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Pre-requisites: linear algebra, Bayes rule
MAP/ML estimation, prior and overtitting
_inear regression

_inear classification
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

.
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motion ¥
| ~robot  —p
enginetorque x @ @
terrain
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Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion Y 4 X 2
| robot  —p i
enginetorque x @ @
terrain
D= {x1,y1---XN, YN}
| L,(;,/,gi Czech Technical University in Prague
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion ¥ J "

| - robot = (
enginetorque x @ @
terrain X

« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x{,y1...XN,YN |
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion Y g X X
| - robot  —p (
enginetorque x @ @ ) >
terrain
w

« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x{,y1...XN,YN |
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion Y Y @
enginetorque x @ @
terrain X

« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x{,y1...XN,YN |
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e Fast summary of Maximum A-Posteriori estimation of
parameters of a probability distribution
* Motivation example: estimation of a motion model

motion ¥ J "

| - robot = (
enginetorque x @ @
terrain X

« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x{,y1...XN,YN |
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« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

) p(D|w)p(w)
w" = arg max p(w|D) = arg max
W W p(D)
SR Czech Technical University in Prague
A\ Faculty of Electrical Engineering, Department of Cybernetics 9
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« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

X

p(D|w)p(w)
w' = argmax p(w|D) = arg max
ax p(w|D) )

= arg mvexp(D\w)p(w) = arg mvgxp(xl, Y1 ... XN, YN |W)p(W)

5?3 Czech Technical University in Prague
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« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

X

p(D|w)p(w)
w' = argmax p(w|D) = arg max
i) w p(D)

= arg mvexp(D\w)p(w) = arg mvgxp(xl, Y1 ... XN, YN |W)p(W)

.1.d.
= arg max (H p(x;, in)) p(w)

W .
1

*@{}‘3 Czech Technical University in Prague
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w" = argmax p(w|D) = arg max

« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

p(D|w)p(w)
W W p(D)

X

= arg mvgxp(D\w)p(w) = arg mvexp(xl, Y1 ... XN, YN |W)p(W)

HP(Xi, yzW)) p(w)

1

= arg max (H p(Yil X, W)P(Xi)) p(w)

1

= arg max
W

v;ff”g Czech Technical University in Prague
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« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

) p(D|w)p(w)
w' = argmax p(w|D) = arg max
= arg maxp(D\w = arg maxp(x1 Y1 ... XN, YN |W)p(W)

— angmax prz,y@w)m

(

= argmax (Hp Yi|Xi, W p(Xi)) p(w)

1

= arg max (Z log(p(yi|xi, w)) + logp(xz-)> + log p(w)

RSTRS Czech Technical University in Prague
A% Faculty of Electrical Engineering, Department of Cybernetics 13



« We search for parameters w of motion model p(y|x, w)
given i.i.d. measurements D = {x1,y1 ... XN, YN }

= argmax Z log(p(y;|xi, w)) log p(w)

= argmin Z —log(p(yi|xi, w)) ||+ (—logp(w))

log likelihood prior/regulariser

Czech Technical University in Prague
S Faculty of Electrical Engineering, Department of Cybernetics 14
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

— log(p(yi|xi, w))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 ‘0'9\_:'_
J?ﬁ Czech Technical University in Prague ( . ‘X' W)
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w* = argmin|( Y —log(p(yilxi,w)) ||+ (—logp(w))
A4 .
1
log likelihood prior/regulariser
Y1 X
X
(
p(y[x, w)
! Lﬁ?ﬁg Czech Technical University in Prague
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= arg min Z—log(p(dei»W)) +

W

1

log likelihood

p(y\x, W)

Czech Technical University in Prague

(—log p(w))

prior/regulariser
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w* = arg min Z—log(p(inXuW)) + (—log p(w))

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)

) Lg;dés Czech Technical University in Prague
AN Faculty of Electrical Engineering, Department of Cybernetics 18



w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)

“.‘x, I | ~ .
."']- .......... pee”
, | |
Czech Technical University in Prague
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w* = arg min Z—log(p(inXuW)) + (—log p(w))

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)

) Lg;dés Czech Technical University in Prague
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)
* Probabillity of observing ¥; when measuring x; IS

1 ( (f (x4, W) — yi)2>

p(yi‘Xf,;,W) — Voro?2 exXp 202

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 21
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w = argmin| 3 — log(p(yilx;, W)

W

log likelihood prior/regulariser

1 ( (f (x4, W) — yi)2>

p(yi‘Xf,;,W) — Voro?2 exXp 202

e | et us substitute it into the loss
function (ignore prior for now)

Czech Technical University in Prague
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wh = argmin|( 37~ log(p(yi i, w)

1

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)
* Probabillity of observing ¥; when measuring x; IS

p(yi|xi, W) = : eXp( (f(Xi’W)_yiP)

V2102 202
* which yields well known L2 loss

= arg mm Z (xi, W yz)

 Especially f(x, w)=w'X

—';« vm

f‘s Czech Technical University in Prague
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w = argmin|( 3 — log(p(y:lxi, W)

W

1

log likelihood prior/regulariser

Regression: p(y|x, w) ~ N, (f(x,w),0°)
* Probabillity of observing ¥; when measuring x; IS

P(yi|xi, W) = \/2202 eXp ( (f(Xij;Na)Q_ yi)2>

* which yields well known L2 loss

= arg mm Z (xi, W yz)

T—

* Especially f(x W) =W
vields closed-form solution

§ f ‘3 Czech Technical University in Prague
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Other examples discussed during the course

3D pose regression

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Other examples discussed during the course

3D pose regression

Czech Technical University in Prague
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Other examples discussed during the course

Camera calibration
y AN

2D point
on camera image plane

| >
| X
|

3D point (e.g. lidar measurement)
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Other examples discussed during the course

Two-class object classification from RGB images

gyr
alrplane
car
;; L{ﬁ? Czech Technical University in Prague
@?@ Faculty of Electrical Engineering, Department of Cybernetics 28



Other examples discussed during the course

Two-class object classification from RGB images

Y1 |
airplane [~ e
car g X
| X

|

’%ﬁﬁ Czech Technical University in Prague
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Other examples discussed during the course

Two-class object classification from RGB images

Y1 |
airplane [~ g
car & >
| X

|
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Other examples discussed during the course

Reactive control
y N\

left/right steering -|- - - - - - - -

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Other examples discussed during the course

Generative networks

winter image

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

summer image
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Other examples discussed during the course

o “Xx" and/or “y” could be high-dimensional

* Assuming Gaussian noise is in many cases myopic
* Pose regression left/right hand is often indistinguishable
* Right/left avoiding of an obstacle should be replaced by
a mean (center).
* Coloring of grayscale images is also obviously not
gaussian

e Linear function is obviously insufficient in many cases =>
more complex models needed.

i e Czech Technical University in Prague
) ’;\T_'_:
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w* = arg min|( S — log(p(yi[x:, w))

W

1

log likelihood prior/regulariser
* Prior is important:

no prior, powerful f => overtfitting

A “Il.. .
y :0 ",.x f(Xz, W)
N
*
L 4
‘0
.‘X..... X. ’0“
O.. “0
L 4
L
e S

l'l ..h?’b ) % L [ [ [l
e Czech Technical University in Prague
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w* = arg min|( S — log(p(yi[x:, w))

W

1

log likelihood prior/regulariser
* Prior is important:

no prior, simple f => undertitting

.w"“\f (Xia W)
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w* = arg min Z—log(p(inXuW)) + (—log p(w))

o log likelihood prior/regulariser
* Prior is important:
good prior
Y1 9 f(xi, w)
X L aanserert
. X
0“ >
X
%{ﬁ 3 Czech Technical University in Prague
| RTST Faculty of Electrical Engineering, Department of Cybernetics 36



w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

log likelihood prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.q. for the class of linear functions the probability of
non-zero weight for higher degrees monomials is zero)

s Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics 37
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w* = argmin|{ » —log(p(yi|xi, w)) ||+ (~log p(w))

W :
(

S loss function prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.q. for the class of linear functions the probability of
non-zero weight for higher degrees monomials is zero)

» Gaussian prior p(w) ~ N (0, Al) yields L2 regularization
(it adds eye matrix to least squares)

PG

A\ =
LA \.\' \ov]
2y

P, -

:il—‘v',;»-s_- =

Czech Technical University in Prague
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*

w* = argmin|{ » —log(p(yi|xi, w)) ||+ (~log p(w))

W :
(

S loss function prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.g. probability of non-zero weight for higher degrees
monomials is zero)

* Gaussian prior p(w) ~ N (0, \I) yields L2 regularization
(it adds eye matrix to least squares)

* Regression with L1 regularization is known as Lasso

xg‘f-‘“g Czech Technical University in Prague

NS Faculty of Electrical Engineering, Department of Cybernetics 39



w* = argmin|{ » —log(p(yi|xi, w)) ||+ (~log p(w))

W

1

S loss function prior/regulariser
* Prior is important:

* Any prior knowledge restricts class of functions f(x;, w)
(e.g. probability of non-zero weight for higher degrees
monomials is zero)

* Gaussian prior p(w) ~ N (0, \I) yields L2 regularization
(it adds eye matrix to least squares)

* Regression with L1 regularization is known as Lasso

* Well chosen prior partially reduces overfitting

 Occam’s Razor

TR Czech Technical University in Prague
| BrST Faculty of Electrical Engineering, Department of Cybernetics 40



w* = argmin|{ » —log(p(yi|xi, w)) ||+ (~log p(w))

W

1

loss function prior/regulariser

William of Ockham

(1287-1347) involved in any explanation
https://en.wiki la.org/wiki M%27/s_razor
*@ﬁ}% Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W :
(

loss function prior/regulariser

It is very important to avoid any “not-well justified
leprechauns” in the model, otherwise any learning
(parameter estimations) may suffer from too complex

explanations => overfitting

S Czech Technical University in Prague
Y Faculty of Electrical Engineering, Department of Cybernetics



w* = arg min Z—log(p(yi\XuW)) + (—log p(w))

loss function prior/regulariser

* |tis very important to avoid any “not-well justified
leprechauns” in the model, otherwise any learning
(parameter estimations) may suffer from too complex
explanations => overfitting
* Consequently we study different phenomenas
e animal cortex structure (for ConvNets)
 geometry of rigid motion (for robot/scene motion or DKT)
e projective transtormation of pinhole cameras

to create as simple (i.e.leprechauns-free) model as possible

i e Czech Technical University in Prague
) ’;\T_'_:
N 2
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Recognition problem

airplane f__{.-%\ V..=&i
automobile EEHE‘E‘
bird a:. ﬂ. ' .-
B .‘E..-l.b >
deer 1% .-R.gﬁng.
v EEeISOEE
- EEENEDDEEE
horse .m”.!'m
e R e I -
truck J.h'in
Why is it hard?

CIFAR-10: classity 32x32 RGB images into 10 categories
https://www.cs.toronto.edu/~kriz/citar.ntmi

?ﬁ Czech Technical University in Prague
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Recognition problem

Why it is hard” Huge within-class variability !

* Viewpoint
e (Occlusion
e |[lumination
e Pose

e [ype

o Context

Timofte, Zimmermann, van Gool, I\/Iultlvevv traffic- -sign
detection, recognition and 3D localisation, MVA, 2014
https://link.springer.com/content/pdf/10.1007/
s0Q0138-011-0391-3.pdf

= ?ﬁ Czech Technical University in Prague
| ®ies] Faculty of Electrical Engineering, Department of Cybernetics
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https://link.springer.com/content/pdf/10.1007/s00138-011-0391-3.pdf

Recognition problem
Why it is hard”? Huge within-class variability !

Viewpoint
Occlusion
lllumination
Pose

Type
Context

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Recognition problem

n-class variability !

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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Recognition problem
Why it is hard”? Huge among-class similarity!

* Viewpoint
e (Occlusion
e |[lumination
e Pose

e [ype

o Context

Timofte, Zimmermann, van Gool, Multivew traffic-sign
detection, recognition and 3D localisation, MVA, 2014
https://link.springer.com/content/pdf/10.1007/
%QO138 -011-0391-3.pdf

Czech Technical University in Prague
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Recognition problem

airplane n‘.‘---% V...a.&!

o SHERENERES
bird |

pe IIMIIIIIGE
ceer P NS N ERRES
S | [l o WA
vog I M K L S
orse il I 8 63 ) 18 B 1 S T
wip  EEgs B RS -
weck o R e 0 1P 5 o O 8

CIFAR-10: classity 32x32 RGB images into 10 categories

https://www.cs.toronto.edu/~kriz/cifar.htmli

%??ﬁ Czech Technical University in Prague
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Labels (Yi) RGB images (x;)

T L |- |
swonorre (A S B

Two-class recognition problem: classity airplane/automobile

def Classify(E):

70"
returQ 0
Probability of image being from the class airplane
How to model it”
%%ﬁ Czech Technical University in Prague
/ S ] Faculty of Electrical Engineering, Department of Cybernetics 50



Labels (Yi) RGB images (x;)

o e - I B
- GRS 0 N e ] e

~ Classification
We model probability of image x being label +1 or -1 as

_ O-(f(Xa W)) Yy — +1
plube) = {1 —o(f(x,w)) y=-1

%??ﬁ Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 51



Labels (Yi) RGB images (x;)

o e - I B
- GRS 0 N e ] e

~ Classification
We model probability of image x being label +1 or -1 as

_ o(f(x,w)) y = +1
plylx, w) = {1 —o(f(x,w)) y=-—1

1.2
where .
o (f(x, W) = 1 v

| 1 4+ exp(—f(x,w)) 0.6 7
0.4 /
'S sigmoid function. 02
9 cT

?ﬁ Czech Technical University in Prague  ~ © g7 i
' Faculty of Electrical Engineering, Department of Cybernetics f (X, W) 52



Labels (Yi) RGB images (x;)

o e - I B
- GRS 0 N e ] e

~ Classification
We model probability of image x being label +1 or -1 as

_ O-(f(Xa W)) Yy — +1
plube) = {1 —o(f(x,w)) y=-1

%??ﬁ Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 53



Labels (Yi) RGB images (x;)

+1

= S o [ B

- Gl s 0 N e ] e

~ Classification
We model probability of image x being label +1 or -1 as
p(y\X W) . O-(f(Xv W)) Y = +1 A e
y T +1
1 —o(f(x,w)) y=-1 =
B >
X
%}{?ﬁ Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics o4



Labels (Yi) RGB images (x;)

+1

= S o [ B

- Gl s 0 N e ] e

~ Classification
We model probability of image x being label +1 or -1 as
p(y\X W) . O-(f(Xv W)) Y = +1 I e
y T +1
1 —o(f(x,w)) y=-1 R R
B >
X
%}{?ﬁ Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 95



Labels (¥:) RGB images (x;)

SR | e |- | e
| CHECENeESS

~ Classification
We model probability of image x being label +1 or -1 as

o(f(x,w — 41 Y1 ;
p(yx,w){ (f(x,w)) Y=+ Lot

l—o(f(x,w)) y=—-1 "o

Linear classitier model probabilityTof
being from class +1as p =0 (W X)

What is dimensionality of x and w?

?ﬁ Czech Technical University in Prague
/ ) Faculty of Electrical Engineering, Department of Cybernetics 56



Labels (Yi) RGB images (x;)

o e - I B
- GRS 0 N e ] e

Classification
Example: Linear classifier

def Classify(E): w! Ikl = 25
# Linear c/ass/f/ef/'
x = vec( E )

D=0 (WTE)

retfurn P

%‘?ﬁ Czech Technical University in Prague
Y Faculty of Electrical Engineering, Department of Cybernetics 57



Labels (Yi) RGB images (x;)

o e - I B
- GRS 0 N e ] e

Classification
Example: Linear classifier

deft Classify(E): w' x| = 2.5

# Linear c/assiﬁV 1.2
X = vec( E ) 1.0 e
T 0.8 :
p=0 (W i) 0.6 :
0.4
return P 0.2 //
['[]_-‘—" .
-5 -J -1 1 3 5
%?ﬁ Czech Technical University in Prague
T o] Faculty of Electrical Engineering, Department of Cybernetics 58



Labels (Yi) RGB images (x;)

o R o [
- GRS 0 N e ] e

Classification
Example: Linear classifier

deft Classify(E): w' x| = 2.5

# [ Inear classifier

1.2
x = vec( E ) [ — .
= 0.3
p=0 (W X) 0.6
0.4
return P = 0'(2-5) = 0.92 0.2
. . Ve S ;
s it a good classifier?""' s~ 5 4 1 3 s
%%?5 Czech Technical University in Prague
N 5] Faculty of Electrical Engineering, Department of Cybernetics 59



Labels (Yi) RGB images (x;)

o e - I B
- G 0 N e ] e

Training
Training = search for unknown parameters w

which fits a given data

def train - .%H..

1 -1 —1 ):

feds

return w*

%?ﬁ Czech Technical University in Prague
A ] Faculty of Electrical Engineering, Department of Cybernetics 60



Labels (Yi) RGB images (x;)

o e - I B
- G 0 N e ] e

Training
Training = search for unknown parameters w

which fits a given data

Training data
o v PRI
-1 -1 —1) |
(e
return w™
%}%ﬁﬁ Czech Technical University in Prague
A ) Faculty of Electrical Engineering, Department of Cybernetics 61



Labels (Yi) RGB images (x;)

o e - I B
- G 0 N e ] e

Training
Training = search for unknown parameters w

which fits a given data

Training data

o(f(x,w)) y = +1 ?
pylx, w) = S
L=olflew) y==1 s xx <
—1 X XX X
X
J’? Czech Technical University in Prague

T ST Faculty of Electrical Engineering, Department of Cybernetics 62



Labels (Yi) RGB images (x;)

o e - I B
- G 0 N e ] e

Training
Training = search for unknown parameters w

which fits a given data

_ Jo(f(x,w)) y =+1
plubew) = {1 —o(fow)) y=-1

J?ﬁ Czech Technical University in Prague
A ) Faculty of Electrical Engineering, Department of Cybernetics 63



w' = argmin (Z ~ log(p(yifx: w>>) -

1

loss function prior/regulariser
) _ O-(f(Xa W)) Y = +1
1 _O(f(X7W)) y=—1

. Classification: p(y|x,w

j’%ﬁg/’? Czech Technical University in Prague
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w' = argmin (Z ~ log(p(yifx: w>>) '

1

loss function prior/regulariser
) _ O-(f(Xa W)) Y = +1
1 _O(f(X7W)) y=—1

* Probability of observing ¥; when measuring x; IS

. Classification: p(y|x,w

e Czech Technical University in Prague
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wh = argmin|( 37~ log(p(yi i, w)

loss function prior/regulariser
) _ O-(f(Xa W)) y=+1
1 —O'(f(X,W)) y=—1

* Probability of observing ¥; when measuring x; IS

. Classification: p(y|x,w

e how to find distribution which maximize +1
probability of training data? 1

BsIR Czech Technical University in Prague
‘v:)%’ UA:'{ o
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Logistic loss vs cross entropy |0ss

w* = arg min (Z ~ log(p(yifxi, w))

W

1

-1
| -

—log (p(yi|xi, W)) =

{ log (o(f(xs,w))) Yi
—log (1 —o(f(xi,w))) wi

Logis_tic lOSS
log [1 + exp(—y; f(xi, W))]

Cross—eﬁtropy l0SS

—| §i -log (o (i f(xi,w))) + (1 — ;) -log (1 — o (ys f(xi,W))) |

_ oyt
SR Czech Technical University in Prague
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w' = argmin (Z ~ log(p(yilx: w>>) -

s function prior/regulariser
o(f(x,w)) y = +1
1 —O'(f(X,W)) y=—1

- Classification: #(y|x, W) = {

yr |
® hOW tO f|nd d|Str|bbt|On Wh|Ch maximize _|_1. .......... )- .........................................
prObab|||ty Of tralnl qg data? _1'>'x>- ...........
* substitution yields logistic loss A

W' = arg m“i,n Z log [1 + exp(—y; f(xi, W))]

P // : . L
R Czech Technical University in Prague
A Faculty of Electrical Engineering, Department of Cybernetics 68



Labels (Yi) RGB images (x;)

o e R o [
- ENEEE R -

Training
Example: Training Imear classifier

def train - .%H.-

-1 -1 -1

x; = vec( ) Vi

return w*

/ =) Czech Technical University in Prague
/
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Labels (Yi) RGB images (x;)

o e R o [
- G 0 N e ] e

Training
Example: Training Imear classifier

def train - .%H..

-1 -1 -1

x; = vec( )V

. T —
w' = arg min E log |1+ exp(—y; W' X;)]
wW
)
return w*
%?%8 Czech Technical University in Prague
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Labels (Yi) RGB images (x;)

o e R o [
- G 0 N e ] e

Training
Example: Training Imear classifier

—2.5
oo v [ E P R D
-1 -1 -1 )
X; = vec( ) Vi Small w'x;
: while y; = —1
w* = arg min Z log [1 =+ exp(—yi} Yi
i )
return w*
%?%8 Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics /1



Labels (Yi) RGB images (x;)

o e R o [
- G 0 N e ] e

Training
Example: Training linear classitier

def train -.%H.. ~(=1) x (=29)

-1 -1 -1

x; = vec( )V

W' = arg min Z log [1 + exp

return w*
%?%8 Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 2



Labels (¥i) RGB images (x;)
-1 EEHIIEHHII6

Training
Example: Training linear classitier

def train . .%H'.

-1 -1 -1

x; = vec( )V

w™ = argmin Y (log [1 + exp(—

W

T__
Y; W Xy

return w*

Czech Technical University in Prague

%?
NiE

Faculty of Electrical Engineering, Department of Cybernetics

0.03

Small loss for

for smallw ' x;

while y; =

—1
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Labels (Yi) RGB images (x;)

o e R o [
- G 0 N e ] e

Training
Example: Training linear classitier

2.5
o v I P R
-1 -1 -1 )
x; = vec( ) Vi Large w ' X;
: while y; = —1
w* = arg min Z log [1 =+ exp(—yi} Yi
i ()
return w*
%?%8 Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 74



Labels (Yi) RGB images (x;)

o e R o [
- G 0 N e ] e

Training
Example: Training linear classitier

def train -.%H
—1
x; = vec(

) Vi
W' = arg min Z log [1 + exp

—(—1) x 2.
A (—1) x 2.5

—1

return w*
%?%8 Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 75



Labels (Yi) RGB images (x;)

o e - I B
- G 0 N e ] e

Training
Example: Training linear classitier

def train ..%H'. 1.12
-1 -1 -1 ):
x; = vec(

w™ = argmin Y (log [1 + exp(—

W

Huge loss

for large w ' X;

} while y; = —1

) Vi

T__
Y; W Xy

return w*
%}%ﬁﬁ Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 76



W

*

= arg min Z log -+ eXP( Yi W X’L)}

W

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics
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-::_—___\_-__ —

)&

w™ = arg min Z log [1 + exp(—y; WTE)]

W

L(w)

e There is no closed-form solution

* Gradient optimization
- 94 T
0L (W 0L (W
W =W — (W) where ( ): 2
OwW OwW
i:,?s Czech Technical University in Prague
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w* = arg min Z log [1 + exp(—y; WTE)]
W
1
L(w)
* There is no closed-form solution
* (GGradient optimization
- 1T < |
OL(w) N L(w) —YiX;
W=W— where — Z —
- Ow ow —~ 1+ exp(y;w ' X;)
;@f:f?g Czech Technical University in Prague
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*

W

W :argminZlog +€XP( Yi W XZ)}

L(w)

e There Is no closed-form solution
Gradient optimization

W — W —

Learned weights
as a template:

O0L(w) TWhere OL(W) _ Z

Ow Ow

automobile

Czech Technical University in Prague

—Y; X T

1+ exp(yz-w

=0),
/%?%g Faculty of Electrical Engineering, Department of Cybernetics
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W

w* = argmin (Z — log(p(yq:IXuW))) + (= logp(w))

1

loss function prior/regulariser
o(f(x,w)) y = +1
1 —O'(f(X,W)) y=—1

- Classification: p(y|x, w) = {

e Choice of f(x,w) is crucial

@gﬂi‘g Czech Technical University in Prague
A\ Faculty of Electrical Engineering, Department of Cybernetics



w* = arg m“ifn Z —log(p(y;|xi, w)) ||+ (—logp(w))
loss function prior/regulariser
o(f(x,w)) y = +1

. Classification: p(y|x, w) =

L —o(f(x,w))

-
y -

 Linear f(x,w) cannot generate wild decision boundary

1D example: s

Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics

Yy
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w* = argmin|( » —log(p(yi|xi, w)) ||+ (~logp(w))

W

1

loss function prior/regulariser

o( (X, W = +1

» Classification: p(y|x, W) = (W) T
1_U(f(X7W)) y——1

 Linear f(x,w) cannot generate wild decision boundary

A o 5 1 y X

oXe)
o _O X

y o

2D example: x 0 . X
S >
XOR circle
*?{?3 Czech Technical University in Prague
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w* = arg min Z—log(p(yi\XuW)) + (—log p(w))

loss function prior/regulariser

o( (X, W = +1

» Classification: p(y|x, W) = (W) T
1_U(f(X7W)) y——1

« Wild f(x,w)with high-dimensional W
suffers from the curse of dimensionality and overtfitting

OO0 X0 X X

1D case

RSTR Czech Technical University in Prague
J T, Tc

/RS Faculty of Electrical Engineering, Department of Cybernetics



w* = arg min Z—log(p(yi\XuW)) + (—log p(w))

loss function prior/regulariser

o( (X, W = +1

» Classification: p(y|x, W) = (W) T
1_U(f(X7W)) y——1

« Wild f(x,w)with high-dimensional W
suffers from the curse of dimensionality and overtfitting

o)
o)
X X X
OO X0 X X o)
> >
1D case 2D case
/ 1;33 Czech Technical University in Prague

/RS Faculty of Electrical Engineering, Department of Cybernetics



w* = arg min Z—log(p(yi\XuW)) + (—log p(w))

loss function prior/regulariser

o( (X, W = +1

» Classification: p(y|x, W) = (W) T
1_U(f(X7W)) y——1

« Wild f(x,w)with high-dimensional W
suffers from the curse of dimensionality and overtfitting

o
o
X x 777
oXo) XO X X o)
> >
1D case 2D case CIFAR case
*’é%{}% Czech Technical University in Prague

/RS Faculty of Electrical Engineering, Department of Cybernetics 86



W

w* = argmin (Z — log(p(yixi,W))) + (= logp(w))

1

loss function prior/regulariser
- {J(f(X,W)) y — +1
1 —o(fx,w)) y=-1

« Wild f(x,w)with high-dimensional W
suffers from the curse of dimensionality and overtfitting
» We exploit prior p(w) to restrict the wildness of f(x,w)

. Classification: p(y|x,w

e | 2reqgulariser p(w) =Ny (0,0%) = |w]3
|1 regulariser, L1+L2 regulariser (elastic net)
* prior on f(x,w) structure (e.g. consists of convolutions)

e patch normalization

S Czech Technical University in Prague
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Multi-class classification problem

wh = argmin  37|- log(p(yifxi, w)

A/Logistic loss

log [1 + exp(—y; f(xi, W))]

/ L,Mgi Czech Technical University in Prague
w/f& &) Faculty of Electrical Engineering, Department of Cybernetics
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Multi-class classification problem

w* = argmin (Z ~ log(p(yilxi, w))
Logistic loss
log [1 +fexp(—y; f(xi, w))]
Cross-entropy loss
—| i -log (o(yi f(xi,w))) + (1 = 5i) - log (1 — oy f(xi, W))) |
i +1
;=2 LS {0,1}
2
éL «?3 Czech Technical University in Prague
NS Faculty of Electrical Engineering, Department of Cybernetics
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Multi-class classification problem

w* = arg min (Z ~ log(p(yifxi, w))

W

Logistic loss
log [1 + pxp(—y; f(xi, w))]

Cro S—entropy l0SS

_ o(f(xi,w))
- o(fxiw) |,

éL «?3 Czech Technical University in Prague
NS Faculty of Electrical Engineering, Department of Cybernetics
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Multi-class classification problem

wh = argmin  37|= log(p(yifxi, w)

-

" o (f(x, W)) ] Two-class
—log| o(f(x;,w)) | classification
- S problem
o
| p2 For k-class
—108 | . classification
], problem

e Czech Technical University in Prague
S Faculty of Electrical Engineering, Department of Cybernetics 91
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Labels (Yi) RGB images (x;)

o RS - [N
. ENEEENEE-=S
o Emal NED ¥ ERW

Three-class recognition problem:

%ﬁ%é Czech Technical University in Prague
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Labels (Yi) RGB images (x;)

L R - R
. ENEEENEE-=S
o Emal NED ¥ ERW

Three-class recognition problem:

def Classify(E):

(e
return P
%?%%é Czech Technical University in Prague
A & Faculty of Electrical Engineering, Department of Cybernetics 93



Labels (Yi) RGB images (x;)

. EEEY . EEEZ
. CEETEN«ESS
 Eml WSS Y e

Model probabillity distribution over classes by softmax function

i exp(f(x, w1)) ]
p(ylx,W) = | exp(f(x,w2)) | / Zexp x, wi) = s(f(x,W))
i GXp(f(X,Wg)) _
%?%8 Czech Technical University in Prague
Faculty of Electrical Engineering, Department of Cybernetics 94



Labels (Yi) RGB images (x;)

z Eaiuagnl-s
- Sl NS

Three-class recognition problem: ] )
—2
def Classify(E): W < = | +1
# Linear classifier |~ | 0
X_VeC(E) 2 ©0.03
p =s(WX) S +1 = | 0.71
0 0.26
return p - - - -
%}%ﬁﬁ Czech Technical University in Prague |
Faculty of Electrical Engineering, Department of Cybernetics 95



Labels (Yi) RGB images (x;)

. EEEY . EEEZ
. CEETEHeESS
Bl NEN Y S

1 LT -1k
1 1 1 2 2 2 3 3 3 )

feds

return w*

%2{75 Czech Technical University in Prague
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W

w* = argmin (Z — log(p(yixi,W))) + (= logp(w))

)
loss function prior/regulariser
 Classification (probability modeled by soft-max function):
eXp(f(X7 Wl))
plube ) = | (f0xwa)) |/ 3 expl(f e wi) = s(Ex, W)
i GXp(f(X, WS)) _
* Probability of observing y; when measuring X; Is
plyilxi, W) = sy, (E(oxi, W) % <
L
1 X X
X
*@{}‘3 Czech Technical University in Prague
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W

w* — argmin (z R ——

1

|

l0oss function

_|_

P

(—log p(w))

rior/regulariser

 Classification (probability modeled by soft-max function):

exp(f(x, w1))

p(ylx,W) = | exp(f(x,w2)) | / Y exp(f(x,wi) = s(f(x,W))

i eXp(f(X7 WS)) _ k

* Probabillity of observing y; when measuring X; is

p(Yilxi, W) = sy, (£(x;,W))

@gﬂi‘g Czech Technical University in Prague
A\ Faculty of Electrical Engineering, Department of Cybernetics
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W

w* = argmin (Z — log(p(yq:IXuW))) + (= logp(w))

loss function prior/regulariser
Classification (probaoility modeled by soft-max function):
7W1))
p(y|x, W) = (x,w2)) | / Zexp x, W) = s(f(x,W))
w3))

Probabillity of 0 serving v; when measuring X; IS
p(yilxi, W) = sy, (f(x;,W)) v

2|

subst. yields cross-entropy loss 1

W* = arg mwmz —log s, (f(x;,W))

.,Lm

?3 Czech Technical University in Prague
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Labels (Yi) RGB images (x;)

L R - R
. ENEEENEE-=S
s Emalll NED ¥ ERW

corvan B P D I R
1 1 1 2 2 2 3 3 3 )
Xi:VGC(E)

W" = arg min Z —logs,, (WX;))

return w*

/ =) Czech Technical University in Prague
/
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Yi = 2

C 003 ]| = -—logs, (WX;) = —1log(0.71) = 0.15

)= 0.71 S

- 0.26 | | Car classified as car yields small loss

et train [ . Nt e e |
1 1 1 2 2 2 3 3 3 )
Xizvec()

W" = arg min Z —logs,, (WX;))

return w*

J@ Czech Technical University in Prague
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- 0.03 = —logs,,(WX;) = —1log(0.03) = 1.52
S(Wfi) — 0.57 /

- 0.40 Plane classified as car yields huge loss

oo N B T D R
1 1 1 2 2 2 3 3 3 )
Xi:VGC(%\)

W" = arg min Z —logs,, (WX;))

return w*

%??ﬁ Czech Technical University in Prague
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Conclusions

* Explained regression and linear classifier as MAP/ML
estimator

* Discussed under/overtitting and regularisations

* Next lesson will go deeper

Competencies required for test

* Derive MAP/ML estimate for regression, two-class and
three-class classitication problem.

 Compute L2-loss, logistic-loss and entropy-loss
(understand when it has high/low values).
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