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Graph Matrices Linear Algebra Reminder

Algebra

di; is the Kronecker delta, which is 1 if ¢ = j and 0 otherwise.

A field (CZ pole, komutativni téleso)is a set on which are defined
addition, subtraction, multiplication, and division satisfying the field
axioms (commutativity, associativity, a unit).

1 is the vector (1,1,1,...).

The complex conjugate (CZ komplexn& sdruzené &islo) of the
complex number z = x + iy is defined to by z = 2* = = — iy.
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Graph Matrices Linear Algebra Reminder

Matrix [Lay12, GL13]

@ [...];j denotes (7,j) element of a matrix

o The conjugate of a matrix A = (a;;) € C"*"™ is the matrix
A = (dij) e Ccnxm,

@ The trace of an n x n (“n by n”) square matrix A is

Tr(A) = Zan‘ =aj1+ag+ -+ an, (1)
i=1
Tr(A + B) = Tr(A) + Tr(B) 2
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Graph Matrices Linear Algebra Reminder

[Wat02, Lay12, GL13]

Matrix Transposition

e The transpose of a matrix A € R™*™ (R™*" — R™*"):
[AT]i; = [Alji.

o Let A and B denote matrices whose sizes are appropriate for the
following sums and products, let r denote any scalar, then

o (AT =A

o (A+B)T =AT + BT
o (rA)T =rAT

o (AB)T =BTAT

e The conjugate transpose of a matrix A € C"™™: [A*];; = [A];;.

@ The square matrix A is Hermitian if A* = A = A" and
skew-Hermitian if A* = —A.
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Graph Matrices Linear Algebra Reminder

[Wat02, GL13]

Orthogonality

o A set of vectors {z1,...,2,} in R" is orthogonal if 27 2; =0
whenever ¢ # j and orthonormal if l‘ZT."Ej = 0j-

o A matrix A € R™" is said to be orthogonal if ATA =1
@ A matrix A € C™*™ is said to be unitary if A*A =1
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Graph Matrices Linear Algebra Reminder

[GL13]

Matrix Inversion

o If A and X are in R™*" and satisfy AX =1,
then X is the inverse of A and is denoted by A~1.
o (AB)" ! =B !A"!
o (A HT = (ATt =A"T
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Graph Matrices Linear Algebra Reminder

[GL13]

Matrix Eigenvalues

@ The eigenvalues of A € C"*"™ are zeros of

the characteristic polynomial p(z) = det(A — zI).
@ Every n X n matrix has n eigenvalues.
@ We denote the set of A's eigenvalues by

AMA) = {x : det(A — zI) = 0}

Amax(A) = max(A\(A)) Amin(A) = min(A(A))
@ The eigenvalue equation expressed as the matrix multiplication
Av = )\v

e Applying the matrix A to the eigenvector v only scales the eigenvector
by the scalar value \.

@ Symmetry of a matrix A guarantees that all of its eigenvalues are real
and that there is an orthonormal basis of eigenvectors.
o Let A € R™ ™ with eigenvalues \ and eigenvectors v. Then A* has

eigenvalues \* and eigenvectors v for any positive integer k.
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Graph Matrices Linear Algebra Reminder

Schur Decomposition “**

Theorem 1 (Symmetric Schur Decomposition, Theorem 8.1.1 [GL13],
p.440)

If A € R"™" js symmetric, then there exists a real orthogonal Q such that
QTAQ = A = diag(\1,..., \).

Moreover, for k =1 :n, AQ(:, k) = M Q(:, k).

Theorem 2 (Schur Decomposition, Theorem 7.1.3 [GL13], p.351)

If A € C™ ", then there exists a unitary Q € C™*"™ such that

QPAQ=T=A+N

where A = diag(\1, . .

., An) and N € C"*" s strictly upper triangular.
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Graph Matrices Network Matrices

[New10, EK10]

Adjacency Matrix

@ The adjacency matrix A of a simple graph is the N x N matrix
with element A;; such that

A — 1 if there is an edge between vertices j and i,
71 0 otherwise

@ The adjacency matrix of a directed network has matrix elements

A — 1 if there is an edge from j to ¢,
71 0 otherwise
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Graph Matrices Network Matrices

[New10]

Cocitation Matrix

@ Convenient to turn a directed network into an undirected one for the
purposes of analysis

The cocitation of two vertices 7 and j in a directed network is the
number of vertices that have outgoing edges pointing to both 7 and j.

e The cocitation of two papers is the number of other papers that cite
both.
o AjAji, =1if i and j are both cited by k and zero otherwise.

The cocitations C;; of 7 and j is

N N
Cij =Y AwAje =D _ AipAf;
k=1 k=1
@ The cocitation matrix C is the NV x N matrix with elements Cj;, i.e.
C=AAT
e Cis a symmetric matrix: CT = (AAT)T = AAT =C
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Graph Matrices Network Matrices

[New10]

Bibliographic Coupling

@ The bibliographic coupling of two vertices in a directed networkis
the number of other vertices to which both point.

e For instance in a citation network: the bibliographic coupling of two
papers i and j is the number of other papers that are cited by both ¢
and j.

o Ap;Ar; =1if i and j both cite k and zero otherwise.

@ The bibliographic coupling B;; of i and j is

N N
B;j = ZAkiAkj = ZAZZI;AM
k=1 k=1

@ The bibliographic coupling matrix B is the n X n matrix with
elements B;;, i.e.
B=ATA

e B is a symmetric matrixx: BT = (ATA)T = ATA =B
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Bi-adjacency Matrix

Graph Matrices Network Matrices

[New10, BJP17]

Bipartite networks

also called two-mode networks in SNA [N

°
o V=NVUV, iNVa=10
@ movies X actors
@ articles x authors
@ timestamps X active Wifi access points (AP)
@ people x groups
e Let Ny = |Vi| and Ny = |V3,
then the bi-adjacency matrix B ®"'"l is N; x Ny matrix having
elements
B 1 if there is an edge between vertices n; € V7 and n; € V5,
" 0 otherwise
o Also called incidence matrix ™% bipartite adjacency matrix ®"°%"
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Graph Matrices Network Matrices

[New10, BJP17]

Adjacency and Bi-adjacency Matrix

_ Q\Vﬂ B
A_< BT Oy )

Bipartite network and its bi-adjacency Matrix
TODO
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Graph Matrices Network Matrices

[Die05, New10]

Incidence Matrix

@ The incidence matrix B by ! of a simple undirected graph

G(V, E) with N vertices V = {v1,...,un} and M edges
E ={ey,...,en} over the 2-element field F» = {0,1} is defined as
the N x M matrix with elements B;; such that
|1 ifv€e
Bij = { 0 otherwise

e The edge incidence matrix by Newman ™" of a simple undirected

graph G(V, E) with N vertices and M edges is an M x N matrix B
with elements B;;

+1 if end 1 of edge 7 is attached to vertex j,
B;j =< —1 ifend 2 of edge 7 is attached to vertex j,
0  otherwise

o Each edge has two arbitrarily designated ends, end 1 and end 2.
e Each row of the matrix has exactly one +1 and one —1 element.
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Graph Matrices Network Matrices

[New10, BJP17]

Projection

@ A possible way how to analyze bipartite graphs using simple graph
methods.

@ Significant information on the given network might be lost.

Definition 1 (Based on Definition 3 [BJP17], p.3)

Let G(V1, Vo, E) be a bipartite graph. The one-mode projection of the
bipartite graph G for the vertex V; with respect to the vertex set V;,

i,j € {1,2}, i # j is the unipartite (one-mode) network G'(V;, E’) where
V(G") =U and uwv € E(G") if N(u) N N(v) # 0.

Projection of a bipartite network - items and groups

TODO
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Graph Matrices Network Matrices

Projection Properties | ™

o Let B be a bi-adjacency matrix of G(V1, Va2, E), then the total
(1)

number P of vertexes v € V5 to which both ¢, j € V} belong is

[Va [Val
1
Py = Z BixBji = Z BBy

o The product B; Bjj, will be 1 if and only if ¢ and j are both linked to
the same vertex k from the other vertex set

@ Example: relations of items and their groups

@ In matrix form
P = BBT
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Graph Matrices Network Matrices

Projection Properties I ™

o P is the number of vertexes j € Vs to which i € V is linked

[Va [Val

P = ZBM =" By
k=1

o assuming By, € {0,1}
@ The other one-mode projection onto V5

P2 = BB
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Graph Matrices Network Matrices

Undirected Graph - Node Degree "

@ The degree of a vertex in a undirected graph

N
k:i = Z Aij
j=1

@ The number of ends of edges

N

oM = ki

=1

@ The number of edges
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Graph Matrices Network Matrices

Undirected Graph - Density ™

@ The mean degree c of a vertex in a undirected graph

@ The maximum possible number of edges in a simple graph

(g) = IN(V - 1)

@ The connectance or density p of a graph is the fraction of edges
that are actually present (0 < p < 1).

1 2M c

PTE) N1 N1
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Graph Matrices Network Matrices

[New10]

Directed Graph - Vertex Degree

@ The in-degree k:;" and out-degree k;?“t of a vertex in a undirected
graph

k;n Z A” ’ kout Z AU

@ The number of edges

N N
M=) k=) k"= Ay
i=1 j=1 ij

@ The mean in-degree c;, and the mean out-degree c,,; of a vertex
in a undirected graph are equal:

1L 1 Y
Cin:ﬁzk;nzﬁz out:

=1

I
i
z| 5
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Graph Matrices Network Matrices

Paths in Simple Graph ™

@ The element A;; is 1 if there is an edge from 7 to j, and 0 otherwise
in simple graphs.

@ The product A;;Ay;j is 1 if there is a path of length 2 from j to i via
k, and 0 otherwise.

@ The total number Ni(jz) of paths of length two from j to i via any

other vertex is
N
= ZAikAkj = [A?);
k=1

@ Paths of length three from j to ¢ via [ and k in that order

(3) ZAzkAMAZj = [A%],;
k=1

@ Paths of an arbitrary length r
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Graph Matrices Network Matrices

Cycles in Simple Graph ™

@ The number of paths of length r that start and end at the same
vertex i is [A"];.

@ The total number L, of cycles (“loops”) of length r anywhere in a
network is (the sum over all possible starting vertexes i)

N
Z [A"];; = TrA".

@ The loop 1 = 2 — 3 — 1 is considered different from the loop
23 —->1—2

@ Theloops1 -2 —3 —1and 1 -3 — 2 — 1 traversed in opposite
directions are distinct, too.
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Graph Matrices Network Matrices

[New10]

Cycles in Simple Graph and Eigenvalues

o Undirected graph
o The adjacency matrix A is symmetric, i.e. A = QKQT,
where Q is the orthogonal matrix of eigenvectors and
K is the diagonal matrix of eigenvalues k; of A.
o A" = (QKQ")" = QK'Q”
o L, =TrA" = Tr(QK"QT) = Tr(QTQK") = TTK" = Y, kT
o Directed networks
o Every real matrix can be written in the form A = QTQ7,
where Q is an orthogonal matrix and
T is an upper triangular matrix using the Schur decomposition.
e Since T is triangular, its diagonal elements are its eigenvalues.
e The eigenvalues are the same as the eigenvalues of A.

Ax = QTQ"x = kx x QT (6)
TQ x = kQTx (7)

o L, =TrA” = Tr(QT"QT) = TH(QTQT") = T'T" = 3, K7
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Centrality Measures Path Based Centralities

[BEO6, Weh13]

Centrality Measures / Ranking

Measuring the importance/prominence of a node within the network
@ Degree Centrality (Node Activity)
o Betweenness Centrality (Intermediate Position)
@ Closeness Centrality (Distance to other nodes)
e Eigenvector Centrality (Important nodes have important friends)
o Power Centrality (Close to hubs)
@ Page Rank

Evaluation of the location actors in the network
@ Insight into various roles and groupings in a network
@ Connectors, mavens, leaders, bridges, isolates, broker, hubs
@ Where are the clusters and who is in them,
@ Who is in the core of the network? Who is on the periphery?
°

What is a single point of failure?
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Centrality Measures Path Based Centralities

[Fre79, BE06, Weh13]

Degree Centrality

What is the degree of an actor? How active is an actor?

Degree centrality
is a count of the number of edges incident upon a given vertex.

Degree centrality for actor

c‘ij:ZaZ-j = Al
J

@ where A is the adjacency matrix

@ 1 is a vector of 1 with size V. )

Normalized degree centrality for actor &

i T N1 N-1

October 17, 2017
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Centrality Measures Path Based Centralities

[Fre79, Dod09]

Closeness centrality

@ |dea: Nodes are more central if they can reach other nodes ‘easily.’
@ Measures average shortest path from a node to all other nodes.
@ Closeness Centrality for node i as
N -1
> ji(distance from i to j)

c_
=

e Range is 0 (no friends) to 1 (a single hub).

@ Unclear what the exact values of this measure tells us because of its
ad-hocness.

@ General problem with simple centrality measures: what do they
exactly mean?

@ Perhaps, at least, we obtain an ordering of nodes in terms of
‘importance.’
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Centrality Measures Path Based Centralities

[Weh13]

Examples of degree centrality

Examples for degree centrality ¢; and normalized degree centrality ¢/;:

o e

OO O Om®

& = ccll=05 ° o

d

Cg:Q 6’2:0.5 Cd:2 C,d:05
d =4 c’f_l cd=2 'd=05 iy o
d=1 ¢%=025 =1 d$=1025 I
2 g y o & =9 & =05
d=1 dizoz | d=1ci=om | 270 T00
=1 c4—025 d—2 Ji—05
d
C5 5 =0.25 ) (all actors identical)

V2
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Centrality Measures Path Based Centralities

[Dod09]

Betweenness centrality

@ Betweenness centrality is based on shortest paths in a network.

o ldea: If the quickest way between any two nodes on a network
disproportionately involves certain nodes, then they are ‘important’ in
terms of global cohesion.

@ For each node i, count, over all pairs of nodes = and y, how
many shortest paths pass through ;.

o Call frequency of shortest paths passing through node i the
betweenness of i, B; .

@ Note: Exclude shortest paths between i and other nodes.
@ Note: works for weighted and unweighted networks.

@ Role played by shortest paths justified by small-world phenomenon
(Milgram'’s experiment).
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Centrality Measures Path Based Centralities

[Dod09]

Betweenness Centrality - Complexity

Consider a network with N nodes and m edges (possibly weighted).
Computational goal: Find (') shortest paths between all pairs of
nodes.
Traditionally Floyd-Warshall algorithm used.
Computation time grows as O(N?3).
See also:
@ Dijkstra’s algorithm for finding the shortest path between two specific
nodes, and
@ Johnson’s algorithm which outperforms Floyd-Warshall for sparse
networks:

O(MN + N?logN)

Newman (2001) and Brandes (2001) independently derived much
faster algorithms.

@ Computation times grow as:

@ O(MN) for unweighted graphs, and

@ O(MN + NZ?logN) for weighted graphs.
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Centrality Measures Path Based Centralities

[Dod09]

Shortest path between node ¢ and all others

o Consider unweighted networks.
@ Use breadth-first search:

@ Start at node ¢, giving it a distance d = 0 from itself.
@ Create a list of all of i's neighbors and label them being at a distance

d=1.
© Go through list of most recently visited nodes and find all of their
neighbors.
© Exclude any nodes already assigned a distance.
© Increment distance d by 1.
@ Label newly reached nodes as being at distance d.
@ Repeat steps 3 through 6 until all nodes are visited.
@ Record which nodes link to which nodes moving out from i (former
are ‘predecessors’ with respect to i's shortest path structure).
@ Runs in O(M) time and gives N shortest paths.
e Find all shortest paths in O(MN) time

@ Much, much better than naive estimate of O(M N?).
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Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness algorithm

o
2]
o
o
o

Set all nodes to have a value ¢;; = 0,5 =1,..., N (c for count).
Select one node i.

Find shortest paths to all other N — 1 nodes using breadth-first
search.

Record # equal shortest paths reaching each node.

Move through nodes according to their distance from 4, starting with
the furthest.

Travel back towards i from each starting node j, along shortest
path(s), adding 1 to every value of ¢;; at each node k along the way.

Whenever more than one possibility exists, a portion according to
total number of short paths coming through predecessors.

Exclude starting node j and i from increment.

06 © o

Repeat steps 2-8 for every node ¢ and obtain betweenness as
J i=1 Cij
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Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness - notes

@ For a pure tree network, ¢;; is the number of nodes beyond j from i's
vantage point.
For edge betweenness, use exact same algorithm but now

© j indexes edges, and
@ we add one to each edge as we traverse it.

e For both algorithms, computation time grows as O(M N) and space
for O(N + M) integers (N nodes, M arcs).

@ Both bounds infeasible for large networks,
where typically N ~ 10 and M ~ 10,

@ For sparse networks with relatively small average degree, we have a
fairly digestible time growth of O(N?).
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Centrality Measures Path Based Centralities

[New01, Dod09]

Newman's Betweenness - examples

leaves

Radek Maf¥ik (radek.marik@fel.cvut.cz) Network Properties October 17, 2017 37 /51



Centrality Measures ~ Spectral Centralities

[Dod09]

Important nodes have important friends

Define x; as the "importance” of node i.

Idea: x; depends (somehow) on z; if j is a neighbor of i.
Recursive: importance is transmitted through a network.
Simplest possibility is a linear combination:

T; X E Q5525
J

Assume further that constant of proportionality, ¢, is independent of i.

Above gives X = cAT% or | AT% = ¢ 1% = \%| .
Eigenvalue equation based on adjacency matrix:
e The greatest eigenvalue and its related eigenvector fulfills only the
additional requirement that all the entries in the eigenvector be positive
(Perron-Frobenius theorem).

o Eigenvalue centrality of the vertex v in the network
... The v*" component of the related eigenvector
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Centrality Measures ~ Spectral Centralities

Eigenvalue Centrality - Iterative Approach ™

@ An initial guess about the centrality x; of each vertex i.
e eg x;=1forall

@ One step to calculate a better estimate

!/ . . !
x; = E Ajjx; ie. X' = Ax
J

@ Repeat t times: x(t) = A'x(0)
@ Express x(0) as a linear combination of the eigenvectors v; of A:

x(0) =", civi.
Py
x(t) = A' Z Vv = Z ciAlv; = Z cikiv; = k! Z ci[ﬁ—i]tvi
A KA 1 T
e k; are the eigenvalues of A, k1 is the largest of them.

@ Since k;/k1 < 1 for all i # 1, all terms in the sum other then the first
decay exponentially as ¢ becomes large: x(t) — c1k1v1 as t — 0.
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Centrality Measures ~ Spectral Centralities

[New10]

Eigenvalue Centrality - Properties

[Bon87]

o Eigenvalue centrality by Bonacich in 1987
Ax = k1x T; = /il_l Z Aijx;
J

@ The centrality x; of vertex i is proportional to the sum of the
centralities of ¢'s neighbors:
e a vertex has many neighbors,
e a vertex has importnant neighbors.
@ The eigenvector centralities of all vertices are non-negative.
o If 2;(0) > 0 and A;; > 0 then z;(t) > 0.
o Eigenvector centrality works well for undirected networks.
@ Issues with directed networks
e Asymmetric adjacency matrix has two sets of eigenvectors,
left and right, i.e hence two leading eigenvectors.
@ In most cases the right eigenvector should be used
@ to prefer the case in which centralities are driven by vertices pointing to
a given vertex (and not to which vertices the given vertex points to)
e Zero x; are propagated as zero = strong components taken only.
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Centrality Measures ~ Spectral Centralities

Katz Centrality "

@ To resolve the issue with zero eigenvalue centralities x;

Katz Centrality

@ Proposed by Katz in 1953

Ckatz = @A + A% + - 4+ oFAF + ... (9)
oo N

Chatz (1) = Z Z o [AF];; (10)
k=1 j=1

Ckatz(7) denotes Katz centrality of a node i.
The attenuation factor « . .. discounted paths (walks)

A link in the distance k is attenuated by o*.

If « < 1/|k1]|, where k1 is the largest eigenvalue of A, then

Ckatz = (I —aAT)"t —T)1
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Centrality Measures ~ Spectral Centralities

Alpha Centrality "

[BLO1]

Proposed by Bonacich in 2001

A generalization of Katz centrality

xi:aZAija:j—i—B X = aAx + 51
J

where o and (3 are positive constants.

Each vertex has a non-zero positive centrality because of small 5 > 0

Rearranging for x

x=FI-aA) - 1=(T-aA) ' 1

e using 8 =1 to care about relative values of centralities only.
o Capha = a"A% + Ckar, = I+ Ciar,
@ Choice of a value of «
e Ifa—0,thenallz; > 8=1
o If @« — 1/k1, then a divergence ...det(A — a~'I) =0
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Centrality Measures ~ Spectral Centralities

[Roc12]

Centrality Measures - Importance of Nodes

@ Low — middle — high values
@ A Degree centrality,
o Node Activity
@ B Closeness centrality,
e Distance to other nodes
o C Betweenness centrality,
o Intermediate Position
e D Eigenvector centrality,

e Important nodes have important
friends

o E Katz centrality,
o The relative influence of a node
within a network
F Alpha centrality

e Important nodes have important
friends for asymmetric relations e
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Centrality Measures ~ Spectral Centralities

PageRa n k [?, BP12, New10]

@ In some case, a high-centrality vertex should not distribute its
centrality to other vertexes fully,
e e.g. Yahoo! referencing a personal page.
@ The centrality of a given vertex is distributed to its neighbors as an
amount proportional to its centrality divided by its out-degree.

T
X; :aZAijkTﬂt—i-ﬁ x:ozAD_lx—l—ﬂl
j J

o If k$** =0, then A;; = 0 for all i.
@ In such cases, we set artificially k;-’”t =1 to avoid the problem with the
term when zero is divided by zero. The result is a zero centrality

contribution.
o D is the diagonal matrix with elements D;; = max(k$"", 1)

@ By rearranging and setting 5 =1, and o < 1/|k1|, K1 = Amax(A)
x=BI-aAD H) 1. 1=DD-0A)' 1
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Centrality Measures Example

Egypt Data - Family Formation *

Ny-wsr-R< (0.647
Hmrr-nbty (0.424
Nwb-ib-nbty [0.351
Snh-wi-Pth [0.290
R<-hw.fT |0.180
Re-nfr.f [0.139
shty-htp TIT [0.139
Pth-ipss  |0.082
Ph-rnfr I |0.048
Srt-nbty T 0.048

People with
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Extended family size distribution
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Summary

@ Linear algebra remainder
@ Network matrices

@ Centrality Measures

o Path based centralities
o Spectral centralities
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Competencies

Define adjacency matrix, cocitation matrix, and bibliographic coupling

Define bi-adjacency matrix, incidence matrxi, edge incidence matrix

Define one-mode projection and its relation to bi-adjacency matrix.

Show how to compute degree of vertex, the number of edges, the

mean degree, and graph density based on the adjacency matrix for

undirected and directed graphs.

@ Show how to compute number of paths and cycles based on the
adjacency matrix.

@ Define degree centrality.

@ Define closenes centrality.

@ Define betweenness centrality.

@ Describe an algorithm for betweenness centrality computation.

@ Define eigenvalue centrality.

o Define Katz centrality.

@ Define PageRank index.
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