layer o(Wx)

¢ Fhar . . . .
e Czech Technical University in Prague
A% Faculty of Electrical Engineering, Department of Cybernetics o9



Learning of fully connected neural network

> Colix)D G— G lviy D0 2)—~Cloglo(y)

layer o(Wx)
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Learning of fully connected neural network

Z q £
> Co(iix) > Coliy) D1 9-Clog(o(ya))

layero(Vy)
Y
S8 Czech Technical University in Prague
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Learning of fully connected neural network

w = vec(W) v = vec(V)

W

NN N,
- G —— G D~ it
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Learning of fully connected neural network

Derivative wrt u ; 8_[’ —

ou

W

NN\,

- G —— G D~ Clnted
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Learning of fully connected neural network

Derivative wrt u : 95 _ 9L 94

ou Oq Ou

W

N LN

- D — G0l

061

Dimensionality of the gradient???
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Learning of fully connected neural network

Derivative wrt u : 8_[, — 0L 9q
ou 0Jq Ou
W v dq ulx4 I1x11x4

NN\ T

- D — G0l

061

Dimensionality of the gradient???
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Learning of fully connected neural network

0L 0L 0q 0z

Derivative wrtv ; ——
Ov  Oq 0z Ov

W

N\ a"\ N

G —— G- - ool

Oz dq

Dimensionality of the gradient???
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Learning of fully connected neural network

Derivative wrtv : 8—[’ 0L 0q Oz
ov  0q 0z Ov
W u 1x1 1x3 3x12

N\ 8"\ N

G —— G- - ool

Oz dq

Dimensionality of the gradient???
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Learning of fully connected neural network
oL 0L 0q 0z Oy

. Derivative wrtw : - — 9q 0z Oy Ow

— W

NN\,
D~ G- ool

8y 0z dq

Dimensionality of the gradient???
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Learning of fully connected neural network

Derivative wrtw : a—ﬁ — 0L 0q 9z Oy
"Ow  Oq 0z Oy Ow

(1x1)(1x3)(3x3)(3x12)

oL

SN NN
D~ D -

ﬁy 0z dq
3X3 1x3 1x1

Dimensionality of the gradient???

n@—i}; Czech Technical University in Prague
A'NPS Faculty of Electrical Engineering, Department of Cybernetics 65



Learning of fully connected neural network

1. Estimate all required local gradients
2. Update weights:

cap T
9L 0L u=u—al|2
(9_11_861(911 zau:_l_
OL 0L dq 0z vev_alf%
v 0q 0z 0v OV
0L  OL 8q 0z dy ral
Ow  0q 0z Oy Ow VT % ow

3. Optionally update learning rate «
4. Repeat until convergence
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Neural nets summary

 Neural net is a function created as concatenation of simplier
functions (e.g. neurons or layers of neurons)

* (Gradient optimization of the neural net is called
backpropagation

* Neural net frameworks has many predefined layers

* Spoiler alert: It does not work (on images) at all - why?

{T\ f?:;‘) D
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w* = arg min Z—log(p(yi|xi,W)) H (—logp(w))

W

1

loss function prior/regulariser

Class of function represented by a NN is too general.

Naive regulariser helps a bit, but dimensionality/wildness is
huge => curse-of-dimensionality, overfitting, ...

What is number of weights between two 1000-neuron layers?
Next lecture: study animal cortex to find a stronger prior on
the class of suitable functions.

Spoiler alert 2:

reduce very general class of functions "neuron layer” to very
specific sub-class of functions “convolution layer”
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