Learning for vision II Neural networks

Karel Zimmermann

http://cmp.felk.cvut.cz/~zimmerk/

Vision for Robotics and Autonomous Systems https://cyber.felk.cvut.cz/vras/

Center for Machine Perception https://cmp.felk.cvut.cz

Department for Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Linear classifier and neuron

Labels

RGB images

Linear classifier

$$\mathbf{x} = \text{vec}($$

$$p = \sigma \left(\mathbf{w}^{\top} \mathbf{x} \right)$$

return P

Computational graph of linear classifier

Example I: given trained neuron, and input, what is output?

Example I: given trained classifier, and input, what is output?

Relation to biological neuron

Relation to biological neuron

Relation to biological neuron

Modeling dynamic neuron behaviour

http://jackterwilliger.com/biological-neural-networks-part-i-spiking-neurons/

Activation functions $\sigma(v)$

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Local gradient:

$$\frac{\partial p}{\partial v} = \frac{\partial \sigma(v)}{\partial v} = \sigma(v)(1 - \sigma(v))$$

Local gradient:

$$\frac{\partial p}{\partial v} = \frac{\partial \sigma(v)}{\partial v} = \sigma(v)(1 - \sigma(v))$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Local gradient:

$$\frac{\partial p}{\partial v} = \frac{\partial \sigma(v)}{\partial v} = \sigma(v)(1 - \sigma(v))$$

$$x_2 = +1$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Local gradient:

$$\frac{\partial v}{\partial y_1} = \frac{\partial (y_1 + y_2)}{\partial y_1} = 1$$

$$x_2 = +1$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Local gradient:

$$\frac{\partial y_1}{\partial w_1} = \frac{\partial (w_1 x_1)}{\partial w_1} = x_1$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Edge gradient:

$$\frac{\partial p}{\partial y_1} = \frac{\partial p}{\partial v} \frac{\partial v}{\partial y_1}$$

$$x_2 = +1$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Edge gradient:

$$\frac{\partial p}{\partial w_1} = \frac{\partial p}{\partial y_1} \frac{\partial y_1}{\partial w_1}$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

$$w_1 = w_1 + \frac{\partial p}{\partial w_1}$$

Chain-rule in computational graph

$$\frac{\partial p}{\partial w_1} = \frac{\partial p}{\partial v} \frac{\partial v}{\partial y_1} \frac{\partial y_1}{\partial w_1}$$

Discussion:

- edge_gradient = upstream_gradient * local_gradient
- what is maximum p (bounds)? can I also update x_1 ?
- relation to learning (max p for positive samples)

Computational graph of the learning- adding loss layer

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Computational graph of the learning from a positive sample

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Computational graph of the learning from a positive sample

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Computational graph of the learning from a negative sample

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Negative sample => p should be small => minimize $-\log(1-p)$

Computational graph of the learning from a positive sample

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Negative sample => p should be small => minimize $-\log(1-p)$

Computational graph of the learning- adding loss layer

MAP estimate actually says:

Positive sample => p should be huge => minimize $-\log(p)$

Negative sample => p should be small => minimize $-\log(1-p)$

We will unify computational graph for both cases as follows.

Computational graph of the learning from a positive sample

Computational graph of the learning from a negative sample

Computational graph of the learning

Computational graph for training on a positive sample

Computational graph of the learning

Computational graph for training on a negative sample

Computational graph of the learning

y=-1 Iteratively change all weights \mathbf{w} to minimize \mathcal{L}

$$\mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} \right]^{\top}$$
 where $\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \left[\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \dots \right]$

Computational graph of the learning

Computational graph of the learning

Learning from multiple training samples means summing up the gradient over all samples

• What is dimensionality of weights?

$$\mathbf{w} = \operatorname{vec}(V)$$
 $\mathbf{v} = \operatorname{vec}(V)$

Derivative wrt
$$\mathbf{u}$$
 : $\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = ?$

Derivative wrt
$$\mathbf{u}$$
: $\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{u}}$

Dimensionality of the gradient???

Derivative wrtw:
$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}}$$

Dimensionality of the gradient???

- 1. Estimate all required local gradients
- 2. Update weights:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{u}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{u}} \qquad \mathbf{u} = \mathbf{u} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{u}} \right]^{\top}
\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{v}} \qquad \mathbf{v} = \mathbf{v} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{v}} \right]^{\top}
\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = \frac{\partial \mathcal{L}}{\partial q} \frac{\partial q}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{w}} \qquad \mathbf{w} = \mathbf{w} - \alpha \left[\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \right]^{\top}$$

- 3. Optionally update learning rate α
- 4. Repeat until convergence

Neural nets summary

- Neural net is a function created as concatenation of simplier functions (e.g. neurons or layers of neurons)
- Gradient optimization of the neural net is called backpropagation
- Neural net frameworks has many predefined layers
- Spoiler alert: It does not work (on images) at all why?

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \left(\sum_{i} -\log(p(y_i|\mathbf{x}_i, \mathbf{w})) \right) + (-\log p(\mathbf{w}))$$

loss function

prior/regulariser

- Class of function represented by a NN is too general.
- Naive regulariser helps a bit, but dimensionality/wildness is huge => curse-of-dimensionality, overfitting,...
- What is number of weights between two 1000-neuron layers?
 - **Next lecture:** study animal cortex to find a stronger prior on the class of suitable functions.
- Spoiler alert 2:

reduce very general class of functions "neuron layer" to very specific sub-class of functions "convolution layer"

