
EE263 Autumn 2014-15 Prof. S. Boyd

EE263 homework problems

Lecture 2 – Linear functions and examples

2.1 A simple power control algorithm for a wireless network. First some background. We consider a
network of n transmitter/receiver pairs. Transmitter i transmits at power level pi (which is positive).
The path gain from transmitter j to receiver i is Gij (which are all nonnegative, and Gii are positive).
The signal power at receiver i is given by si = Giipi. The noise plus interference power at receiver i is
given by

qi = σ2 +
∑
j 6=i

Gijpj

where σ2 > 0 is the self-noise power of the receivers (assumed to be the same for all receivers). The
signal to interference plus noise ratio (SINR) at receiver i is defined as Si = si/qi. For signal reception
to occur, the SINR must exceed some threshold value γ (which is often in the range 3 – 10). Various
power control algorithms are used to adjust the powers pi to ensure that Si ≥ γ (so that each receiver
can receive the signal transmitted by its associated transmitter). In this problem, we consider a simple
power control update algorithm. The powers are all updated synchronously at a fixed time interval,
denoted by t = 0, 1, 2, Thus the quantities p, q, and S are discrete-time signals, so for example
p3(5) denotes the transmit power of transmitter 3 at time epoch t = 5. What we’d like is

Si(t) = si(t)/qi(t) = αγ,

where α > 1 is an SINR safety margin (of, for example, one or two dB). Note that increasing pi(t)
(power of the ith transmitter) increases Si but decreases all other Sj . A very simple power update
algorithm is given by

pi(t+ 1) = pi(t)(αγ/Si(t)). (1)

This scales the power at the next time step to be the power that would achieve Si = αγ, if the
interference plus noise term were to stay the same. But unfortunately, changing the transmit powers
also changes the interference powers, so it’s not that simple! Finally, we get to the problem.

(a) Show that the power control algorithm (1) can be expressed as a linear dynamical system with
constant input, i.e., in the form

p(t+ 1) = Ap(t) + b,

where A ∈ Rn×n and b ∈ Rn are constant. Describe A and b explicitly in terms of σ, γ, α and the
components of G.

(b) matlab simulation. Use matlab to simulate the power control algorithm (1), starting from various
initial (positive) power levels. Use the problem data

G =

 1 .2 .1
.1 2 .1
.3 .1 3

 , γ = 3, α = 1.2, σ = 0.1.

Plot Si and p as a function of t, and compare it to the target value αγ. Repeat for γ = 5.
Comment briefly on what you observe. Comment: You’ll understand what you see later in the
course.

2.2 State equations for a linear mechanical system. The equations of motion of a lumped mechanical
system undergoing small motions can be expressed as

Mq̈ +Dq̇ +Kq = f

1

where q(t) ∈ Rk is the vector of deflections, M , D, and K are the mass, damping, and stiffness matrices,
respectively, and f(t) ∈ Rk is the vector of externally applied forces. Assuming M is invertible, write
linear system equations for the mechanical system, with state

x =

[
q
q̇

]
,

input u = f , and output y = q.

2.3 Some standard time-series models. A time series is just a discrete-time signal, i.e., a function from Z+

into R. We think of u(k) as the value of the signal or quantity u at time (or epoch) k. The study of
time series predates the extensive study of state-space linear systems, and is used in many fields (e.g.,
econometrics). Let u and y be two time series (input and output, respectively). The relation (or time
series model)

y(k) = a0u(k) + a1u(k − 1) + · · ·+ aru(k − r)
is called a moving average (MA) model, since the output at time k is a weighted average of the previous
r inputs, and the set of variables over which we average ‘slides along’ with time. Another model is
given by

y(k) = u(k) + b1y(k − 1) + · · ·+ bpy(k − p).
This model is called an autoregressive (AR) model, since the current output is a linear combination of
(i.e., regression on) the current input and some previous values of the output. Another widely used
model is the autoregressive moving average (ARMA) model, which combines the MA and AR models:

y(k) = b1y(k − 1) + · · ·+ bpy(k − p) + a0u(k) + · · ·+ aru(k − r).

Finally, the problem: Express each of these models as a linear dynamical system with input u and
output y. For the MA model, use state

x(k) =

 u(k − 1)
...

u(k − r)

 ,
and for the AR model, use state

x(k) =

 y(k − 1)
...

y(k − p)

 .
You decide on an appropriate state vector for the ARMA model. (There are many possible choices
for the state here, even with different dimensions. We recommend you choose a state for the ARMA
model that makes it easy for you to derive the state equations.) Remark: multi-input, multi-output
time-series models (i.e., u(k) ∈ Rm, y(k) ∈ Rp) are readily handled by allowing the coefficients ai, bi
to be matrices.

2.4 Representing linear functions as matrix multiplication. Suppose that f : Rn −→ Rm is linear. Show
that there is a matrix A ∈ Rm×n such that for all x ∈ Rn, f(x) = Ax. (Explicitly describe how you
get the coefficients Aij from f , and then verify that f(x) = Ax for any x ∈ Rn.) Is the matrix A

that represents f unique? In other words, if Ã ∈ Rm×n is another matrix such that f(x) = Ãx for all
x ∈ Rn, then do we have Ã = A? Either show that this is so, or give an explicit counterexample.

2.5 Some linear functions associated with a convolution system. Suppose that u and y are scalar-valued
discrete-time signals (i.e., sequences) related via convolution:

y(k) =
∑
j

hju(k − j), k ∈ Z,

where hk ∈ R. You can assume that the convolution is causal, i.e., hj = 0 when j < 0.

2

(a) The input/output (Toeplitz) matrix. Assume that u(k) = 0 for k < 0, and define

U =


u(0)
u(1)

...
u(N)

 , Y =


y(0)
y(1)

...
y(N)

 .
Thus U and Y are vectors that give the first N + 1 values of the input and output signals,
respectively. Find the matrix T such that Y = TU . The matrix T describes the linear mapping
from (a chunk of) the input to (a chunk of) the output. T is called the input/output or Toeplitz
matrix (of size N + 1) associated with the convolution system.

(b) The Hankel matrix. Now assume that u(k) = 0 for k > 0 or k < −N and let

U =


u(0)
u(−1)

...
u(−N)

 , Y =


y(0)
y(1)

...
y(N)

 .
Here U gives the past input to the system, and Y gives (a chunk of) the resulting future output.
Find the matrix H such that Y = HU . H is called the Hankel matrix (of size N + 1) associated
with the convolution system.

2.6 Matrix representation of polynomial differentiation. We can represent a polynomial of degree less than
n,

p(x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0,

as the vector (a0, a1, . . . , an−1) ∈ Rn. Consider the linear transformation D that differentiates poly-
nomials, i.e., Dp = dp/dx. Find the matrix D that represents D (i.e., if the coefficients of p are given
by a, then the coefficients of dp/dx are given by Da).

2.7 Consider the (discrete-time) linear dynamical system

x(t+ 1) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) +D(t)u(t).

Find a matrix G such that 
y(0)
y(1)

...
y(N)

 = G


x(0)
u(0)

...
u(N)

 .
The matrix G shows how the output at t = 0, . . . , N depends on the initial state x(0) and the sequence
of inputs u(0), . . . , u(N).

2.8 Some sparsity patterns.

(a) A matrix A ∈ Rn×n is tridiagonal if Aij = 0 for |i− j| > 1. Draw a block diagram of y = Ax for
A tridiagonal.

(b) Consider a certain linear mapping y = Ax with A ∈ Rm×n. For i odd, yi depends only on xj for
j even. Similarly, for i even, yi depends only on xj for j odd. Describe the sparsity structure of
A. Give the structure a reasonable, suggestive name.

2.9 Matrices and signal flow graphs.

(a) Find A ∈ R2×2 such that y = Ax in the system below:

3

+x2

x1 y1

y2

1

2

(b) Find B ∈ R2×2 such that z = Bx in the system below:

x2

x1

z1

z2

+

1

+

1

+

1

+

1

2 2 22

Do this two ways: first, by expressing the matrixB in terms ofA from the previous part (explaining
why they are related as you claim); and second, by directly evaluating all possible paths from
each xj to each zi.

2.10 Mass/force example. Find the matrix A for the mass/force example in the lecture notes. For n = 4,
find a specific input force sequence x that moves the mass to final position 1 and final velocity zero.

2.11 Counting paths in an undirected graph. Consider an undirected graph with n nodes, and no self loops
(i.e., all branches connect two different nodes). Let A ∈ Rn×n be the node adjacency matrix, defined
as

Aij =

{
1 if there is a branch from node i to node j
0 if there is no branch from node i to node j

Note that A = AT , and Aii = 0 since there are no self loops. We can intrepret Aij (which is either
zero or one) as the number of branches that connect node i to node j. Let B = Ak, where k ∈ Z,
k ≥ 1. Give a simple interpretation of Bij in terms of the original graph. (You might need to use the
concept of a path of length m from node p to node q.)

2.12 Counting sequences in a language or code. We consider a language or code with an alphabet of n
symbols 1, 2, . . . , n. A sentence is a finite sequence of symbols, k1, . . . , km where ki ∈ {1, . . . , n}. A
language or code consists of a set of sequences, which we will call the allowable sequences. A language
is called Markov if the allowed sequences can be described by giving the allowable transitions between
consecutive symbols. For each symbol we give a set of symbols which are allowed to follow the symbol.
As a simple example, consider a Markov language with three symbols 1, 2, 3. Symbol 1 can be followed
by 1 or 3; symbol 2 must be followed by 3; and symbol 3 can be followed by 1 or 2. The sentence
1132313 is allowable (i.e., in the language); the sentence 1132312 is not allowable (i.e., not in the
language). To describe the allowed symbol transitions we can define a matrix A ∈ Rn×n by

Aij =

{
1 if symbol i is allowed to follow symbol j
0 if symbol i is not allowed to follow symbol j

.

(a) Let B = Ar. Give an interpretation of Bij in terms of the language.

(b) Consider the Markov language with five symbols 1, 2, 3, 4, 5, and the following transition rules:

• 1 must be followed by 2 or 3

• 2 must be followed by 2 or 5

4

• 3 must be followed by 1

• 4 must be followed by 4 or 2 or 5

• 5 must be followed by 1 or 3

Find the total number of allowed sentences of length 10. Compare this number to the simple
code that consists of all sequences from the alphabet (i.e., all symbol transitions are allowed). In
addition to giving the answer, you must explain how you solve the problem. Do not hesitate to
use matlab.

2.13 Most common symbol in a given position. Consider the Markov language from exercise 12, with five
symbols 1, 2, 3, 4, 5, and the following symbol transition rules:

• 1 must be followed by 2 or 3

• 2 must be followed by 2 or 5

• 3 must be followed by 1

• 4 must be followed by 4 or 2 or 5

• 5 must be followed by 1 or 3

Among all allowed sequences of length 10, find the most common value for the seventh symbol. In
principle you could solve this problem by writing down all allowed sequences of length 10, and counting
how many of these have symbol i as the seventh symbol, for i = 1, . . . 5. (We’re interested in the symbol
for which this count is largest.) But we’d like you to use a smarter approach. Explain clearly how you
solve the problem, as well as giving the specific answer.

2.14 Communication over a wireless network with time-slots. We consider a network with n nodes, labeled
1, . . . , n. A directed graph shows which nodes can send messages (directly) to which other nodes;
specifically, an edge from node j to node i means that node j can transmit a message directly to node
i. Each edge is assigned to one of K time-slots, which are labeled 1, . . . ,K. At time period t = 1, only
the edges assigned to time-slot 1 can transmit a message; at time period t = 2, only the edges assigned
to time-slot 2 can transmit a message, and so on. After time period t = K, the pattern repeats. At
time period t = K + 1, the edges assigned to time-slot 1 are again active; at t = K + 2, the edges
assigned to time-slot 2 are active, etc. This cycle repeats indefinitely: when t = mK + k, where m
is an integer, and k ∈ {1, . . . ,K}, transmissions can occur only over edges assigned to time-slot k.
Although it doesn’t matter for the problem, we mention some reasons why the possible transmissions
are assigned to time-slots. Two possible transmissions are assigned to different time-slots if they would
interfere with each other, or if they would violate some limit (such as on the total power available at a
node) if the transmissions occurred simultaneously. A message or packet can be sent from one node to
another by a sequence of transmissions from node to node. At time period t, the message can be sent
across any edge that is active at period t. It is also possible to store a message at a node during any
time period, presumably for transmission during a later period. If a message is sent from node j to
node i in period t, then in period t+1 the message is at node i, and can be stored there, or transmitted
across any edge emanating from node i and active at time period t+ 1. To make sure the terminology
is clear, we consider the very simple example shown below, with n = 4 nodes, and K = 3 time-slots.

1 2

34

k3
k1lk1r

k2b

k2t

5

In this example, we can send a message that starts in node 1 to node 3 as follows:

• During period t = 1 (time-slot k = 1), store it at node 1.

• During period t = 2 (time-slot k = 2), transmit it to node 2.

• During period t = 3 (time-slot k = 3), transmit it to node 4.

• During period t = 4 (time-slot k = 1), store it at node 4.

• During period t = 5 (time-slot k = 2), transmit it to node 3.

You can check that at each period, the transmission used is active, i.e., assigned to the associated
time-slot. The sequence of transmissions (and storing) described above gets the message from node
1 to node 3 in 5 periods. Finally, the problem. We consider a specific network with n = 20 nodes,
and K = 3 time-slots, with edges and time-slot assignments given in ts_data.m. The labeled graph
that specifies the possible transmissions and the associated time-slot assignments are given in a matrix
A ∈ Rn×n, as follows:

Aij =

 k if transmission from node j to node i is allowed, and assigned to time-slot k
0 if transmission from node j to node i is never allowed
0 i = j.

Note that we set Aii = 0 for convenience. This choice has no significance; you can store a message at
any node in any period. To illustrate this encoding of the graph, consider the simple example described
above. For this example, we have

Aexample =


0 0 0 1
2 0 1 0
0 0 0 2
0 3 0 0

 .
The problems below concern the network described in the mfile ts_data.m, and not the simple example
given above.

(a) Minimum-time point-to-point routing. Find the fastest way to get a message that starts at node
5, to node 18. Give your solution as a prescription ordered in time from t = 1 to t = T (the
last transmission), as in the example above. At each time period, give the transmission (as in
‘transmit from node 7 to node 9’) or state that the message is to be stored (as in ‘store at node
13’). Be sure that transmissions only occur during the associated time-slots. You only need to
give one prescription for getting the message from node 5 to node 18 in minimum time.

(b) Minimum time flooding. In this part of the problem, we assume that once the message reaches
a node, a copy is kept there, even when the message is transmitted to another node. Thus, the
message is available at the node to be transmitted along any active edge emanating from that
node, at any future period. Moreover, we allow multi-cast: if during a time period there are
multiple active edges emanating from a node that has (a copy of) the message, then transmission
can occur during that time period across all (or any subset) of the active edges. In this part of
the problem, we are interested in getting a message that starts at a particular node, to all others,
and we attach no cost to storage or transmission, so there is no harm is assuming that at each
time period, every node that has the message forwards it to all nodes it is able to transmit to.
What is the minimum time it takes before all nodes have a message that starts at node 7?

For both parts of the problem, you must give the specific solution, as well as a description of your
approach and method.

6

2.15 Gradient of some common functions. Recall that the gradient of a differentiable function f : Rn → R,
at a point x ∈ Rn, is defined as the vector

∇f(x) =


∂f
∂x1

...
∂f
∂xn

 ,
where the partial derivatives are evaluated at the point x. The first order Taylor approximation of f ,
near x, is given by

f̂tay(z) = f(x) +∇f(x)T (z − x).

This function is affine, i.e., a linear function plus a constant. For z near x, the Taylor approximation
f̂tay is very near f . Find the gradient of the following functions. Express the gradients using matrix
notation.

(a) f(x) = aTx+ b, where a ∈ Rn, b ∈ R.

(b) f(x) = xTAx, for A ∈ Rn×n.

(c) f(x) = xTAx, where A = AT ∈ Rn×n. (Yes, this is a special case of the previous one.)

2.16 Some matrices from signal processing. We consider x ∈ Rn as a signal, with xi the (scalar) value of
the signal at (discrete) time period i, for i = 1, . . . , n. Below we describe several transformations of
the signal x, that produce a new signal y (whose dimension varies). For each one, find a matrix A for
which y = Ax.

(a) 2× up-conversion with linear interpolation. We take y ∈ R2n−1. For i odd, yi = x(i+1)/2. For i
even, yi = (xi/2 + xi/2+1)/2. Roughly speaking, this operation doubles the sample rate, inserting
new samples in between the original ones using linear interpolation.

(b) 2× down-sampling. We assume here that n is even, and take y ∈ Rn/2, with yi = x2i.

(c) 2× down-sampling with averaging. We assume here that n is even, and take y ∈ Rn/2, with
yi = (x2i−1 + x2i)/2.

2.17 Affine functions. A function f : Rn → Rm is called affine if for any x, y ∈ Rn and any α, β ∈ R
with α+ β = 1, we have

f(αx+ βy) = αf(x) + βf(y).

(Without the restriction α+ β = 1, this would be the definition of linearity.)

(a) Suppose that A ∈ Rm×n and b ∈ Rm. Show that the function f(x) = Ax+ b is affine.

(b) Now the converse: Show that any affine function f can be represented as f(x) = Ax+ b, for some
A ∈ Rm×n and b ∈ Rm. (This representation is unique: for a given affine function f there is only
one A and one b for which f(x) = Ax+ b for all x.)

Hint. Show that the function g(x) = f(x)− f(0) is linear.

You can think of an affine function as a linear function, plus an offset. In some contexts, affine functions
are (mistakenly, or informally) called linear, even though in general they are not. (Example: y = mx+b
is described as ‘linear’ in US high schools.)

2.18 Paths and cycles in a directed graph. We consider a directed graph with n nodes. The graph is specified
by its node adjacency matrix A ∈ Rn×n, defined as

Aij =

{
1 if there is an edge from node j to node i
0 otherwise.

Note that the edges are oriented, i.e., A34 = 1 means there is an edge from node 4 to node 3. For
simplicity we do not allow self-loops, i.e., Aii = 0 for all i, 1 ≤ i ≤ n. A simple example illustrating
this notation is shown below.

7

1 2

43

The node adjacency matrix for this example is

A =


0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

 .
In this example, nodes 2 and 3 are connected in both directions, i.e., there is an edge from 2 to 3 and
also an edge from 3 to 2. A path of length l > 0 from node j to node i is a sequence s0 = j, s1, . . . , sl = i
of nodes, with Ask+1,sk = 1 for k = 0, 1, . . . , l − 1. For example, in the graph shown above, 1, 2, 3, 2 is
a path of length 3. A cycle of length l is a path of length l, with the same starting and ending node,
with no repeated nodes other than the endpoints. In other words, a cycle is a sequence of nodes of the
form s0, s1, . . . , sl−1, s0, with

As1,s0 = 1, As2,s1 = 1, . . . As0,sl−1
= 1,

and
si 6= sj for i 6= j, i, j = 0, . . . , l − 1.

For example, in the graph shown above, 1, 2, 3, 4, 1 is a cycle of length 4. The rest of this problem
concerns a specific graph, given in the file directed_graph.m on the course web site. For each of the
following questions, you must give the answer explicitly (for example, enclosed in a box). You must
also explain clearly how you arrived at your answer.

(a) What is the length of a shortest cycle? (Shortest means minimum length.)

(b) What is the length of a shortest path from node 13 to node 17? (If there are no paths from node
13 to node 17, you can give the answer as ‘infinity’.)

(c) What is the length of a shortest path from node 13 to node 17, that does not pass through node
3?

(d) What is the length of a shortest path from node 13 to node 17, that does pass through node 9?

(e) Among all paths of length 10 that start at node 5, find the most common ending node.

(f) Among all paths of length 10 that end at node 8, find the most common starting node.

(g) Among all paths of length 10, find the most common pair of starting and ending nodes. In other
words, find i, j which maximize the number of paths of length 10 from i to j.

2.19 Element-wise nonnegative matrix and inverse. Suppose a matrix A ∈ Rn×n, and its inverse B, have all
their elements nonnegative, i.e., Aij ≥ 0, Bij ≥ 0, for i, j = 1, . . . , n. What can you say must be true
of A and B? Please give your answer first, and then the justification. Your solution (which includes
what you can say about A and B, as well as your justification) must be short.

2.20 Quadratic extrapolation of a time series. We are given a series z up to time t. Using a quadratic model,
we want to extrapolate, or predict, z(t + 1) based on the three previous elements of the series, z(t),
z(t− 1), and z(t− 2). We’ll denote the predicted value of z(t+ 1) by ẑ(t+ 1). More precisely, you will
find ẑ(t+ 1) as follows.

8

(a) Find the quadratic function f(τ) = a2τ
2 +a1τ +a0 which satisfies f(t) = z(t), f(t−1) = z(t−1),

and f(t− 2) = z(t− 2). Then the extrapolated value is given by ẑ(t+ 1) = f(t+ 1). Show that

ẑ(t+ 1) = c

 z(t)
z(t− 1)
z(t− 2)

 ,
where c ∈ R1×3, and does not depend on t. In other words, the quadratic extrapolator is a linear
function. Find c explicitly.

(b) Use the following matlab code to generate a time series z:

t = 1:1000;

z = 5*sin(t/10 + 2) + 0.1*sin(t) + 0.1*sin(2*t - 5);

Use the quadratic extrapolation method from part (a) to find ẑ(t) for t = 4, . . . , 1000. Find the
relative root-mean-square (RMS) error, which is given by(

(1/997)
∑1000
j=4 (ẑ(j)− z(j))2

(1/997)
∑1000
j=4 z(j)

2

)1/2

.

2.21 Express the following statements in matrix language. You can assume that all matrices mentioned
have appropriate dimensions. Here is an example: “Every column of C is a linear combination of the
columns of B” can be expressed as “C = BF for some matrix F”.

There can be several answers; one is good enough for us.

(a) For each i, row i of Z is a linear combination of rows i, . . . , n of Y .

(b) W is obtained from V by permuting adjacent odd and even columns (i.e., 1 and 2, 3 and 4, . . .).

(c) Each column of P makes an acute angle with each column of Q.

(d) Each column of P makes an acute angle with the corresponding column of Q.

(e) The first k columns of A are orthogonal to the remaining columns of A.

2.22 Show that ‖a+ b‖ ≥ ‖a‖ − ‖b‖.

2.23 Population dynamics. An ecosystem consists of n species that interact (say, by eating other species,
eating each other’s food sources, eating each other’s predators, and so on). We let x(t) ∈ Rn be the
vector of deviations of the species populations (say, in thousands) from some equilibrium values (which
don’t matter here), in time period (say, month) t. In this model, time will take on the discrete values
t = 0, 1, 2, Thus x3(4) < 0 means that the population of species 3 in time period 4 is below its
equilibrium level. (It does not mean the population of species 3 is negative in time period 4.) The
population (deviations) follows a discrete-time linear dynamical system:

x(t+ 1) = Ax(t).

We refer to x(0) as the initial population perturbation.

The questions below pertain to the specific case with n = 10 species, with matrixA given in pop_dyn_data.m.

(a) Suppose the initial perturbation is x(0) = e4 (meaning, we inject one thousand new creatures of
species 4 into the ecosystem at t = 0). How long will it take to affect the other species populations?
In other words, report a vector s, where si is the smallest t for which xi(t) 6= 0. (We have s4 = 0).

(b) Population control. We can choose any initial perturbation that satisfies |xi(0)| ≤ 1 for each
i = 1, . . . , 10. (We achieve this by introducing additional creatures and/or hunting and fishing.)
What initial perturbation x(0) would you choose in order to maximize the population of species
1 at time t = 10? Explain your reasoning. Give the initial perturbation, and using your selected
initial perturbation, give x1(10) and plot x1(t) versus t for t = 0, . . . , 40.

9

Lecture 3 – Linear algebra review

3.1 Price elasticity of demand. The demand for n different goods is a function of their prices:

q = f(p),

where p is the price vector, q is the demand vector, and f : Rn → Rn is the demand function. The
current price and demand are denoted p∗ and q∗, respectively. Now suppose there is a small price
change δp, so p = p∗ + δp. This induces a change in demand, to q ≈ q∗ + δq, where

δq ≈ Df(p∗)δp,

where Df is the derivative or Jacobian of f , with entries

Df(p∗)ij =
∂fi
∂pj

(p∗).

This is usually rewritten in term of the elasticity matrix E, with entries

Eij =
∂fi
∂pj

(p∗)
1/q∗i
1/p∗j

,

so Eij gives the relative change in demand for good i per relative change in price j. Defining the vector
y of relative demand changes, and the vector x of relative price changes,

yi =
δqi
q∗i
, xj =

δpj
p∗j

,

we have the linear model y = Ex.

Here are the questions:

(a) What is a reasonable assumption about the diagonal elements Eii of the elasticity matrix?

(b) Goods i and j are called substitutes if they provide a similar service or other satisfaction (e.g.,
train tickets and bus tickets, cake and pie, etc.). They are called complements if they tend to be
used together (e.g., automobiles and gasoline, left and right shoes, etc.). For each of these two
generic situations, what can you say about Eij and Eji?

(c) Suppose the price elasticity of demand matrix for two goods is

E =

[
−1 −1
−1 −1

]
.

Describe the nullspace of E, and give an interpretation (in one or two sentences). What kind of
goods could have such an elasticity matrix?

3.2 Color perception. Human color perception is based on the responses of three different types of color
light receptors, called cones. The three types of cones have different spectral-response characteristics,
and are called L, M, and, S because they respond mainly to long, medium, and short wavelengths,
respectively. In this problem we will divide the visible spectrum into 20 bands, and model the cones’
responses as follows:

Lcone =

20∑
i=1

lipi, Mcone =

20∑
i=1

mipi, Scone =

20∑
i=1

sipi,

where pi is the incident power in the ith wavelength band, and li, mi and si are nonnegative constants
that describe the spectral responses of the different cones. The perceived color is a complex function
of the three cone responses, i.e., the vector (Lcone,Mcone, Scone), with different cone response vectors
perceived as different colors. (Actual color perception is a bit more complicated than this, but the
basic idea is right.)

10

(a) Metamers. When are two light spectra, p and p̃, visually indistinguishable? (Visually identical
lights with different spectral power compositions are called metamers.)

(b) Visual color matching. In a color matching problem, an observer is shown a test light, and is
asked to change the intensities of three primary lights until the sum of the primary lights looks
like the test light. In other words, the observer is asked the find a spectrum of the form

pmatch = a1u+ a2v + a3w,

where u, v, w are the spectra of the primary lights, and ai are the intensities to be found, that is
visually indistinguishable from a given test light spectrum ptest. Can this always be done? Discuss
briefly.

(c) Visual matching with phosphors. A computer monitor has three phosphors, R, G, and B. It
is desired to adjust the phosphor intensities to create a color that looks like a reference test
light. Find weights that achieve the match or explain why no such weights exist. The data for
this problem is in color_perception.json, which contains the vectors wavelength, B phosphor,
G phosphor, R phosphor, L coefficients, M coefficients, S coefficients, and test light.

(d) Effects of illumination. An object’s surface can be characterized by its reflectance (i.e., the
fraction of light it reflects) for each band of wavelengths. If the object is illuminated with a light
spectrum characterized by Ii, and the reflectance of the object is ri (which is between 0 and 1),
then the reflected light spectrum is given by Iiri, where i = 1, . . . , 20 denotes the wavelength
band. Now consider two objects illuminated (at different times) by two different light sources,
say an incandescent bulb and sunlight. Sally argues that if the two objects look identical when
illuminated by a tungsten bulb, then they will look identical when illuminated by sunlight. Beth
disagrees: she says that two objects can appear identical when illuminated by a tungsten bulb,
but look different when lit by sunlight. Who is right? If Sally is right, explain why. If Beth is right
give an example of two objects that appear identical under one light source and different under
another. You can use the vectors sunlight and tungsten defined in color_perception.json as
the light sources.

Remark. Spectra, intensities, and reflectances are all nonnegative quantities, which the material of
EE263 doesn’t address. So just ignore this while doing this problem. These issues can be handled
using the material of EE364a, however.

3.3 Halfspace. Suppose a, b ∈ Rn are two given points. Show that the set of points in Rn that are closer
to a than b is a halfspace, i.e.:

{x | ‖x− a‖ ≤ ‖x− b‖ } = { x | cTx ≤ d}

for appropriate c ∈ Rn and d ∈ R. Give c and d explicitly, and draw a picture showing a, b, c, and the
halfspace.

3.4 Some properties of the product of two matrices. For each of the following statements, either show that
it is true, or give a (specific) counterexample.

• If AB is full rank then A and B are full rank.

• If A and B are full rank then AB is full rank.

• If A and B have zero nullspace, then so does AB.

• If A and B are onto, then so is AB.

You can assume that A ∈ Rm×n and B ∈ Rn×p. Some of the false statements above become true
under certain assumptions on the dimensions of A and B. As a trivial example, all of the statements
above are true when A and B are scalars, i.e., n = m = p = 1. For each of the statements above, find
conditions on n, m, and p that make them true. Try to find the most general conditions you can. You
can give your conditions as inequalities involving n, m, and p, or you can use more informal language
such as “A and B are both skinny.”

11

3.5 Rank of a product. Suppose that A ∈ R7×5 has rank 4, and B ∈ R5×7 has rank 3. What values can
Rank(AB) possibly have? For each value r that is possible, give an example, i.e., a specific A and
B with the dimensions and ranks given above, for which Rank(AB) = r. Please try to give simple
examples, that make it easy for you to justify that the ranks of A, B, and AB are what you claim they
are. You can use matlab to verify the ranks, but we don’t recommend it: numerical roundoff errors in
matlab’s calculations can sometimes give errors in computing the rank. (Matlab may still be useful;
you just have to double check that the ranks it finds are correct.) Explain briefly why the rank of AB
must be one of the values you give.

3.6 Linearizing range measurements. Consider a single (scalar) measurement y of the distance or range of
x ∈ Rn to a fixed point or beacon at a, i.e., y = ‖x− a‖.

(a) Show that the linearized model near x0 can be expressed as δy = kT δx, where k is the unit vector
(i.e., with length one) pointing from a to x0. Derive this analytically, and also draw a picture
(for n = 2) to demonstrate it.

(b) Consider the error e of the linearized approximation, i.e.,

e = ‖x0 + δx− a‖ − ‖x0 − a‖ − kT δx.

The relative error of the approximation is given by η = e/‖x0 − a‖. We know, of course, that the
absolute value of the relative error is very small provided δx is small. In many specific applications,
it is possible and useful to make a stronger statement, for example, to derive a bound on how
large the error can be. You will do that here. In fact you will prove that

0 ≤ η ≤ α2

2

where α = ‖δx‖/‖x0 − a‖ is the relative size of δx. For example, for a relative displacement of
α = 1%, we have η ≤ 0.00005, i.e., the linearized model is accurate to about 0.005%. To prove
this bound you can proceed as follows:

• Show that η = −1 +
√

1 + α2 + 2β − β where β = kT δx/‖x0 − a‖.
• Verify that |β| ≤ α.

• Consider the function g(β) = −1 +
√

1 + α2 + 2β − β with |β| ≤ α. By maximizing and
minimizing g over the interval −α ≤ β ≤ α show that

0 ≤ η ≤ α2

2
.

3.7 Orthogonal complement of a subspace. If V is a subspace of Rn we define V⊥ as the set of vectors
orthogonal to every element in V, i.e.,

V⊥ = { x | 〈x, y〉 = 0, ∀y ∈ V } .

(a) Verify that V⊥ is a subspace of Rn.

(b) Suppose V is described as the span of some vectors v1, v2, . . . , vr. Express V and V⊥ in terms of
the matrix V =

[
v1 v2 · · · vr

]
∈ Rn×r using common terms (range, nullspace, transpose,

etc.)

(c) Show that every x ∈ Rn can be expressed uniquely as x = v + v⊥ where v ∈ V, v⊥ ∈ V⊥. Hint:
let v be the projection of x on V.

(d) Show that dimV⊥ + dimV = n.

(e) Show that V ⊆ U implies U⊥ ⊆ V⊥.

12

3.8 Consider the linearized navigation equations from the lecture notes. Find the conditions under which
A has full rank. Describe the conditions geometrically (i.e., in terms of the relative positions of the
unknown coordinates and the beacons).

3.9 Suppose that 6 (Ax, x) = 0 for all x ∈ Rn, i.e., x and Ax always point in the same direction. What
can you say about the matrix A? Be very specific.

3.10 Proof of Cauchy-Schwarz inequality. You will prove the Cauchy-Schwarz inequality.

(a) Suppose a ≥ 0, c ≥ 0, and for all λ ∈ R, a+ 2bλ+ cλ2 ≥ 0. Show that |b| ≤
√
ac.

(b) Given v, w ∈ Rn explain why (v + λw)T (v + λw) ≥ 0 for all λ ∈ R.

(c) Apply (a) to the quadratic resulting when the expression in (b) is expanded, to get the Cauchy-
Schwarz inequality:

|vTw| ≤
√
vT v
√
wTw.

(d) When does equality hold?

3.11 Vector spaces over the Boolean field. In this course the scalar field, i.e., the components of vectors,
will usually be the real numbers, and sometimes the complex numbers. It is also possible to consider
vector spaces over other fields, for example Z2, which consists of the two numbers 0 and 1, with
Boolean addition and multiplication (i.e., 1 + 1 = 0). Unlike R or C, the field Z2 is finite, indeed,
has only two elements. A vector in Zn2 is called a Boolean vector. Much of the linear algebra for Rn

and Cn carries over to Zn2 . For example, we define a function f : Zn2 → Zm2 to be linear (over Z2) if
f(x + y) = f(x) + f(y) and f(αx) = αf(x) for every x, y ∈ Zn2 and α ∈ Z2. It is easy to show that
every linear function can be expressed as matrix multiplication, i.e., f(x) = Ax, where A ∈ Zm×n2 is a
Boolean matrix, and all the operations in the matrix multiplication are Boolean, i.e., in Z2. Concepts
like nullspace, range, independence and rank are all defined in the obvious way for vector spaces over
Z2. Although we won’t consider them in this course, there are many important applications of vector
spaces and linear dynamical systems over Z2. In this problem you will explore one simple example:
block codes. Linear block codes. Suppose x ∈ Zn2 is a Boolean vector we wish to transmit over an
unreliable channel. In a linear block code, the vector y = Gx is formed, where G ∈ Zm×n2 is the coding
matrix, and m > n. Note that the vector y is ‘redundant’; roughly speaking we have coded an n-bit
vector as a (larger) m-bit vector. This is called an (n,m) code. The coded vector y is transmitted over
the channel; the received signal ŷ is given by

ŷ = y + v,

where v is a noise vector (which usually is zero). This means that when vi = 0, the ith bit is transmitted
correctly; when vi = 1, the ith bit is changed during transmission. In a linear decoder, the received
signal is multiplied by another matrix: x̂ = Hŷ, where H ∈ Zn×m2 . One reasonable requirement is that
if the transmission is perfect, i.e., v = 0, then the decoding is perfect, i.e., x̂ = x. This holds if and
only if H is a left inverse of G, i.e., HG = In, which we assume to be the case.

(a) What is the practical significance of R(G)?

(b) What is the practical significance of N (H)?

(c) A one-bit error correcting code has the property that for any noise v with one component equal
to one, we still have x̂ = x. Consider n = 3. Either design a one-bit error correcting linear block
code with the smallest possible m, or explain why it cannot be done. (By design we mean, give
G and H explicitly and verify that they have the required properties.)

Remark: linear decoders are never used in practice; there are far better nonlinear ones.

13

3.12 Right inverses. This problem concerns the specific matrix

A =

 −1 0 0 −1 1
0 1 1 0 0
1 0 0 1 0

 .
This matrix is full rank (i.e., its rank is 3), so there exists at least one right inverse. In fact, there are
many right inverses of A, which opens the possibility that we can seek right inverses that in addition
have other properties. For each of the cases below, either find a specific matrix B ∈ R5×3 that satisfies
AB = I and the given property, or explain why there is no such B. In cases where there is a right
inverse B with the required property, you must briefly explain how you found your B. You must also
attach a printout of some Julia scripts that show the verification that AB = I. (We’ll be very angry
if we have to type in your 5 × 3 matrix into matlab to check it.) When there is no right inverse with
the given property, briefly explain why there is no such B.

(a) The second row of B is zero.

(b) The nullspace of B has dimension one.

(c) The third column of B is zero.

(d) The second and third rows of B are the same.

(e) B is upper triangular, i.e., Bij = 0 for i > j.

(f) B is lower triangular, i.e., Bij = 0 for i < j.

3.13 Nonlinear unbiased estimators. We consider the standard measurement setup:

y = Ax+ v,

where A ∈ Rm×n, x ∈ Rn is the vector of parameters we wish to estimate, y ∈ Rm is the vector of
measurements we take, and v ∈ Rm is the vector of measurement errors and noise. You may not assume
anything about the dimensions of A, its rank, nullspace, etc. If the function f : Rm → Rn satisfies
f(Ax) = x for all x ∈ Rn, then we say that f is an unbiased estimator (of x, given y). What this
means is that if f is applied to our measurement vector, and v = 0, then f returns the true parameter
value x. In EE263 we have studied linear unbiased estimators, which are unbiased estimators that
are also linear functions. Here, though, we allow the possibility that f is nonlinear (which we take to
mean, f is not linear). One of the following statements is true. Pick the statement that is true, and
justify it completely. You can quote any result given in the lecture notes.

A. There is no such thing as a nonlinear unbiased estimator. In other words, if f is any unbiased
estimator, then f must be a linear function. (This statement is taken to be true if there are no
unbiased estimators for a particular A.) If you believe this statement, explain why.

B. Nonlinear unbiased estimators do exist, but you don’t need them. In other words: it’s possible to
have a nonlinear unbiased estimator. But whenever there is a nonlinear unbiased estimator, there
is also a linear unbiased estimator. If you believe this statement, then give a specific example of a
matrix A, and an unbiased nonlinear estimator. Explain in the general case why a linear unbiased
estimator exists whenever there is a nonlinear one.

C. There are cases for which nonlinear unbiased estimators exist, but no linear unbiased estimator
exists. If you believe this statement, give a specific example of a matrix A, and a nonlinear
unbiased estimator, and also explain why no linear unbiased estimator exists.

3.14 Channel equalizer with disturbance rejection. A communication channel is described by y = Ax + v
where x ∈ Rn is the (unknown) transmitted signal, y ∈ Rm is the (known) received signal, v ∈ Rm is

14

the (unknown) disturbance signal, and A ∈ Rm×n describes the (known) channel. The disturbance v
is known to be a linear combination of some (known) disturbance patterns,

d1, . . . , dk ∈ Rm.

We consider linear equalizers for the channel, which have the form x̂ = By, where B ∈ Rn×m.
(We’ll refer to the matrix B as the equalizer; more precisely, you might say that Bij are the equalizer
coefficients.) We say the equalizer B rejects the disturbance pattern di if x̂ = x, no matter what x is,
when v = di. If the equalizer rejects a set of disturbance patterns, for example, disturbances d1, d3, and
d7 (say), then it can reconstruct the transmitted signal exactly, when the disturbance v is any linear
combination of d1, d3, and d7. Here is the problem. For the problem data given in cedr_data.m, find
an equalizer B that rejects as many disturbance patterns as possible. (The disturbance patterns are
given as an m× k matrix D, whose columns are the individual disturbance patterns.) Give the specific
set of disturbance patterns that your equalizer rejects, as in ‘My equalizer rejects three disturbance
patterns: d2, d3, and d6.’ (We only need one set of disturbances of the maximum size.) Explain how
you know that there is no equalizer that rejects more disturbance patterns than yours does. Show the
matlab verification that your B does indeed reconstruct x, and rejects the disturbance patterns you
claim it does. Show any other calculations needed to verify that your equalizer rejects the maximum
number of patterns possible.

3.15 Identifying a point on the unit sphere from spherical distances. In this problem we consider the unit
sphere in Rn, which is defined as the set of vectors with norm one: Sn = {x ∈ Rn | ‖x‖ = 1}. We
define the spherical distance between two vectors on the unit sphere as the distance between them,
measured along the sphere, i.e., as the angle between the vectors, measured in radians: If x, y ∈ Sn,
the spherical distance between them is

sphdist(x, y) = 6 (x, y),

where we take the angle as lying between 0 and π. (Thus, the maximum distance between two points
in Sn is π, which occurs only when the two points x, y are antipodal, which means x = −y.) Now
suppose p1, . . . , pk ∈ Sn are the (known) positions of some beacons on the unit sphere, and let x ∈ Sn
be an unknown point on the unit sphere. We have exact measurements of the (spherical) distances
between each beacon and the unknown point x, i.e., we are given the numbers

ρi = sphdist(x, pi), i = 1, . . . , k.

We would like to determine, without any ambiguity, the exact position of x, based on this information.
Find the conditions on p1, . . . , pk under which we can unambiguously determine x, for any x ∈ Sn,
given the distances ρi. You can give your solution algebraically, using any of the concepts used in class
(e.g., nullspace, range, rank), or you can give a geometric condition (involving the vectors pi). You
must justify your answer.

3.16 Some true/false questions. Determine if the following statements are true or false. No justification
or discussion is needed for your answers. What we mean by “true” is that the statement is true for
all values of the matrices and vectors given. You can’t assume anything about the dimensions of
the matrices (unless it’s explicitly stated), but you can assume that the dimensions are such that all
expressions make sense. For example, the statement “A+B = B+A” is true, because no matter what
the dimensions of A and B (which must, however, be the same), and no matter what values A and
B have, the statement holds. As another example, the statement A2 = A is false, because there are
(square) matrices for which this doesn’t hold. (There are also matrices for which it does hold, e.g., an
identity matrix. But that doesn’t make the statement true.)

a. If all coefficients (i.e., entries) of the matrix A are positive, then A is full rank.

b. If A and B are onto, then A+B must be onto.

15

c. If A and B are onto, then so is the matrix

[
A C
0 B

]
.

d. If A and B are onto, then so is the matrix

[
A
B

]
.

e. If the matrix

[
A
B

]
is onto, then so are the matrices A and B.

f. If A is full rank and skinny, then so is the matrix

[
A
B

]
.

3.17 Some true/false questions. Determine if the following statements are true or false. What we mean by
“true” is that the statement is true for all values of the matrices and vectors given. (You can assume
the entries of the matrices and vectors are all real.) You can’t assume anything about the dimensions
of the matrices (unless it’s explicitly stated), but you can assume that the dimensions are such that
all expressions make sense. For example, the statement “A+ B = B + A” is true, because no matter
what the dimensions of A and B (which must, however, be the same), and no matter what values A
and B have, the statement holds. As another example, the statement A2 = A is false, because there
are (square) matrices for which this doesn’t hold. (There are also matrices for which it does hold, e.g.,
an identity matrix. But that doesn’t make the statement true.)

(a) If all coefficients (i.e., entries) of the matrices A and B are nonnegative, and both A and B are
onto, then A+B is onto.

(b) N

 A
A+B

A+B + C

 = N (A) ∩N (B) ∩N (C).

(c) N

 A
AB
ABC

 = N (A) ∩N (B) ∩N (C).

(d) N (BTATAB +BTB) = N (B).

(e) If

[
A 0
0 B

]
is full rank, then so are the matrices A and B.

(f) If
[
A 0

]
is onto, then A is full rank.

(g) If A2 is onto, then A is onto.

(h) If ATA is onto, then A is onto.

(i) Suppose u1, . . . , uk ∈ Rn are nonzero vectors such that uTi uj ≥ 0 for all i, j. Then the vectors are

nonnegative independent, which means if α1, . . . , αk ∈ R are nonnegative scalars, and
∑k
i=1 αiui =

0, then αi = 0 for i = 1, . . . , k.

(j) Suppose A ∈ Rn×k and B ∈ Rn×m are skinny, full rank matrices that satisfy ATB = 0. Then
[A B] is skinny and full rank.

3.18 Temperatures in a multi-core processor. We are concerned with the temperature of a processor at two
critical locations. These temperatures, denoted T = (T1, T2) (in degrees C), are affine functions of the
power dissipated by three processor cores, denoted P = (P1, P2, P3) (in W). We make 4 measurements.
In the first, all cores are idling, and dissipate 10W. In the next three measurements, one of the processors
is set to full power, 100W, and the other two are idling. In each experiment we measure and note the
temperatures at the two critical locations.

P1 P2 P3 T1 T2

10W 10W 10W 27◦ 29◦

100W 10W 10W 45◦ 37◦

10W 100W 10W 41◦ 49◦

10W 10W 100W 35◦ 55◦

16

Suppose we operate all cores at the same power, p. How large can we make p, without T1 or T2

exceeding 70◦?

You must fully explain your reasoning and method, in addition to providing the numerical solution.

3.19 Relative deviation between vectors. Suppose a and b are nonzero vectors of the same size. The relative
deviation of b from a is defined as the distance between a and b, divided by the norm of a,

ηab =
‖a− b‖
‖a‖

.

This is often expressed as a percentage. The relative deviation is not a symmetric function of a and b;
in general, ηab 6= ηba.

Suppose ηab = 0.1 (i.e., 10%). How big and how small can be ηba be? How big and how small can
6 (a, b) be? Explain your reasoning. For bounding 6 (a, b), you can just draw some pictures; you don’t
have to give a formal argument.

3.20 Single sensor failure detection and identification. We have y = Ax, where A ∈ Rm×n is known, and
x ∈ Rn is to be found. Unfortunately, up to one sensor may have failed (but you don’t know which
one has failed, or even whether any has failed). You are given ỹ and not y, where ỹ is the same as y
in all entries except, possibly, one (say, the kth entry). If all sensors are operating correctly, we have
y = ỹ. If the kth sensor fails, we have ỹi = yi for all i 6= k.

The file one_bad_sensor.m, available on the course web site, defines A and ỹ (as A and ytilde).
Determine which sensor has failed (or if no sensors have failed). You must explain your method, and
submit your code.

For this exercise, you can use the matlab code rank([F g])==rank(F) to check if g ∈ R(F). (We will
see later a much better way to check if g ∈ R(F).)

3.21 Vector space multiple access (VSMA). We consider a system of k transmitter-receiver pairs that share a
common medium. The goal is for transmitter i to transmit a vector signal xi ∈ Rni to the ith receiver,
without interference from the other transmitters. All receivers have access to the same signal y ∈ Rm,
which includes the signals of all transmitters, according to

y = A1x1 + · · ·+Akxk,

where Ai ∈ Rm×ni . You can assume that the matrices Ai are skinny, i.e., m ≥ ni for i = 1, . . . , k.
(You can also assume that ni > 0 and Ai 6= 0, for i = 1, . . . , k.) Since the k transmitters all share the
same m-dimensional vector space, we call this vector space multiple access. Each receiver knows the
received signal y, and the matrices A1, . . . , Ak.

We say that the ith signal is decodable if the ith receiver can determine the value of xi, no matter what
values x1, . . . , xk have. Roughly speaking, this means that receiver i can process the received signal
so as to perfectly recover the ith transmitted signal, while rejecting any interference from the other
signals x1, . . . , xi−1, xi+1, . . . , xk. Whether or not the ith signal is decodable depends, of course, on
the matrices A1, . . . , Ak.

Here are four statements about decodability:

(a) Each of the signals x1, . . . , xk is decodable.

(b) The signal x1 is decodable.

(c) The signals x2, . . . , xk are decodable, but x1 isn’t.

(d) The signals x2, . . . , xk are decodable when x1 is 0.

For each of these statements, you are to give the exact (i.e., necessary and sufficient) conditions under
which the statement holds, in terms of A1, . . . , Ak and n1, . . . , nk. Each answer, however, must have a
very specific form: it must consist of a conjunction of one or more of the following properties:

17

I. rank(A1) < n1.

II. rank([A2 · · · Ak]) = n2 + · · ·+ nk.

III. rank([A1 · · · Ak]) = n1 + rank([A2 · · · Ak]).

IV. rank([A1 · · · Ak]) = rank(A1) + rank([A2 · · · Ak]).

As examples, possible answers (for each statement) could be “I” or “I and II”, or “I and II and IV”.
For some statements, there may be more than one correct answer; we will accept any correct one.

You can also give the response “My attorney has advised me not to respond to this question at this
time.” This response will receive partial credit.

For (just) this problem, we want only your answers. We do not want, and will not read, any further
explanation or elaboration, or any other type of answers.

3.22 Minimum distance and maximum correlation decoding. We consider a simple communication system,
in which a sender transmits one of N possible signals to a receiver, which receives a version of the signal
sent that is corrupted by noise. Based on the corrupted received signal, the receiver has to estimate
or guess which of the N signals was sent. We will represent the signals by vectors in Rn. We will
denote the possible signals as a1, . . . , aN ∈ Rn. These signals, which collectively are called the signal
constellation, are known to both the transmitter and receiver. When the signal ak is sent, the received
signal is arecd = ak + v, where v ∈ Rn is (channel or transmission) noise. In a communications course,
the noise v is described by a statistical model, but here we’ll just assume that it is ‘small’ (and in any
case, it does not matter for the problem). The receiver must make a guess or estimate as to which of
the signals was sent, based on the received signal arecd. There are many ways to do this, but in this
problem we explore two methods.

• Minimum distance decoding. Choose as the estimate of the decoded signal the one in the constel-
lation that is closest to what is received, i.e., choose ak that minimizes ‖arecd−ai‖. For example,
if we have N = 3 and

‖arecd − a1‖ = 2.2, ‖arecd − a2‖ = 0.3, ‖arecd − a3‖ = 1.1,

then the minimum distance decoder would guess that the signal a2 was sent.

• Maximum correlation decoding. Choose as the estimate of the decoded signal the one in the
constellation that has the largest inner product with the received signal, i.e., choose ak that
maximizes aTrecdai. For example, if we have N = 3 and

aTrecda1 = −1.1, aTrecda2 = 0.2, aTrecda3 = 1.0,

then the maximum correlation decoder would guess that the signal a3 was sent.

For both methods, let’s not worry about breaking ties. You can just assume that ties never occur;
one of the signals is always closest to, or has maximum inner product with, the received signal. Give
some general conditions on the constellation (i.e., the set of vectors a1, . . . , aN) under which these two
decoding methods are the same. By ‘same’ we mean this: for any received signal arecd, the decoded
signal for the two methods is the same. Give the simplest condition you can. You must show how
the decoding schemes always give the same answer, when your conditions hold. Also, give a specific
counterexample, for which your conditions don’t hold, and the methods differ. (We are not asking
you to show that when your conditions don’t hold, the two decoding schemes differ for some received
signal.) You might want to check simple cases like n = 1 (scalar signals), N = 2 (only two messages in
the constellation), or draw some pictures. But then again, you might not.

3.23 Reverse engineering a smoothing filter. A smoothing filter takes an input vector u ∈ Rn and produces
an output vector y ∈ Rn. (We will assume that n ≥ 3.) The output y is obtained as the minimizer of
the objective

J = J track + λJnorm + µJcont + κJ smooth,

18

where λ, µ, and κ are positive constants (weights), and

J track =

n∑
i=1

(ui − yi)2, Jnorm =

n∑
i=1

y2
i

are the tracking error and norm-squared of y, respectively, and

Jcont =

n∑
i=2

(yi − yi−1)2, J smooth =

n−1∑
i=2

(yi+1 − 2yi + yi−1)2

are measures of the continuity and smoothness of y, respectively.

Here is the problem: You have access to one input-output pair, i.e., an input u, and the associated
output y. Your goal is to find the weights λ, µ, and κ. In other words, you will reverse engineer the
smoothing filter, working from an input-output pair.

(a) Explain how to find λ, µ, and κ. (You do not need to worry about ensuring that these are positive;
you can assume this will occur automatically.)

(b) Carry out your method on the data found in rev_eng_smooth_data.m. Give the values of the
weights.

3.24 Flux balance analysis in systems biology. Flux balance analysis is based on a very simple model of the
reactions going on in a cell, keeping track only of the gross conservation of various chemical species
(metabolites) within the cell.

We focus on m metabolites in a cell, labeled M1, . . . ,Mm. There are n (reversible) reactions going
on, labeled R1, . . . , Rn, with reaction rates v1, . . . , vn ∈ R. A positive value of vi means the reaction
proceeds in the given direction, while a negative value of vi means the reaction proceeds in the reverse
direction. Each reaction has a (known) stoichiometry, which tells us the rate of consumption and
production of the metabolites per unit of reaction rate. The stoichiometry data is given by the stoi-
chiometry matrix S ∈ Rm×n, defined as follows: Sij is the rate of production of Mi due to unit reaction
rate vj = 1. Here we consider consumption of a metabolite as negative production; so Sij = −2, for
example, means that reaction Rj causes metabolite Mi to be consumed at a rate 2vj . If vj is negative,
then metabolite Mi is produced at the rate 2|vj |.
As an example, suppose reaction R1 has the form M1 →M2 + 2M3. The consumption rate of M1, due
to this reaction, is v1; the production rate of M2 is v1; and the production rate of M3 is 2v1. (The
reaction R1 has no effect on metabolites M4, . . . ,Mm.) This corresponds to a first column of S of the
form (−1, 1, 2, 0, . . . , 0).

Reactions are also used to model flow of metabolites into and out of the cell. For example, suppose
that reaction R2 corresponds to the flow of metabolite M1 into the cell, with v2 giving the flow rate.
(When v2 < 0, it means that |v2| is the flow rate of the metabolite out of the cell.) This corresponds
to a second column of S of the form (1, 0, . . . , 0).

The last reaction, Rn, corresponds to biomass creation, or cell growth, so the reaction rate vn is the cell
growth rate. The last column of S gives the amounts of metabolites used (when the entry is negative)
or created (when positive) per unit of cell growth rate.

Since our reactions include metabolites entering or leaving the cell, as well as those converted to biomass
within the cell, we have conservation of the metabolites, which can be expressed as the flux balance
equation Sv = 0.

Finally, we consider the effect of knocking out a gene. For simplicity, we’ll assume that reactions
1, . . . , n − 1 are each controlled by an associated gene, i.e., gene Gk controls reaction Rk. Knocking
out Gk has the effect of setting the associated reaction rate to zero.

19

Finally, we get to the point of all this. Suppose there is no v ∈ Rn that satisfies

Sv = 0, vk = 0, vn > 0.

This means there are no reaction rates consistent with cell growth, flux balance, and the gene knockout.
In this case, we predict that knocking out gene Gk will kill the cell, and call gene Gk an essential gene.

(a) Explain how to find all essential genes, given the stoichiometry matrix S. You can use any
concepts from the class, e.g., range, nullspace, least-squares.

(b) Carry out your method for the problem data given in flux_balance_bio_data.m. List all essential
genes.

Remark. This is a very simple version of the problem. In EE364a, you’ll see more sophisticated versions
of the same problem, that incorporate lower and upper limits on reactions rates and other realistic
constraints.

3.25 Memory of a linear time-invariant system. An input signal (sequence) ut ∈ R, t ∈ Z (i.e., t =
. . . ,−1, 0, 1, . . .) and output signal yt ∈ R, t ∈ Z, are related by a convolution operator

yt =

M∑
τ=1

hτut−τ , t ∈ Z,

where h = (h1, . . . , hM) are the impulse response coefficients of the convolution system. (Convolution
systems are also called linear time-invariant systems.) When hM 6= 0, the integer M is called the
memory of the system.

Now for the problem. You are given the input and output signal values over a time interval t = 1, . . . , T :

(u1, . . . , uT), (y1, . . . , yT).

The goal is to find the smallest memory M consistent with this data. Note that you do not know uτ
or yτ for τ ≤ 0 or τ > T , and of course, you do not know h.

(a) Explain how to solve this problem, using any concepts from the course. You may assume that
T > 2M .

(b) Use your method from part (a) on the data found in mem_lti_data.json. Give the value of M
found.

3.26 Layered medium. In this problem we consider a generic model for (incoherent) transmission in a layered
medium. The medium is modeled as a set of n layers, separated by n dividing interfaces, shown as
shaded rectangles in the figure below.

interface i= 21 3 n−1 n

x1 x2 x3 x4 xnxn−1

y1 y2 y3 y4 yn−1 yn

We let xi ∈ R denote the right-traveling wave amplitude in layer i, and we let yi ∈ R denote the
left-traveling wave amplitude in layer i, for i = 1, . . . , n. The right-traveling wave in the first layer is
called the incident wave, and the left-traveling wave in the first layer is called the reflected wave. The
scattering coefficient for the medium is defined as the ratio S = y1/x1 (assuming x1 6= 0).

20

The right- and left-traveling waves on each side of an interface are related by transmission and reflection.
The right-traveling wave of amplitude xi contributes the amplitude tixi to xi+1, where ti ∈ [0, 1] is
the transmission coefficient of the ith interface. It also contributes the amplitude rixi to yi, the left-
traveling wave, where ri ∈ [0, 1] is the reflection coefficient of the ith interface. We will assume that the
interfaces are symmetric, so the left-traveling wave with amplitude yi+1 contributes the wave amplitude
tiyi+1 to yi (via transmission) and wave amplitude riyi+1 to xi+1 (via reflection). Thus we have

xi+1 = tixi + riyi+1, yi = rixi + tiyi+1, i = 1, 2, . . . , n− 1.

We model the last interface as totally reflective, which means that yn = xn.

(a) Explain how to find the scattering coefficient S, given the transmission and reflection coefficients
for the first n− 1 layers.

(b) Carry out your method for a medium with n = 20 layers, and ti = 0.96, ri = 0.02 for i =
1, . . . , n − 1. Plot the left- and right-traveling wave amplitudes xi, yi versus i, and report the
value of S you find.

Hint: You may find the matlab function diag(x,k) useful.

(c) Fault location. A fault in interface k results in a reversal: tk = 0.02, rk = 0.96, with all other
interfaces having their nominal values ti = 0.96, ri = 0.02. You measure the scattering coefficient
S = Sfault with the fault (but you don’t have access to the left- or right-traveling waves with the
faulted interface). Explain how to find which interface is faulted. Carry out your method with
Sfault = 0.70. You may assume that the last (fully reflective) interface is not faulty. Be sure to
give the value of k that is most consistent with the measurement.

3.27 Digital circuit gate sizing. A digital circuit consists of a set of n (logic) gates, interconnected by wires.
Each gate has one or more inputs (typically between one and four), and one output, which is connected
via the wires to other gate inputs and possibly to some external circuitry. When the output of gate i is
connected to an input of gate j, we say that gate i drives gate j, or that gate j is in the fan-out of gate
i. We describe the topology of the circuit by the fan-out list for each gate, which tells us which other
gates the output of a gate connects to. We denote the fan-out list of gate i as FO(i) ⊆ {1, . . . , n}. We
can have FO(i) = ∅, which means that the output of gate i does not connect to the inputs of any of
the gates 1, . . . , n (presumably the output of gate i connects to some external circuitry). It’s common
to order the gates in such a way that each gate only drives gates with higher indices, i.e., we have
FO(i) ⊆ {i+ 1, . . . , n}. We’ll assume that’s the case here. (This means that the gate interconnections
form a directed acyclic graph.)

To illustrate the notation, a simple digital circuit with n = 4 gates, each with 2 inputs, is shown below.
For this circuit we have

FO(1) = {3, 4}, FO(2) = {3}, FO(3) = ∅, FO(4) = ∅.

1

2

3

4

21

The 3 input signals arriving from the left are called primary inputs, and the 3 output signals emerging
from the right are called primary outputs of the circuit. (You don’t need to know this, however, to
solve this problem.)

Each gate has a (real) scale factor or size xi. These scale factors are the design variables in the gate
sizing problem. They must satisfy 1 ≤ xi ≤ xmax, where xmax is a given maximum allowed gate scale
factor (typically on the order of 100). The total area of the circuit has the form

A =

n∑
i=1

aixi,

where ai are positive constants.

Each gate has an input capacitance C in
i , which depends on the scale factor xi as

C in
i = αixi,

where αi are positive constants.

Each gate has a delay di, which is given by

di = βi + γiC
load
i /xi,

where βi and γi are positive constants, and C load
i is the load capacitance of gate i. Note that the gate

delay di is always larger than βi, which can be intepreted as the minimum possible delay of gate i,
achieved only in the limit as the gate scale factor becomes large.

The load capacitance of gate i is given by

C load
i = Cext

i +
∑

j∈FO(i)

C in
j ,

where Cext
i is a positive constant that accounts for the capacitance of the interconnect wires and

external circuitry.

We will follow a simple design method, which assigns an equal delay T to all gates in the circuit, i.e.,
we have di = T , where T > 0 is given. For a given value of T , there may or may not exist a feasible
design (i.e., a choice of the xi, with 1 ≤ xi ≤ xmax) that yields di = T for i = 1, . . . , n. We can assume,
of course, that T > maxi βi, i.e., T is larger than the largest minimum delay of the gates.

Finally, we get to the problem.

(a) Explain how to find a design x? ∈ Rn that minimizes T , subject to a given area constraint
A ≤ Amax. You can assume the fanout lists, and all constants in the problem description are
known; your job is to find the scale factors xi. Be sure to explain how you determine if the design
problem is feasible, i.e., whether or not there is an x that gives di = T , with 1 ≤ xi ≤ xmax, and
A ≤ Amax.

Your method can involve any of the methods or concepts we have seen so far in the course. It can
also involve a simple search procedure, e.g., trying (many) different values of T over a range.

Note: this problem concerns the general case, and not the simple example shown above.

(b) Carry out your method on the particular circuit with data given in the file gate_sizing_data.json.
The fan-out lists are given as an n× n matrix F, with i, j entry one if j ∈ FO(i), and zero other-
wise. In other words, the ith row of F gives the fanout of gate i. The jth entry in the ith row is
1 if gate j is in the fan-out of gate i, and 0 otherwise.

Comment. You do not need to know anything about digital circuits; everything you need to know is
stated above.

22

3.28 Interpolation with rational functions. In this problem we consider a function f : R→ R of the form

f(x) =
a0 + a1x+ · · ·+ amx

m

1 + b1x+ · · ·+ bmxm
,

where a0, . . . , am, and b1, . . . , bm are parameters, with either am 6= 0 or bm 6= 0. Such a function is
called a rational function of degree m. We are given data points x1, . . . , xN ∈ R and y1, . . . , yN ∈ R,
where yi = f(xi). The problem is to find a rational function of smallest degree that is consistent with
this data. In other words, you are to find m, which should be as small as possible, and a0, . . . , am,
b1, . . . , bm, which satisfy f(xi) = yi. Explain how you will solve this problem, and then carry out
your method on the problem data given in ri_data.m. (This contains two vectors, x and y, that give
the values x1, . . . , xN , and y1, . . . , yN , respectively.) Give the value of m you find, and the coefficients
a0, . . . , am, b1, . . . , bm. Please show us your verification that yi = f(xi) holds (possibly with some small
numerical errors).

3.29 Transmit powers in a wireless network. We consider a network of n transmitter/receiver pairs. Trans-
mitter i transmits at power level pi, which must satisfy 0 ≤ pi ≤ Pmax, where Pmax is a given maximum
transmitter power (which is the same for all transmitters). The path gain from transmitter j to receiver
i is Gij (which are all nonnegative, and Gii are positive). The signal power at receiver i is given by
si = Giipi. The noise plus interference power at receiver i is given by

qi = σ +
∑
j 6=i

Gijpj

where σ > 0 is the self-noise power of the receivers (assumed to be the same for all receivers). The
signal to interference plus noise ratio (SINR) at receiver i is defined as Si = si/qi.

(a) Explain how to determine if there is a power allocation (i.e., a vector p) that satisfies the con-
straints 0 ≤ pi ≤ Pmax and achieves Si = Starget for i = 1, . . . , n, where Starget is a (positive)
target value of SINR. Explain how to find such a power allocation when it exists. You can assume
that a matrix appearing in your analysis is full rank, but please make this assumption explicit.

(b) Among the SINR target values Starget = 2, 2.1, 2.2, . . . , 3.9, 4, find the largest for which there is
a power allocation that satisfies the constraints 0 ≤ pi ≤ Pmax and achieves Si = Starget for
i = 1, . . . , n, for the problem data

G =

 1 .2 .1
.1 2 .1
.3 .1 3

 , σ = 0.01, Pmax = 0.1.

Remarks.

• This problem is related to, but independent of, homework exercise 2.1; for example, there is no
time or power update algorithm in this problem. (And no, you cannot solve this problem by
simply running the algorithm from exercise 2.1.)

• Yes, this problem includes constraints on p (i.e., that its entries are nonnegative and no more
than Pmax), which we have not covered in EE263. Still, you can solve it (with material we have
covered).

• If you solve this problem using methods that are more advanced or complicated than needed, we
will deduct points.

3.30 Checking some range and nullspace conditions. Explain how to determine whether or not the following
statements hold:

(a) R(A) = R(B).

23

(b) R(A) ⊥ R(B).

(c) R(A) ∩R(B) = {0}.
(d) R(C) ⊆ N (B).

The matrices have dimensions A ∈ Rm×n, B ∈ Rm×p, C ∈ Rp×m.

Your answer can involve standard matrix operations on the matrices above, such as addition, multipli-
cation, transposition, concatenation (i.e., building block matrices), and inversion, as well as a function
Rank(X), that gives the rank of a matrix X, and det(X), which gives the determinant of a (square)
matrix X.

For example, you might assert that (a) holds if and only if Rank([A B]) = m. (This is not correct;
it’s just an example of what your answer might look like.)

You do not need to give a proof or long justification that your conditions are correct; a short one or
two sentence explanation for each statement is fine. Points will be deducted from correct answers that
are substantially longer than they need to be, or are confusing (to us).

3.31 Solving underdetermined equations for a sparse x. Suppose that y = Ax, where A ∈ Rm×n, with
m < n (so these equations are underdetermined). You are given A and y, but not x. Without any
further assumptions, you cannot determine x. But now we add the additional information that x has
k < n nonzero entries. You are told k, the number of nonzero entries in x, but not the particular
indices of the entries of x that are nonzero. In some cases, it is possible to determine x (given the
additional information that it has k nonzeros), even though the linear equations are underdetermined.
(This is a basic problem in a fascinating area of current research called compressed sensing, compressive
sampling, and several other names. Of course, you don’t need to know any of this research to solve
this problem.)

Now consider the specific case with A, y, and k given in the file underdet_sparse_data.m.

Choose one of the following.

(a) You can’t find x. To show this, find x and x̃, not the same, each with k nonzero entries, which
satisfy y = Ax = Ax̃.

(b) You can find x. Find x, and verify that it satisfies y = Ax, and has k nonzero entries. Explain
how you know that there is no other x̃, with k nonzero entries, that satisfies y = Ax.

In either case, give the code that you use to verify that the required property holds (and in the second
case, that the x you found is the only one).

Your solution to either problem can use any of the concepts and methods we have covered in the class
so far: QR factorization, rank, range, nullspace, least-squares approximate solutions, and so on. Your
solution can involve a loop or loops over a finite (and possibly large) number of calculations involving
the ideas above.

3.32 Numerical differentiation formulas. Suppose we want to compute the nth derivative f (n)(x) of a
function f : R→ R at a point x ∈ R. A (2d+ 1)-point approximation of f (n)(x) has the form

f̂
(n)
d (x) =

1

δn

+d∑
k=−d

ckf(x+ kδ),

where c−d, . . . , c+d ∈ R are coefficients that must be determined, and δ is the grid size. (We assume
that the function f is known on a grid of equally spaced points, and δ is the distance between points
where f is known; the points where f is known are called sample points.)

24

(a) Suppose f has a Taylor-series expansion at x:

f(z) =

∞∑
m=0

f (m)(x)

m!
(z − x)m.

Show that we can express f̂
(n)
d (x) as

f̂
(n)
d (x) =

∞∑
m=0

αm(n, d)δm−nf (m)(x).

Give an expression for αm(n, d).

(b) We need to choose 2d + 1 coefficients: c−d, . . . , c+d. This suggests that we can control 2d + 1 of
the coefficients αm(n, d). Suppose we choose the ck such that

αm(n, d) =

{
1 m = n,
0 m ∈ {0, . . . , 2d} − {n}.

Then, we have that

f̂
(n)
d (x) =

∞∑
m=0

αm(n, d)δm−nf (m)(x) = f (n)(x) +O(δ2d−n+1).

In other words, the error in our approximation of f (n)(x) decreases like δ2d−n+1, where δ is
the distance between sample points. Explain how to choose the ck in order to satisfy the given
conditions on the αm(n, d). Report the values of ck you get with n = 2, and d = 1, 2, 3.

(c) Consider the function
f(x) = exp(cos(10x)).

Compute the second derivative of f(x). (We want you to differentiate the function using the
rules of calculus so you can compare your numerical-differentiation rules to the exact value of the

derivative.) For n = 2, and d = 1, 2, make a plot of the log-approximation error log(|f̂ (n)
d (1) −

f (n)(1)|) versus the negative log grid size − log(δ) using values of δ ranging from 10−6 to 10−1.
Briefly comment on the results.

25

Lecture 4 – Orthonormal sets of vectors and QR factorization

4.1 Bessel’s inequality. Suppose the columns of U ∈ Rn×k are orthonormal. Show that ‖UTx‖ ≤ ‖x‖.
When do we have ‖UTx‖ = ‖x‖?

4.2 Orthogonal matrices.

(a) Show that if U and V are orthogonal, then so is UV .

(b) Show that if U is orthogonal, then so is U−1.

(c) Suppose that U ∈ R2×2 is orthogonal. Show that U is either a rotation or a reflection. Make
clear how you decide whether a given orthogonal U is a rotation or reflection.

4.3 Projection matrices. A matrix P ∈ Rn×n is called a projection matrix if P = PT and P 2 = P .

(a) Show that if P is a projection matrix then so is I − P .

(b) Suppose that the columns of U ∈ Rn×k are orthonormal. Show that UUT is a projection matrix.
(Later we will show that the converse is true: every projection matrix can be expressed as UUT

for some U with orthonormal columns.)

(c) Suppose A ∈ Rn×k is full rank, with k ≤ n. Show that A(ATA)−1AT is a projection matrix.

(d) If S ⊆ Rn and x ∈ Rn, the point y in S closest to x is called the projection of x on S. Show
that if P is a projection matrix, then y = Px is the projection of x on R(P). (Which is why such
matrices are called projection matrices . . .)

4.4 Reflection through a hyperplane. Find the matrix R ∈ Rn×n such that reflection of x through the
hyperplane {z | aT z = 0} (with a 6= 0) is given by Rx. Verify that the matrix R is orthogonal. (To
reflect x through the hyperplane means the following: find the point z on the hyperplane closest to
x. Starting from x, go in the direction z − x through the hyperplane to a point on the opposite side,
which has the same distance to z as x does.)

4.5 Sensor integrity monitor. A suite ofm sensors yields measurement y ∈ Rm of some vector of parameters
x ∈ Rn. When the system is operating normally (which we hope is almost always the case) we have
y = Ax, where m > n. If the system or sensors fail, or become faulty, then we no longer have the
relation y = Ax. We can exploit the redundancy in our measurements to help us identify whether such
a fault has occured. We’ll call a measurement y consistent if it has the form Ax for some x ∈ Rn. If
the system is operating normally then our measurement will, of course, be consistent. If the system
becomes faulty, we hope that the resulting measurement y will become inconsistent, i.e., not consistent.
(If we are really unlucky, the system will fail in such a way that y is still consistent. Then we’re out of
luck.) A matrix B ∈ Rk×m is called an integrity monitor if the following holds:

• By = 0 for any y which is consistent.

• By 6= 0 for any y which is inconsistent.

If we find such a matrix B, we can quickly check whether y is consistent; we can send an alarm if
By 6= 0. Note that the first requirement says that every consistent y does not trip the alarm; the
second requirement states that every inconsistent y does trip the alarm. Finally, the problem. Find an
integrity monitor B for the matrix

A =


1 2 1
1 −1 −2
−2 1 3

1 −1 −2
1 1 0

 .

26

Your B should have the smallest k (i.e., number of rows) as possible. As usual, you have to explain
what you’re doing, as well as giving us your explicit matrix B. You must also verify that the matrix
you choose satisfies the requirements. Hints:

• You might find one or more of the matlab commands orth, null, or qr useful. Then again, you
might not; there are many ways to find such a B.

• When checking that your B works, don’t expect to have By exactly zero for a consistent y; because
of roundoff errors in computer arithmetic, it will be really, really small. That’s OK.

• Be very careful typing in the matrix A. It’s not just a random matrix.

4.6 Householder reflections. A Householder matrix is defined as

Q = I − 2uuT ,

where u ∈ Rn is normalized, that is, uTu = 1.

(a) Show that Q is orthogonal.

(b) Show that Qu = −u. Show that Qv = v, for any v such that uT v = 0. Thus, multiplication by Q
gives reflection through the plane with normal vector u.

(c) Show that detQ = −1.

(d) Given a vector x ∈ Rn, find a unit-length vector u for which Qx lies on the line through e1. Hint:
Try a u of the form u = v/‖v‖, with v = x + αe1 (find the appropriate α and show that such
a u works . . .) Compute such a u for x = (3, 2, 4, 1, 5). Apply the corresponding Householder
reflection to x to find Qx.

Note: Multiplication by an orthogonal matrix has very good numerical properties, in the sense that it
does not accumulate much roundoff error. For this reason, Householder reflections are used as building
blocks for fast, numerically sound algorithms.

4.7 Finding a basis for the intersection of ranges.

(a) Suppose you are given two matrices, A ∈ Rn×p and B ∈ Rn×q. Explain how you can find a
matrix C ∈ Rn×r, with independent columns, for which

R(C) = R(A) ∩R(B).

This means that the columns of C are a basis for R(A) ∩R(B).

(b) Carry out the method described in part (a) for the particular matrices A and B defined in
intersect_range_data.m. Be sure to give us your matrix C, as well as the matlab (or other)
code that generated it. Verify that R(C) ⊆ R(A) and R(C) ⊆ R(B), by showing that each
column of C is in the range of A, and also in the range of B.

Please carefully separate your answers to part (a) (the general case) and part (b) (the specific case).

4.8 Groups of equivalent statements. In the list below there are 11 statements about two square matrices
A and B in Rn×n.

(a) R(B) ⊆ R(A).

(b) there exists a matrix Y ∈ Rn×n such that B = Y A.

(c) AB = 0.

(d) BA = 0.

(e) rank([A B]) = rank(A).

27

(f) R(A) ⊥ N (BT).

(g) rank(

[
A
B

]
) = rank(A).

(h) R(A) ⊆ N (B).

(i) there exists a matrix Z ∈ Rn×n such that B = AZ.

(j) rank([A B]) = rank(B).

(k) N (A) ⊆ N (B).

Your job is to collect them into (the largest possible) groups of equivalent statements. Two statements
are equivalent if each one implies the other. For example, the statement ‘A is onto’ is equivalent to
‘N (A) = {0}’ (when A is square, which we assume here), because every square matrix that is onto has
zero nullspace, and vice versa. Two statements are not equivalent if there exist (real) square matrices
A and B for which one holds, but the other does not. A group of statements is equivalent if any pair
of statements in the group is equivalent.

We want just your answer, which will consist of lists of mutually equivalent statements; we do not need
any justification.

Put your answer in the following specific form. List each group of equivalent statements on a line, in
(alphabetic) order. Each new line should start with the first letter not listed above. For example, you
might give your answer as

a, c, d, h
b, i
e
f, g, j, k.

This means you believe that statements a, c, d, and h are equivalent; statements b and i are equivalent;
and statements f, g, j, and k are equivalent. You also believe that the first group of statements is not
equivalent to the second, or the third, and so on.

4.9 Determinant of an orthogonal matrix. Suppose Q ∈ Rn×n is orthogonal. What can you say about its
determinant?

4.10 Tellegen’s theorem. An electrical circuit has n nodes and b branches, with topology described by
a directed graph. (The direction of each edge is the reference flow direction in the branch: current
flowing in this direction is considered positive, while current flow in the opposite direction is considered
negative.) The directed graph is given by the incidence matrix A ∈ Rn×b, defined as

Aik =

 +1 edge k leaves node i
−1 edge k enters node i
0 otherwise.

Each node in the circuit has a potential; each branch has a voltage and current. We let e ∈ Rn denote
the vector of node potentials, v ∈ Rb the vector of branch voltages, and j ∈ Rb the vector of branch
currents.

(a) Kirchhoff’s current law (KCL) states that, for each node, the sum of the currents on branches
entering the node equals the sum of the currents on branches leaving the node. Show that this
can be expressed Aj = 0, i.e., j ∈ N (A).

(b) Kirchhoff’s voltage law (KVL) states that the voltage across any branch is the difference between
the potential at the node the branch leaves and the potential at the node the branch enters. Show
that this can be expressed v = AT e, i.e., v ∈ R(AT).

28

(c) Tellegen’s theorem. Tellegen’s theorem states that for any circuit, we have vT j = 0. Explain how
this follows from parts (a) and (b) above. The product vkjk is the power entering (or dissipated by)
branch k (when vkjk < 0, |vkjk| is the power supplied by branch k). We can interpret Tellegen’s
theorem as saying that the total power supplied by branches that supply power is equal to the
total power dissipated by branches that dissipate power. In other words, Tellegen’s theorem is a
power conservation law.

4.11 Norm preserving implies orthonormal columns. In lecture we saw that if A ∈ Rm×n has orthonormal
columns, i.e., ATA = I, then for any vector x ∈ Rn we have ‖Ax‖ = ‖x‖. In other words, multiplication
by such a matrix preserves norm.

Show that the converse holds: If A ∈ Rm×n satisfies ‖Ax‖ = ‖x‖ for all x ∈ Rn, then A has
orthonormal columns (and in particular, m ≥ n).

Hint. Start with ‖Ax‖2 = ‖x‖2, and try x = ei, and also x = ei + ej , for all i 6= j.

4.12 Solving linear equations via QR factorization. Consider the problem of solving the linear equations
Ax = y, with A ∈ Rn×n nonsingular, and y given. We can use the Gram-Schmidt procedure to
compute the QR factorization of A, and then express x as x = A−1y = R−1(QTx) = R−1z, where
z = QT y. In this exercise, you’ll develop a method for computing x = R−1z, i.e., solving Rx = z,
when R is upper triangular and nonsingular (which means its diagonal entries are all nonzero).

The trick is to first find xn; then find xn−1 (remembering that now you know xn); then find xn−2

(remembering that now you know xn and xn−1); and so on. The algorithm you will discover is called
back substitution, because you are substituting known or computed values of xi into the equations to
compute the next xi (in reverse order). Be sure to explain why the algorithm you describe cannot fail.

29

Lecture 5 – Least-squares

5.1 Least-squares residuals. Suppose A is skinny and full-rank. Let xls be the least-squares approximate
solution of Ax = y, and let yls = Axls. Show that the residual vector r = y − yls satisfies

‖r‖2 = ‖y‖2 − ‖yls‖2.

Also, give a brief geometric interpretation of this equality (just a couple of sentences, and maybe a
conceptual drawing).

5.2 Complex linear algebra and least-squares. Most of the linear algebra you have seen is unchanged when
the scalars, matrices, and vectors are complex, i.e., have complex entries. For example, we say a set of
complex vectors {v1, . . . , vn} is dependent if there exist complex scalars α1, . . . , αn, not all zero, such
that α1v1 + · · · + αnvn = 0. There are some slight differences when it comes to the inner product
and other expressions that, in the real case, involve the transpose operator. For complex matrices (or
vectors) we define the Hermitian conjugate as the complex conjugate of the transpose. We denote this
as A∗, which is equal to (A)T . Thus, the ij entry of the matrix A∗ is given by (Aji). The Hermitian
conjugate of a matrix is sometimes called its conjugate transpose (which is a nice, explanatory name).
Note that for a real matrix or vector, the Hermitian conjugate is the same as the transpose. We define
the inner product of two complex vectors u, v ∈ Cn as

〈u, v〉 = u∗v,

which, in general, is a complex number. The norm of a complex vector is defined as

‖u‖ =
√
〈u, u〉 =

(
|u1|2 + · · ·+ |un|2

)1/2
.

Note that these two expressions agree with the definitions you already know when the vectors are real.
The complex least-squares problem is to find the x ∈ Cn that minimizes ‖Ax− y‖2, where A ∈ Cm×n

and y ∈ Cm are given. Assuming A is full rank and skinny, the solution is xls = A†y, where A† is the
(complex) pseudo-inverse of A, given by

A† = (A∗A)
−1
A∗.

(Which also reduces to the pseudo-inverse you’ve already seen when A is real). There are two general
approaches to dealing with complex linear algebra problems. In the first, you simply generalize all the
results to work for complex matrices, vectors, and scalars. Another approach is to represent complex
matrices and vectors using real matrices and vectors of twice the dimensions, and then you apply what
you already know about real linear algebra. We’ll explore that idea in this problem. We associate with
a complex vector u ∈ Cn a real vector ũ ∈ R2n, given by

ũ =

[
<u
=u

]
.

We associate with a complex matrix A ∈ Cm×n the real matrix Ã ∈ R2m×2n given by

Ã =

[
<A −=A
=A <A

]
.

(a) What is the relation between 〈u, v〉 and 〈ũ, ṽ〉? Note that the first inner product involves complex
vectors and the second involves real vectors.

(b) What is the relation between ‖u‖ and ‖ũ‖?
(c) What is the relation between Au (complex matrix-vector multiplication) and Ãũ (real matrix-

vector multiplication)?

(d) What is the relation between ÃT and A∗?

(e) Using the results above, verify that A†y solves the complex least-squares problem of minimizing
‖Ax− y‖ (where A, x, y are complex). Express A†y in terms of the real and imaginary parts of A
and y. (You don’t need to simplify your expression; you can leave block matrices in it.)

30

Lecture 6 – Least-squares applications

6.1 AR system identification. In this problem you will use least-squares to develop and validate auto-
regressive (AR) models of a system from some input/output (I/O) records. You are given I/O records

u(1), . . . , u(N), y(1), . . . , y(N),

which are the measured input and output of an unknown system. You will use least-squares to find
approximate models of the form

y(t) = a0u(t) + b1y(t− 1) + · · ·+ bny(t− n).

Specifically you will choose coefficients a0, b1, . . . , bn that minimize

N∑
t=n+1

(y(t)− a0u(t)− b1y(t− 1)− · · · − bny(t− n))
2

where u, y are the given data record. The squareroot of this quantity is the residual norm (on the

model data). Dividing by
√∑N

t=n+1 y(t)2 yields the relative error. You’ll plot this as a function of n

for n = 1, . . . , 35. To validate or evaluate your models, you can try them on validation data records

ũ(1), . . . , ũ(N), ỹ(1), . . . , ỹ(N).

To find the predictive ability of an AR model with coefficients a0, b1, . . . , bn, you can form the signal

ŷ(t) = a0ũ(t) + b1ỹ(t− 1) + · · ·+ bnỹ(t− n)

for t = n+ 1, . . . , N , and compare it to the actual output signal, ỹ. You will plot the squareroot of the
sum of squares of the difference, divided by the squareroot of the sum of squares of ỹ, for n = 1, . . . , 35.
Compare this to the plot above. Briefly discuss the results. To develop the models for different values
of n, you can use inefficient code that just loops over n; you do not have to try to use an efficient
method based on one QR factorization. The file IOdata.m contains the data for this problem and is
available on the class web page. The toeplitz() command may be helpful.

6.2 The middle inverse. In this problem we consider the matrix equation

AXB = I,

where A ∈ Rn×p, B ∈ Rq×n, and X ∈ Rp×q. The matrices A and B are given, and the goal is to
find a matrix X that satisfies the equation, or to determine that no such matrix exists. (When such
an X exists, we call it a middle inverse of the pair A, B. It generalizes the notions of left-inverse
and right-inverse: When A = I, X is a left-inverse of B, and when B = I, X is a right-inverse of
A.) You will solve a specific instance of this problem, with data (i.e., the matrices A and B) given
in the mfile axb_data.m. If you think there is no X that satisfies AXB = I, explain why this is the
case. Your explanation should be as concrete as possible. If you succeed in finding an X that satisfies
AXB = I, please give it. You must explain how you found it, and you must submit the code that
you used to generate your solution. You must also submit the matlab code and output showing that
you checked that AXB = I holds (up to very small numerical errors). You can do this by typing
norm(A*X*B-eye(n)) in matlab, and submitting a printout of what matlab prints out. (We haven’t
yet studied the matrix norm, but it doesn’t matter. Like the norm of a vector, it measures size, and
here you are using it only to check that AXB − I is small.)

The following interpretation is not needed to solve the problem. We give it just to mention a concrete
situation where a problem like this one might arise. One situation where this problem comes up is a
nonstandard filtering or equalization problem. A vector signal x ∈ Rn is first processed by one channel,

31

represented by B. At this point the signal is available for some filtering or processing by us, which is
represented by the matrix X. After this processing, it is acted on by another channel, given by A. Our
goal is to do the intermediate processing in such a way that it undoes the effect of the first and last
channels.

6.3 Approximate inductance formula. The figure below shows a planar spiral inductor, implemented in
CMOS, for use in RF circuits.

d

D

w

The inductor is characterized by four key parameters:

• n, the number of turns (which is a multiple of 1/4, but that needn’t concern us)

• w, the width of the wire

• d, the inner diameter

• D, the outer diameter

The inductance L of such an inductor is a complicated function of the parameters n, w, d, and D. The
inductance L can be found by solving Maxwell’s equations, which takes considerable computer time, or
by fabricating the inductor and measuring the inductance. In this problem you will develop a simple
approximate inductance model of the form

L̂ = αnβ1wβ2dβ3Dβ4 ,

where α, β1, β2, β3, β4 ∈ R are constants that characterize the approximate model. (since L is positive,
we have α > 0, but the constants β2, . . . , β4 can be negative.) This simple approximate model, if
accurate enough, can be used for design of planar spiral inductors. The file inductor data.json on
the course web site contains data for 50 inductors. (The data is real, not that it would affect how you
solve the problem . . .) For inductor i, we give parameters ni, wi, di, and Di (all in µm), and also, the
inductance Li (in nH) obtained from measurements. (The data are organized as vectors of length 50.
Thus, for example, w13 gives the wire width of inductor 13.) Your task, i.e., the problem, is to find α,
β1, . . . , β4 so that

L̂i = αnβ1

i w
β2

i d
β3

i D
β4

i ≈ Li for i = 1, . . . , 50.

Your solution must include a clear description of how you found your parameters, as well as their actual
numerical values. Note that we have not specified the criterion that you use to judge the approximate
model (i.e., the fit between L̂i and Li); we leave that to your engineering judgment. But be sure to
tell us what criterion you use. We define the percentage error between L̂i and Li as

ei = 100|L̂i − Li|/Li.

32

Find the average percentage error for your model, i.e., (e1 + · · · + e50)/50. (We are only asking you
to find the average percentage error for your model; we do not require that your model minimize the
average percentage error.) Hint: you might find it easier to work with logL.

6.4 Quadratic extrapolation of a time series, using least-squares fit. We are given a series z up to time t.
We extrapolate, or predict, z(t+ 1) based on a least-squares fit of a quadratic function to the previous
ten elements of the series, z(t), z(t − 1), . . . , z(t − 9). We’ll denote the predicted value of z(t + 1) by
ẑ(t + 1). More precisely, to find ẑ(t + 1), we find the quadratic function f(τ) = a2τ

2 + a1τ + a0 for
which

t∑
τ=t−9

(z(τ)− f(τ))
2

is minimized. The extrapolated value is then given by ẑ(t+ 1) = f(t+ 1).

(a) Show that

ẑ(t+ 1) = c


z(t)

z(t− 1)
...

z(t− 9)

 ,
where c ∈ R1×10 does not depend on t. Find c explicitly.

(b) Use the following matlab code to generate a time series z:

t = 1:1000;

z = 5*sin(t/10 + 2) + 0.1*sin(t) + 0.1*sin(2*t - 5);

Use the quadratic extrapolation method from part (a) to find ẑls(t) for t = 11, . . . , 1000. Find
the relative root-mean-square (RMS) error, which is given by(

(1/990)
∑1000
j=11(ẑ(j)− z(j))2

(1/990)
∑1000
j=11 z(j)

2

)1/2

.

(c) In a previous problem you developed a similar predictor for the same time series z. In that case
you obtained the quadratic extrapolator by interpolating the last three samples; now you are
obtaining it as the least squares fit to the last ten samples. Compare the RMS error for these
methods and plot z (the true values), ẑls (the estimated values using least-squares), and ẑint (the
estimated values using interpolation), on the same plot. Restrict your plot to t = 1, . . . , 100.

6.5 Image reconstruction from line integrals. In this problem we explore a simple version of a tomography
problem. We consider a square region, which we divide into an n× n array of square pixels, as shown
below.

P2

P1

Pn P2n Pn^2

Pn+1

33

The pixels are indexed column first, by a single index i ranging from 1 to n2, as shown above. We are
interested in some physical property such as density (say) which varies over the region. To simplify
things, we’ll assume that the density is constant inside each pixel, and we denote by xi the density in

pixel i, i = 1, . . . , n2. Thus, x ∈ Rn2

is a vector that describes the density across the rectangular array
of pixels. The problem is to estimate the vector of densities x, from a set of sensor measurements that
we now describe. Each sensor measurement is a line integral of the density over a line L. In addition,
each measurement is corrupted by a (small) noise term. In other words, the sensor measurement for
line L is given by

n2∑
i=1

lixi + v,

where li is the length of the intersection of line L with pixel i (or zero if they don’t intersect), and v
is a (small) measurement noise. This is illustrated below for a problem with n = 3. In this example,
we have l1 = l6 = l8 = l9 = 0.

lambda_k4

line_k

lambda_k2

P1

P2

P3

P4

lambda_k5

P5

P6

P8

P9

lambda_k3

lambda_k7

Now suppose we have N line integral measurements, associated with lines L1, . . . , LN . From these
measurements, we want to estimate the vector of densities x. The lines are characterized by the
intersection lengths

lij , i = 1, . . . , n2, j = 1, . . . , N,

where lij gives the length of the intersection of line Lj with pixel i. Then, the whole set of measurements

forms a vector y ∈ RN whose elements are given by

yj =

n2∑
i=1

lijxi + vj , j = 1, . . . , N.

And now the problem: you will reconstruct the pixel densities x from the line integral measurements y.
The class webpage contains the M-file tomo_data.m, which you should download and run in matlab.
It creates the following variables:

• N, the number of measurements (N),

• n_pixels, the side length in pixels of the square region (n),

• y, a vector with the line integrals yj , j = 1, . . . , N ,

34

• lines_d, a vector containing the displacement dj , j = 1, . . . , N , (distance from the center of the
region in pixels lengths) of each line, and

• lines_theta, a vector containing the angles θj , j = 1, . . . , N , of each line.

The file tmeasure.m, on the same webpage, shows how the measurements were computed, in case
you’re curious. You should take a look, but you don’t need to understand it to solve the problem. We
also provide the function line_pixel_length.m on the webpage, which you do need to use in order
to solve the problem. This function computes the pixel intersection lengths for a given line. That is,
given dj and θj (and the side length n), line_pixel_length.m returns a n × n matrix, whose i, jth
element corresponds to the intersection length for pixel i, j on the image. Use this information to find
x, and display it as an image (of n by n pixels). You’ll know you have it right. Matlab hints: Here are
a few functions that you’ll find useful to display an image:

• A=reshape(v,n,m), converts the vector v (which must have n*m elements) into an n×m matrix
(the first column of A is the first n elements of v, etc.),

• imagesc(A), displays the matrix A as an image, scaled so that its lowest value is black and its
highest value is white,

• colormap gray, changes matlab’s image display mode to grayscaled (you’ll want to do this to
view the pixel patch),

• axis image, redefines the axes of a plot to make the pixels square.

Note: While irrelevant to your solution, this is actually a simple version of tomography, best known
for its application in medical imaging as the CAT scan. If an x-ray gets attenuated at rate xi in pixel
i (a little piece of a cross-section of your body), the j-th measurement is

zj =

n2∏
i=1

e−xilij ,

with the lij as before. Now define yj = − log zj , and we get

yj =

n2∑
i=1

xilij .

6.6 Least-squares model fitting. In this problem you will use least-squares to fit several different types of
models to a given set of input/output data. The data consist of a scalar input sequence u, and a scalar
output sequence y, for t = 1, . . . , N . You will develop several different models that relate the signals u
and y.

• Memoryless models. In a memoryless model, the output at time t, i.e., y(t), depends only the
input at time t, i.e., u(t). Another common term for such a model is static.

constant model: y(t) = c0
static linear: y(t) = c1u(t)
static affine: y(t) = c0 + c1u(t)
static quadratic: y(t) = c0 + c1u(t) + c2u(t)2

• Dynamic models. In a dynamic model, y(t) depends on u(s) for some s 6= t. We consider some
simple time-series models (see problem 2 in the reader), which are linear dynamic models.

moving average (MA): y(t) = a0u(t) + a1u(t− 1) + a2u(t− 2)
autoregressive (AR): y(t) = a0u(t) + b1y(t− 1) + b2y(t− 2)
autoregressive moving average (ARMA): y(t) = a0u(t) + a1u(t− 1) + b1y(t− 1)

35

Note that in the AR and ARMA models, y(t) depends indirectly on all previous inputs, u(s) for
s < t, due to the recursive dependence on y(t − 1). For this reason, the AR and ARMA models
are said to have infinite memory. The MA model, on the other hand, has a finite memory : y(t)
depends only on the current and two previous inputs. (Another term for this MA model is 3-tap
system, where taps refer to taps on a delay line.)

Each of these models is specified by its parameters, i.e., the scalars ci, ai, bi. For each of these models,
find the least-squares fit to the given data. In other words, find parameter values that minimize the
sum-of-squares of the residuals. For example, for the ARMA model, pick a0, a1, and b1 that minimize

N∑
t=2

(y(t)− a0u(t)− a1u(t− 1)− b1y(t− 1))
2
.

(Note that we start the sum at t = 2 which ensures that u(t − 1) and y(t − 1) are defined.) For
each model, give the root-mean-square (RMS) residual, i.e., the squareroot of the mean of the optimal
residual squared. Plot the output ŷ predicted by your model, and plot the residual (which is y − ŷ).
The data for this problem are available from the class web page in the file uy data.json. This file
contains the vectors u and y and the scalar N (the length of the vectors). Now you can plot u, y, etc.
Note: the dataset u, y is not generated by any of the models above. It is generated by a nonlinear
recursion, which has infinite memory.

6.7 Least-squares deconvolution. A communications channel is modeled by a finite-impulse-response (FIR)
filter:

y(t) =

n−1∑
τ=0

u(t− τ)h(τ),

where u : Z→ R is the channel input sequence, y : Z→ R is the channel output, and h(0), . . . , h(n−1)
is the impulse response of the channel. In terms of discrete-time convolution we write this as y = h∗u.
You will design a deconvolution filter or equalizer which also has FIR form:

z(t) =

m−1∑
τ=0

y(t− τ)g(τ),

where z : Z → R is the filter output, y is the channel output, and g(0), . . . , g(m − 1) is the impulse
response of the filter, which we are to design. This is shown in the block diagram below.

u h

y

zg

The goal is to choose g = (g(0), . . . , g(m − 1)) so that the filter output is approximately the channel
input delayed by D samples, i.e., z(t) ≈ u(t−D). Since z = g ∗ h ∗ u (discrete-time convolution), this
means that we’d like

(g ∗ h)(t) ≈
{

0 t 6= D,
1 t = D

We will refer to g ∗ h as the equalized impulse response; the goal is to make it as close as possible to a
D-sample delay. Specifically, we want the least-squares equalizer is g that minimizes the sum-of-squares
error ∑

t 6=D

(g ∗ h)(t)2,

subject to the constraint
(g ∗ h)(D) = 1.

36

To solve the problem below you’ll need to get the file deconv data.m from the class web page in the
matlab files section. It will define the channel impulse response h as a matlab vector h. (Indices
in matlab run from 1 to n, while the argument of the channel impulse response runs from t = 0 to
t = n− 1, so h(3) in matlab corresponds to h(2).)

(a) Find the least-squares equalizer g, of length m = 20, with delay D = 12. Plot the impulse
responses of the channel (h) and the equalizer (g). Plot the equalized impulse response (g ∗ h).

(b) The vector y (also defined in deconv data.m) contains the channel output corresponding to a
signal u passed through the channel (i.e., y = h ∗ u). The signal u is binary, i.e., u(t) ∈ {−1, 1},
and starts at t = 0 (i.e., u(t) = 0 for t < 0). Pass y through the least-squares equalizer found in
part a, to form the signal z. Give a histogram plot of the amplitude distribution of both y and z.
(You can remove the first and last D samples of z before making the histogram plot.) Comment
on what you find.

Matlab hints: The command conv convolves two vectors; the command hist plots a histogram (of the
amplitude distribution).

6.8 Estimation with sensor offset and drift. We consider the usual estimation setup:

yi = aTi x+ vi, i = 1, . . . ,m,

where

• yi is the ith (scalar) measurement

• x ∈ Rn is the vector of parameters we wish to estimate from the measurements

• vi is the sensor or measurement error of the ith measurement

In this problem we assume the measurements yi are taken at times evenly spaced, T seconds apart,
starting at time t = T . Thus, yi, the ith measurement, is taken at time t = iT . (This isn’t really
material; it just makes the interpretation simpler.) You can assume that m ≥ n and the measurement
matrix

A =


aT1
aT2
...
aTm


is full rank (i.e., has rank n). Usually we assume (often implicitly) that the measurement errors vi are
random, unpredictable, small, and centered around zero. (You don’t need to worry about how to make
this idea precise.) In such cases, least-squares estimation of x works well. In some cases, however,
the measurement error includes some predictable terms. For example, each sensor measurement might
include a (common) offset or bias, as well as a term that grows linearly with time (called a drift). We
model this situation as

vi = α+ βiT + wi

where α is the sensor bias (which is unknown but the same for all sensor measurements), β is the drift
term (again the same for all measurements), and wi is part of the sensor error that is unpredictable,
small, and centered around 0. If we knew the offset α and the drift term β we could just subtract
the predictable part of the sensor signal, i.e., α + βiT from the sensor signal. But we’re interested in
the case where we don’t know the offset α or the drift coefficient β. Show how to use least-squares
to simultaneously estimate the parameter vector x ∈ Rn, the offset α ∈ R, and the drift coefficient
β ∈ R. Clearly explain your method. If your method always works, say so. Otherwise describe the
conditions (on the matrix A) that must hold for your method to work, and give a simple example
where the conditions don’t hold.

37

6.9 Estimating emissions from spot measurements. There are n sources of a pollutant, at known locations
s1, . . . , sn ∈ R2. Each source emits the pollutant at some emission rate; we let xj denote the emission
rate for source j. (These are positive, but to simplify things we won’t concern ourselves with that.)
The emission rates are to be determined, or estimated. We measure the total pollutant level at m
spots, located at t1, . . . , tm ∈ R2, which are known. The total pollutant measured at spot i is the sum
of the contributions from the n sources. The contribution from source j to measurement i is given by
αxj/‖sj − ti‖2, where α is a known (positive) constant. In other words, the pollutant concentration
from a source follows an inverse square law, and is proportional to the emission rate. We assume that
measurement spots do not coincide with the source locations, i.e., we do not have sj = ti for any i or
j. We also assume that none of the spot locations is repeated (i.e., we have ti 6= tj for i 6= j) and that
none of the source locations is repeated (i.e., we have si 6= sj for i 6= j).

(a) Give a specific example of source and spot measurement locations, with 4 sensors and 3 sources,
for which it is impossible to find the emission rates given the spot measurements. In this part,
we ignore the issue of noise or sensor errors; we assume the spot measurements are exactly as
described above. To show that your configuration is a valid example, give two specific different
sets of emission rates that yield identical spot measurements. You are free to (briefly) explain
your example using concepts such as range, nullspace, rank, and so on; but remember, we want
a specific numerical example, such as as s1 = [0 1]T , . . . , s3 = [1 2]T , t1 = [1 1]T , . . . , t4 = [3 2]T .
(And similarly for the two emission rates that give the same spot measurements.)

(b) Get the data from the file emissions_data.m that is available on the class web site. This file
defines three source locations (given as a 2 × 3 matrix; the columns give the locations), and ten
spot measurement locations (given as a 2×10 matrix). It also gives two sets of spot measurements:
one for part (b), and one for part (c). Be careful to use the right set of measurements for each
problem! The spot measurements are not perfect (as we assumed in part (a)); they contain small
noise and errors. Estimate the pollutant emission rates. Explain your method, and give your
estimate for the emissions rates of the three sources.

(c) Now we suppose that one of the spot measurments is faulty, i.e., its associated noise or error is far
larger than the errors of the other spot measurements. Explain how you would identify or guess
which one is malfunctioning, and then estimate the source emission rates. Carry out your method
on the data given in the matlab file. Be sure to tell us which spot measurement you believe to be
faulty, and what your guess of the emission rates is. (The emission rates are not the same as in
part (b), but the source and spot measurement locations are.)

6.10 Identifying a system from input/output data. We consider the standard setup:

y = Ax+ v,

where A ∈ Rm×n, x ∈ Rn is the input vector, y ∈ Rm is the output vector, and v ∈ Rm is the noise
or disturbance. We consider here the problem of estimating the matrix A, given some input/output
data. Specifically, we are given the following:

x(1), . . . , x(N) ∈ Rn, y(1), . . . , y(N) ∈ Rm.

These represent N samples or observations of the input and output, respectively, possibly corrupted
by noise. In other words, we have

y(k) = Ax(k) + v(k), k = 1, . . . , N,

where v(k) are assumed to be small. The problem is to estimate the (coefficients of the) matrix A,
based on the given input/output data. You will use a least-squares criterion to form an estimate Â of
A. Specifically, you will choose as your estimate Â the matrix that minimizes the quantity

J =

N∑
k=1

‖Ax(k) − y(k)‖2

38

over A.

(a) Explain how to do this. If you need to make an assumption about the input/output data to make
your method work, state it clearly. You may want to use the matrices X ∈ Rn×N and Y ∈ Rm×N

given by
X =

[
x(1) · · · x(N)

]
, Y =

[
y(1) · · · y(N)

]
in your solution.

(b) On the course web site you will find some input/output data for an instance of this problem in
the file sysid_data.json. Executing this Julia file will assign values to m, n, and N , and create
two matrices that contain the input and output data, respectively. The n×N matrix variable X

contains the input data x(1), . . . , x(N) (i.e., the first column of X contains x(1), etc.). Similarly,
the m × N matrix Y contains the output data y(1), . . . , y(N). You must give your final estimate
Â, your source code, and also give an explanation of what you did.

6.11 Robust least-squares estimation methods. We consider a standard measurement setup, with y = Ax+v,
where x ∈ Rn is a vector we’d like to estimate, y ∈ Rm is the vector of measurements, v ∈ Rm

is the vector of measurement errors, and A ∈ Rm×n. We assume that m > n, i.e., there are more
measurements than parameters to be estimated. The measurement error v is not known, but is assumed
to be small. The goal is to estimate x, given y. Here is the twist: we do not know the matrix A exactly.
In fact we calibrated our sensor system on k > 1 different days, and found the values

A(1), . . . , A(k)

for the matrix A, on the different days. These matrices are close to each other, but not exactly the
same. There is no pattern to the (small) variations between the matrices; for example, there is no
discernable drift; the variations appear to be small and random. You can assume that all of the
matrices are full rank, i.e., have rank n. Now suppose we have a measurement y taken on a day when
we did not calibrate the sensor system. We want to form an estimate x̂, based on this measurement.
We don’t know A exactly, but we can assume that it is close to the known values A(1), . . . , A(k) found
during calibration. A method for guessing x in this situtation is called a robust estimation method,
since it attempts to take into account the uncertainty in the matrix A. Three very reasonable proposals
for robust estimation are described below.

• The average then estimate method. First, we form the average of the calibration values,

Aavg =
1

k

k∑
j=1

A(j),

which is supposed to represent the most typical value of A. We then choose our estimate x̂ to
minimize the least squares residual using Aavg, i.e., to minimize ‖Aavgx̂ − y‖. We refer to this
value of x̂ as x̂ae, where the subscript stands for ‘average (then) estimate’. (You can assume that
Aavg is full rank.)

• The estimate then average method. First, we find the least-squares estimate of x for each of the
calibration values, i.e., we find x̂(j) that minimizes ‖A(j)x̂− y‖ over x̂, for j = 1, . . . , k. Since the
matrices A(j) are close but not equal, we find that the estimates x̂(j) are also close but not equal.
We find our final estimate of x as the average of these estimates:

x̂ea =
1

k

k∑
j=1

x̂(j).

(Here the subscript ‘ea’ stands for ‘estimate (then) average’.)

39

• Minimum RMS residuals method. If we make the guess x̂, then the residual, using the jth
calibrated value of A, is given by r(j) = A(j)x̂ − y. The RMS value of the collection of residuals
is given by 1

k

k∑
j=1

‖r(j)‖2
1/2

.

In the minimum RMS residual method, we choose x̂ to minimize this quantity. We denote this
estimate of x as x̂rms.

Here is the problem:

(a) For each of these three methods, say whether the estimate x̂ is a linear function of y. If it is
a linear function, give a formula for the matrix that gives x̂ in terms of y. For example, if you
believe that x̂ea is a linear function of y, then you should give a formula for Bea (in terms of
A(1), . . . , A(k)), where x̂ea = Beay.

(b) Are the three methods described above different? If any two are the same (for all possible values
of the data A(1), . . . , A(k) and y), explain why. If they are different, give a specific example in
which the estimates differ.

6.12 Estimating a signal with interference. This problem concerns three proposed methods for estimating
a signal, based on a measurement that is corrupted by a small noise and also by an interference, that
need not be small. We have

y = Ax+Bv + w,

where A ∈ Rm×n and B ∈ Rm×p are known. Here y ∈ Rm is the measurement (which is known),
x ∈ Rn is the signal that we want to estimate, v ∈ Rp is the interference, and w is a noise. The noise
is unknown, and can be assumed to be small. The interference is unknown, but cannot be assumed
to be small. You can assume that the matrices A and B are skinny and full rank (i.e., m > n,
m > p), and that the ranges of A and B intersect only at 0. (If this last condition does not hold,
then there is no hope of finding x, even when w = 0, since a nonzero interference can masquerade as
a signal.) Each of the EE263 TAs proposes a method for estimating x. These methods, along with
some informal justification from their proposers, are given below. Nikola proposes the ignore and
estimate method. He describes it as follows:

We don’t know the interference, so we might as well treat it as noise, and just ignore it
during the estimation process. We can use the usual least-squares method, for the model
y = Ax + z (with z a noise) to estimate x. (Here we have z = Bv + w, but that doesn’t
matter.)

Almir proposes the estimate and ignore method. He describes it as follows:

We should simultaneously estimate both the signal x and the interference v, based on y,
using a standard least-squares method to estimate [xT vT]T given y. Once we’ve estimated
x and v, we simply ignore our estimate of v, and use our estimate of x.

Miki proposes the estimate and cancel method. He describes it as follows:

Almir’s method makes sense to me, but I can improve it. We should simultaneously estimate
both the signal x and the interference v, based on y, using a standard least-squares method,
exactly as in Almir’s method. In Almir’s method, we then throw away v̂, our estimate
of the interference, but I think we should use it. We can form the “pseudo-measurement”
ỹ = y−Bv̂, which is our measurement, with the effect of the estimated interference subtracted
off. Then, we use standard least-squares to estimate x from ỹ, from the simple model
ỹ = Ax + z. (This is exactly as in Nikola’s method, but here we have subtracted off or
cancelled the effect of the estimated interference.)

40

These descriptions are a little vague; part of the problem is to translate their descriptions into more
precise algorithms.

(a) Give an explicit formula for each of the three estimates. (That is, for each method give a formula
for the estimate x̂ in terms of A, B, y, and the dimensions n,m, p.)

(b) Are the methods really different? Identify any pairs of the methods that coincide (i.e., always
give exactly the same results). If they are all three the same, or all three different, say so. Justify
your answer. To show two methods are the same, show that the formulas given in part (a) are
equal (even if they don’t appear to be at first). To show two methods are different, give a specific
numerical example in which the estimates differ.

(c) Which method or methods do you think work best? Give a very brief explanation. (If your answer
to part (b) is “The methods are all the same” then you can simply repeat here, “The methods
are all the same”.)

6.13 Vector time-series modeling. This problem concerns a vector time-series, y(1), . . . , y(T) ∈ Rn. The n
components of y(t) might represent measurements of different quantities, or prices of different assets,
at time period t. Our goal is to develop a model that allows us to predict the next element in the time
series, i.e., to predict y(t+ 1), given y(1), . . . , y(t). A consultant proposes the following model for the
time-series:

y(t) = Ay(t− 1) + v(t), t = 2, . . . , T,

where the matrix A ∈ Rn×n is the parameter of the model, and v(t) ∈ Rn is a signal that is small and
unpredictable. (We keep the definition of the terms ‘small’ and ‘unpredictable’ vague, since the exact
meaning won’t matter.) This type of model has several names. It is called an VAR(1) model, which is
short for vector auto-regressive, with one time lag. It is also called a Gauss-Markov model, which is a
fancy name for a linear system driven by a noise. Once we have a model of this form, we can predict
the next time-series sample using the formula

ŷ(t+ 1) = Ay(t), t = 1, . . . , T.

The idea here is that v(t) is unpredictable, so we simply replace it with zero when we estimate the
next time-series sample. The prediction error is given by

e(t) = ŷ(t)− y(t), t = 2, . . . , T.

The prediction error depends on the time-series data, and also A, the parameter in our model. There
is one more twist. It is known that y1(t+ 1), the first component of the next time-series sample, does
not depend on y2(t), . . . , yn(t). The second component, y2(t+ 1), does not depend on y3(t), . . . , yn(t).
In general, the ith component, yi(t + 1), does not depend on yi+1(t), . . . , yn(t). Roughly speaking,
this means that the current time-series component yi(t) only affects the next time-series components
y1(t + 1), . . . , yi(t + 1). This means that the matrix A is lower triangular, i.e., Aij = 0 for i < j. To
find the parameter A that defines our model, you will use a least-squares criterion. You will pick A
that minimizes the mean-square prediction error,

1

T − 1

T∑
t=2

‖e(t)‖2,

over all lower-triangular matrices. Carry out this method, using the data found in the vts_data.m,
which contains an n × T matrix Y, whose columns are the vector time-series samples at t = 1, . . . , T .
Explain your method, and submit the code that you use to solve the problem. Give your final estimated
model parameter A, and the resulting mean-square error. Compare your mean-square prediction error
to the mean-square value of y, i.e.,

1

T

T∑
t=1

‖y(t)‖2.

41

Finally, predict what you think y(T + 1) is, based on the data given.

6.14 Fitting a rational transfer function to frequency response data. This problem concerns a rational
function H : C→ C of the form

H(s) =
A(s)

B(s)
,

where A and B are the polynomials

A(s) = a0 + a1s+ · · ·+ ams
m, B(s) = 1 + b1s+ · · ·+ bms

m.

Here a0, . . . , am ∈ R and b1, . . . , bm ∈ R are real parameters, and s ∈ C is the complex independent
variable. We define a = (a0, . . . , am) ∈ Rm+1 and b = (b1, . . . , bm) ∈ Rm, i.e., a and b are vectors
containing the coefficients of A and B (not including the constant coefficient of B, which is fixed at
one). We are given noisy measurements of H at some points on the imaginary axis, i.e., some data

s1 = jω1, . . . , sN = jωN ∈ C, h1, . . . , hN ∈ C,

and hope to choose a and b so that we have H(si) ≈ hi. Here ω1, . . . , ωN are real and nonnegative,
and h1, . . . , hN are complex. To judge the quality of fit we use the mean-square error,

J =
1

N

N∑
i=1

|H(si)− hi|2.

Interpretation. (Not needed to solve the problem.) You can think of H as a rational transfer function,
with s the complex frequency variable. The data is a set of frequency response measurements, with
some measurement errors. The goal is to find a rational transfer function that fits the measured
frequency response. This problem explores a famous heuristic method, based on solving a sequence of
(linear) least-squares problems, for finding coefficients a, b that approximately minimize J . We start
by expressing J in the following (strange) way:

J =
1

N

N∑
i=1

∣∣∣∣A(si)− hiB(si)

zi

∣∣∣∣2 , zi = B(si), i = 1, . . . , N.

The method works by choosing a and b that minimize the lefthand expression (with zi fixed), then
updating the numbers zi using the righthand formula, and then repeating. More precisely, let k denote

the iteration number, with a(k), b(k), and z
(k)
i denoting the values of these parameters at iteration k,

and A(k), B(k) denoting the associated polynomials. To update these parameters from iteration k to

iteration k+1, we proceed as follows. First, we set z
(k+1)
i = B(k)(si), for i = 1, . . . , N . Then we choose

a(k+1) and b(k+1) that minimize

1

N

N∑
i=1

∣∣∣∣∣A(k+1)(si)− hiB(k+1)(si)

z
(k+1)
i

∣∣∣∣∣
2

.

(This can be done using ordinary linear least-squares.) We can start the iteration with z
(1)
i = 1,

i = 1, . . . , N (which is what would happen if we set B(0)(s) = 1). The iteration is stopped when (or
more accurately, if) successive iterates are very close, i.e., we have a(k+1) ≈ a(k), and b(k+1) ≈ b(k).

Several pathologies can arise in this algorithm. For example, we can end up with z
(k)
i = 0, or a certain

matrix can be less than full rank, which complicates solving the least-squares problem to find a(k) and
b(k). You can ignore these pathologies, however.

(a) Explain how to obtain a(k+1) and b(k+1), given z(k+1). You must explain the math; you may not
refer to any matlab notation or operators (and especially, backslash) in your explanation. Please
bear in mind that a0, . . . , am and b1, . . . , bm are real, whereas many other variables and data in
this problem are complex.

42

(b) Implement the method, and apply it to the data given in rat_data.m. This file contains the
data ω1, . . . , ωN , h1, . . . , hN , as well as m and N . Give the final coefficient vectors a, b, and the
associated final value of J . Terminate the algorithm when∥∥∥∥[a(k+1) − a(k)

b(k+1) − b(k)

]∥∥∥∥ ≤ 10−6.

Plot J versus iteration k, with J on a logarithmic scale, and k on a linear scale, using the command
semilogy. Plot |H(jω)| on a logarithmic scale versus ω on a linear scale (using semilogy), for
the first iteration, last iteration, and the problem data. To evaluate a polynomial in matlab,
you can either write your own (short) code, or use the matlab command polyval. This is a bit
tricky, since polyval expects the polynomial coefficients to be listed in the reverse order than we
use here. To evaluate A(s) in matlab you can use the command polyval(a(m+1:-1:1),s). To
evaluate b(s) you can use polyval([b(m:-1:1);1],s).

Note: no credit will be given for implementing any algorithm other than the one described in this
problem.

6.15 Quadratic placement. We consider an integrated circuit (IC) that contains N cells or modules that are
connected by K wires. We model a cell as a single point in R2 (which gives its location on the IC)
and ignore the requirement that the cells must not overlap. The positions of the cells are

(x1, y1), (x2, y2), . . . , (xN , yN),

i.e., xi gives the x-coordinate of cell i, and yi gives the y-coordinate of cell i. We have two types of cells:
fixed cells, whose positions are fixed and given, and free cells, whose positions are to be determined.
We will take the first n cells, at positions

(x1, y1), . . . , (xn, yn),

to be the free ones, and the remaining N − n cells, at positions

(xn+1, yn+1), . . . , (xN , yN),

to be the fixed ones. The task of finding good positions for the free cells is called placement. (The fixed
cells correspond to cells that are already placed, or external pins on the IC.) There are K wires that
connect pairs of the cells. We will assign an orientation to each wire (even though wires are physically
symmetric). Specifically, wire k goes from cell I(k) to cell J(k). Here I and J are functions that map
wire number (i.e., k) into the origination cell number (i.e., I(k)), and the destination cell number (i.e.,
J(k)), respectively. To describe the wire/cell topology and the functions I and J , we’ll use the node
incidence matrix A for the associated directed graph. The node incidence matrix A ∈ RK×N is defined
as

Akj =

 1 wire k goes to cell j, i.e., j = J(k)
−1 wire k goes from cell j, i.e., j = I(k)

0 otherwise.

Note that the kth row of A is associated with the kth wire, and the jth column of A is associated
with the jth cell. The goal in placing the free cells is to use the smallest amount of interconnect wire,
assuming that the wires are run as straight lines between the cells. (In fact, the wires in an IC are
not run on straight lines directly between the cells, but that’s another story. Pretending that the
wires do run on straight lines seems to give good placements.) One common method, called quadratic
placement, is to place the free cells in order to minimize the the total square wire length, given by

J =

K∑
k=1

(
(xI(k) − xJ(k))

2 + (yI(k) − yJ(k))
2
)
.

43

(a) Explain how to find the positions of the free cells, i.e.,

(x1, y1), . . . , (xn, yn),

that minimize the total square wire length. You may make an assumption about the rank of one
or more matrices that arise.

(b) In this part you will determine the optimal quadratic placement for a specific set of cells and
interconnect topology. The mfile qplace_data.m defines an instance of the quadratic placement
problem. Specifically, it defines the dimensions n, N , and K, and N − n vectors xfixed and
yfixed, which give the x- and y-coordinates of the fixed cells. The mfile also defines the node
incidence matrix A, which is K×N . Be sure to explain how you solve this problem, and to explain
the matlab source code that solves it (which you must submit). Give the optimal locations of the
free cells. Check your placement against various others, such as placing all free cells at the origin.
You will also find an mfile that plots a proposed placement in a nice way:
view_layout(xfree,yfree,xfixed,yfixed,A).
This mfile takes as argument the x- and y-coordinates of the free and fixed cells, as well as the node
incidence matrix that describes the wires. It plots the proposed placement. Plot your optimal
placement using view_layout.

6.16 Least-squares state tracking. Consider the system x(t+ 1) = Ax(t) + Bu(t) ∈ Rn, with x(0) = 0. We
do not assume it is controllable. Suppose xdes(t) ∈ Rn is given for t = 1, . . . , N (and is meant to be
the desired or target state trajectory). For a given input u, we define the mean-square tracking error
as

E(u) =
1

N

N∑
t=1

‖x(t)− xdes(t)‖2.

(a) Explain how to find uopt that minimizes E (in the general case). Your solution can involve a
(general) pseudo-inverse.

(b) True or false: If the system is controllable, there is a unique uopt that minimizes E(u). Briefly
justify your answer.

(c) Find E(uopt) for the specific system with

A =

 0.8 0.1 0.1
1 0 0
0 1 0

 , B =

 1
0
0

 ,
xdes(t) = [t 0 0]T , and N = 10.

6.17 Time series prediction. We consider an autonomous discrete-time linear system of the form

x(t+ 1) = Ax(t), y(t) = Cx(t) + v(t),

where x(t) ∈ Rn, y(t) ∈ R is the measured output signal, and v(t) ∈ R represents an output noise
signal. In this problem, you do not know the matrices A ∈ Rn×n or C ∈ R1×n, the state x(t)
(including the initial state x(0)), or even the system order n. You do know the measured output signal
for t = 1, . . . , p:

y(1), . . . , y(p).

We give you two more pieces of information: the system order n is less than 20, and the RMS value of

the noise, i.e.,
(
(1/p)

∑p
t=1 v(t)2

)1/2
, is small (on the order of 0.001). The goal is to predict y(t) for the

next q time steps, i.e., to predict what y(p+ 1), . . . , y(p+ q) will be. Here is the problem: get the time
series data from the class web site in the file timeseriesdata.m, which gives y(1), . . . , y(200). (We
have p = 200 in this specific problem.) Then, predict what y(201), . . . , y(220) are. Plot your estimates

44

ŷ(201), . . . , ŷ(220), and also, of course, give us the numbers. (You may also want to plot the whole
set of data, from t = 1 to t = 220, just to make sure your prediction satisfies the ‘eyeball test’.) It
is extremely important that you explain very clearly how you come up with your prediction. What is
your method? If you make choices during your procedure, how do you make them?

6.18 Reconstructing values from sums over subsets. There are real numbers u1, . . . , up that we do not know,
but want to find. We do have information about sums of some subsets of the numbers. Specifically,
we know v1, . . . , vq, where

vi =
∑
j∈Si

uj .

Here, Si denotes the subset of {1, . . . , p} that defines the partial sum used to form vi. (We know both
vi and Si, for i = 1, . . . , q.) We call the collection of subsets S1, . . . , Sq informative if we can determine,
or reconstruct, u1, . . . , up without ambiguity, from v1, . . . , vq. If the set of subsets is not informative,
we say it is uninformative. As an example with p = 3 and q = 4,

v1 = u2 + u3, v2 = u1 + u2 + u3, v3 = u1 + u3, v4 = u1 + u2.

This corresponds to the subsets

S1 = {2, 3}, S2 = {1, 2, 3}, S3 = {1, 3}, S4 = {1, 2}.

This collection of subsets is informative. To see this, we show how to reconstruct u1, u2, u3. First we
note that u1 = v2 − v1. Now that we know u1 we can find u2 from u2 = v4 − u1 = v4 − v2 + v1. In
the same way we can get u3 = v3 − u1 = v3 − v2 + v1. Note: this is only an example to illustrate the
notation.

(a) This subproblem concerns the following specific case, with p = 6 numbers and q = 11 subsets.
The subsets are

S1 = {1, 2, 3}, S2 = {1, 2, 4}, S3 = {1, 2, 6}, S4 = {1, 3, 5}, S5 = {1, 4, 5},
S6 = {2, 3, 6}, S7 = {2, 4, 6}, S8 = {3, 4, 5}, S9 = {3, 5, 6}, S10 = {4, 5, 6},

S11 = {1, 2, 3, 4, 5, 6}.

The associated sums are

v1 = −2, v2 = 14, v3 = 6, v4 = 4, v5 = 20, v6 = −5,

v7 = 11, v8 = 9, v9 = 1, v10 = 17, v11 = 15.

Choose one of the following:

• The collection of subsets S1, . . . , S11 is informative.
Justify why you believe this is the case, and reconstruct u1, . . . , u6.

• The collection of subsets S1, . . . , S11 is uninformative.
To justify this, give two different sets of values u1, . . . , u6, and ũ1, . . . , ũ6, whose given subset
sums agree with the given v1, . . . , v11.

(b) This subproblem concerns a general method for reconstructing u = (u1, . . . , up) given v =
(v1, . . . , vq) (and of course, the subsets S1, . . . , Sq). We define the subset count matrix Z ∈ Rp×p

as follows: Zij is the number of subsets containing both i and j. (Thus, Zii is the number of
subsets that contain i.) For each i, we define fi as the sum of all vj , over subsets that contain i:

fi =
∑
i∈Sj

vj , i = 1, . . . , p.

Then we reconstruct u as u = Z−1f . (Of course, this requires that Z is invertible.) Choose one
of the following:

45

• The method works, whenever the collection of subsets is informative.
By ‘works’ we mean that Z is invertible, and that Z−1f is the unique u with subset sums v.
If you believe this is the case, explain why.

• The method can fail, even when the collection of subsets is informative.
To convince us of this, give a specific example, where the collection of subsets is informative,
but the method above fails, i.e., either Z is singular, or Z−1f does not have the required
subset sums. (Please give us the simplest example you can think of.)

6.19 Signal estimation using least-squares. This problem concerns discrete-time signals defined for t =
1, . . . , 500. We’ll represent these signals by vectors in R500, with the index corresponding to the time.
We are given a noisy measurement ymeas(1), . . . , ymeas(500), of a signal y(1), . . . , y(500) that is thought
to be, at least approximately, a linear combination of the 22 signals

fk(t) = e−(t−50k)2/252

, gk(t) =

(
t− 50k

10

)
e−(t−50k)2/252

,

where t = 1, . . . , 500 and k = 0, . . . , 10. Plots of f4 and g7 (as examples) are shown below.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5

1

1.5

f4

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5

time

g
7

As our estimate of the original signal, we will use the signal ŷ = (ŷ(1), . . . , ŷ(500)) in the span of
f0, . . . , f10, g0, . . . , g10, that is closest to ymeas = (ymeas(1), . . . , ymeas(500)) in the RMS (root-mean-
square) sense. Explain how to find ŷ, and carry out your method on the signal ymeas given in
sig_est_data.m on the course web site. Plot ymeas and ŷ on the same graph. Plot the residual
(the difference between these two signals) on a different graph, and give its RMS value.

6.20 Point of closest convergence of a set of lines. We have m lines in Rn, described as

Li = {pi + tvi | t ∈ R}, i = 1, . . . ,m,

where pi ∈ Rn, and vi ∈ Rn, with ‖vi‖ = 1, for i = 1, . . . ,m. We define the distance of a point z ∈ Rn

to a line L as
dist(z,L) = min{‖z − u‖ | u ∈ L}.

46

(In other words, dist(z,L) gives the closest distance between the point z and the line L.)

We seek a point z? ∈ Rn that minimizes the sum of the squares of the distances to the lines,

m∑
i=1

dist(z,Li)2.

The point z? that minimizes this quantity is called the point of closest convergence.

(a) Explain how to find the point of closest convergence, given the lines (i.e., given p1, . . . , pm and
v1, . . . , vm). If your method works provided some condition holds (such as some matrix being full
rank), say so. If you can relate this condition to a simple one involving the lines, please do so.

(b) Find the point z? of closest convergence for the lines with data given in the matlab file line_conv_data.m.
This file contains n×m matrices P and V whose columns are the vectors p1, . . . , pm, and v1, . . . , vm,
respectively. The file also contains commands to plot the lines and the point of closest convergence
(once you have found it). Please include this plot with your solution.

6.21 Estimating direction and amplitude of a light beam. A light beam with (nonnegative) amplitude a
comes from a direction d ∈ R3, where ‖d‖ = 1. (This means the beam travels in the direction −d.)
The beam falls on m ≥ 3 photodetectors, each of which generates a scalar signal that depends on the
beam amplitude and direction, and the direction in which the photodetector is pointed. Specifically,
photodetector i generates an output signal pi, with

pi = aα cos θi + vi,

where θi is the angle between the beam direction d and the outward normal vector qi of the surface
of the ith photodetector, and α is the photodetector sensitivity. You can interpret qi ∈ R3, which we
assume has norm one, as the direction the ith photodetector is pointed. We assume that |θi| < 90◦,
i.e., the beam illuminates the top of the photodetectors. The numbers vi are small measurement errors.

You are given the photodetector direction vectors q1, . . . , qm ∈ R3, the photodetector sensitivity α, and
the noisy photodetector outputs, p1, . . . , pm ∈ R. Your job is to estimate the beam direction d ∈ R3

(which is a unit vector), and a, the beam amplitude.

To describe unit vectors q1, . . . , qm and d in R3 we will use azimuth and elevation, defined as follows:

q =

 cosφ cos θ
cosφ sin θ

sinφ

 .
Here φ is the elevation (which will be between 0◦ and 90◦, since all unit vectors in this problem have
positive 3rd component, i.e., point upward). The azimuth angle θ, which varies from 0◦ to 360◦, gives
the direction in the plane spanned by the first and second coordinates. If q = e3 (i.e., the direction is
directly up), the azimuth is undefined.

(a) Explain how to do this, using a method or methods from this class. The simpler the method the
better. If some matrix (or matrices) needs to be full rank for your method to work, say so.

(b) Carry out your method on the data given in beam_estim_data.m. This mfile defines p, the vector
of photodetector outputs, a vector det_az, which gives the azimuth angles of the photodetector
directions, and a vector det_el, which gives the elevation angles of the photodetector directions.
Note that both of these are given in degrees, not radians. Give your final estimate of the beam
amplitude a and beam direction d (in azimuth and elevation, in degrees).

47

6.22 Smooth interpolation on a 2D grid. This problem concerns arrays of real numbers on an m× n grid.
Such as array can represent an image, or a sampled description of a function defined on a rectangle.
We can describe such an array by a matrix U ∈ Rm×n, where Uij gives the real number at location
i, j, for i = 1, . . . ,m and j = 1, . . . , n. We will think of the index i as associated with the y axis, and
the index j as associated with the x axis.

It will also be convenient to describe such an array by a vector u = vec(U) ∈ Rmn. Here vec is the
function that stacks the columns of a matrix on top of each other:

vec(U) =

 u1

...
un

 ,
where U = [u1 · · ·un]. To go back to the array representation, from the vector, we have U = vec−1(u).
(This looks complicated, but isn’t; vec−1 just arranges the elements in a vector into an array.)

We will need two linear functions that operate on m × n arrays. These are simple approximations
of partial differentiation with respect to the x and y axes, respectively. The first function takes as
argument an m× n array U and returns an m× (n− 1) array V of forward (rightward) differences:

Vij = Ui,j+1 − Uij , i = 1, . . . ,m, j = 1, . . . , n− 1.

We can represent this linear mapping as multiplication by a matrix Dx ∈ Rm(n−1)×mn, which satisfies

vec(V) = Dxvec(U).

(This looks scarier than it is—each row of the matrix Dx has exactly one +1 and one −1 entry in it.)

The other linear function, which is a simple approximation of partial differentiation with respect to
the y axis, maps an m× n array U into an (m− 1)× n array W , is defined as

Wij = Ui+1,j − Uij , i = 1, . . . ,m− 1, j = 1, . . . , n.

We define the matrix Dy ∈ R(m−1)n×mn, which satisfies vec(W) = Dyvec(U).

We define the roughness of an array U as

R = ‖Dxvec(U)‖2 + ‖Dyvec(U)‖2.

The roughness measure R is the sum of the squares of the differences of each element in the array and
its neighbors. Small R corresponds to smooth, or smoothly varying, U . The roughness measure R is
zero precisely for constant arrays, i.e., when Uij are all equal.

Now we get to the problem, which is to interpolate some unknown values in an array in the smoothest
possible way, given the known values in the array. To define this precisely, we partition the set of
indices {1, . . . ,mn} into two sets: Iknown and Iunknown. We let k ≥ 1 denote the number of known
values (i.e., the number of elements in Iknown), and mn−k the number of unknown values (the number
of elements in Iunknown). We are given the values ui for i ∈ Iknown; the goal is to guess (or estimate
or assign) values for ui for i ∈ Iunknown. We’ll choose the values for ui, with i ∈ Iunknown, so that the
resulting U is as smooth as possible, i.e., so it minimizes R. Thus, the goal is to fill in or interpolate
missing data in a 2D array (an image, say), so the reconstructed array is as smooth as possible.

We give the k known values in a vector wknown ∈ Rk, and the mn − k unknown values in a vector
wunknown ∈ Rmn−k. The complete array is obtained by putting the entries of wknown and wunknown into
the correct positions of the array. We describe these operations using two matrices Zknown ∈ Rmn×k

and Zunknown ∈ Rmn×(mn−k), that satisfy

vec(U) = Zknownwknown + Zunknownwunknown.

48

(This looks complicated, but isn’t: Each row of these matrices is a unit vector, so multiplication with
either matrix just stuffs the entries of the w vectors into particular locations in vec(U). In fact, the
matrix [Zknown Zunknown] is an mn×mn permutation matrix.)

In summary, you are given the problem data wknown (which gives the known array values), Zknown

(which gives the locations of the known values), and Zunknown (which gives the locations of the unknown
array values, in some specific order). Your job is to find wunknown that minimizes R.

(a) Explain how to solve this problem. You are welcome to use any of the operations, matrices, and
vectors defined above in your solution (e.g., vec, vec−1, Dx, Dy, Zknown, Zunknown, wknown, . . .).
If your solution is valid provided some matrix is (or some matrices are) full rank, say so.

(b) Carry out your method using the data created by smooth_interpolation.m. The file gives m,
n, wknown, Zknown and Zunknown. This file also creates the matrices Dx and Dy, which you are
welcome to use. (This was very nice of us, by the way.) You are welcome to look at the code
that generates these matrices, but you do not need to understand it. For this problem instance,
around 50% of the array elements are known, and around 50% are unknown.

The mfile also includes the original array Uorig from which we removed elements to create the
problem. This is just so you can see how well your smooth reconstruction method does in recon-
structing the original array. Of course, you cannot use Uorig to create your interpolated array
U.

To visualize the arrays use the matlab command imagesc(), with matrix argument. If you prefer
a grayscale image, or don’t have a color printer, you can issue the command colormap gray.
The mfile that gives the problem data will plot the original image Uorig, as well as an image
containing the known values, with zeros substituted for the unknown locations. This will allow
you to see the pattern of known and unknown array values.

Compare Uorig (the original array) and U (the interpolated array found by your method), using
imagesc(). Hand in complete source code, as well as the plots. Be sure to give the value of
roughness R of U .

Hints:

• In matlab, vec(U) can be computed as U(:);

• vec−1(u) can be computed as reshape(u,m,n).

6.23 Designing a nonlinear equalizer from I/O data. This problem concerns the discrete-time system shown
below, which consists of a memoryless nonlinearity φ, followed by a convolution filter with finite impulse
response h. The scalar signal u is the input, and the scalar signal z is the output.

phi hu

v

z

What this means is

z(t) =

M−1∑
τ=0

h(τ)v(t− τ), v(t) = φ(u(t)), t ∈ Z.

(Note that these signals are defined for all integer times, not just nonnegative times.)

Here φ : R→ R, with the specific form

φ(a) =

 a −1 ≤ a ≤ 1
1− s+ sa a > 1
−1 + s+ sa a < −1,

where s > 0 is a parameter. This function is shown below.

49

−1 1

−1y

a

phia

1y

s

Here is an interpretation (that is not needed to solve the problem). The nonlinear function φ represents
a power amplifier that is nonlinear for input signals larger than one in magnitude; s is called the
saturation gain of the amplifier. The convolution system represents the transmission channel.

We are going to design an equalizer for the system, i.e., another system that takes the signal z as
input, and gives an output û which is an approximation of the input signal u.

Our equalizer will have the form shown below.

z g psi uhat

vhat

This means

v̂(t) =

M−1∑
τ=0

g(τ)z(t− τ), û(t) = ψ(v̂(t)), t ∈ Z.

This equalizer will work well provided g ∗ h ≈ δ (in which case v̂(t) ≈ v(t)), and ψ = φ−1 (i.e.,
ψ(φ(a)) = a for all a).

To make sure our (standard) notation here is clear, recall that

(g ∗ h)(t) =

min{M−1,t}∑
τ=max{0,t−M+1}

g(τ)h(t− τ), t = 0, . . . , 2M − 1.

(Note: in matlab conv(g,h) gives the convolution of g and h, but these vectors are indexed from 1 to
M , i.e., g(1) corresponds to g(0).) The term δ is the Kronecker delta, defined as δ(0) = 1, δ(i) = 0
for i 6= 0.

Now, finally, we come to the problem. You are given some input/output (I/O) data u(1), . . . , u(N),
z(1), . . . , z(N), and M (the length of g, and also the length of h). You do not know the parameter s,
or the channel impulse response h(0), . . . , h(M − 1). You also don’t know u(t), z(t) for t ≤ 0.

(a) Explain how to find ŝ, an estimate of the saturation gain s, and g(0), . . . , g(M −1), that minimize

J =
1

N −M + 1

N∑
i=M

(
v̂(i)− φ(u(i))

)2

.

Here u refers to the given input data, and v̂ comes from the given output data z. Note that if
g ∗ h = δ and s = ŝ, we have J = 0.

We exclude i = 1, . . . ,M − 1 in the sum defining J because these terms depend (through v̂) on
z(0), z(−1), . . ., which are unknown.

50

(b) Apply your method to the data given in the file nleq_data.m. Give the values of the parameters
ŝ and g(0), . . . , g(M − 1) found, as well as J . Plot g using the matlab command stem.

(c) Using the values of ŝ and g(0), . . . , g(M − 1) found in part (b), find the equalized signal û(t), for
t = 1, . . . , N . For the purposes of finding û(t) you can assume that z(t) = 0 for t ≤ 0. As a result,
we can expect a large equalization error (i.e., û(t)− u(t)) for t = 1, . . . ,M − 1.

Plot the input signal u(t), the output signal z(t), the equalized signal û(t), and the equalization
error û(t)− u(t), for t = 1, . . . , N .

6.24 Simple fitting. You are given some data x1, . . . , xN ∈ R and y1, . . . , yN ∈ R. These data are available
in simplefitdata.m on the course web site.

(a) Find the best affine fit, i.e., yi ≈ axi + b, where ‘best’ means minimizing
∑N
i=1(yi − (axi + b))2.

(This is often called the ’best linear fit’.) Set this up and solve it as a least-squares problem. Plot
the data and the fit in the same figure. Give us a and b, and submit the code you used to find a
and b.

(b) Repeat for the best least-squares cubic fit, i.e., yi ≈ ax3
i + bx2

i + cxi + d.

6.25 Estimating parameters from noisy measurements. In this problem you will compare a least-squares
estimate of a parameter vector (which uses all available measurements) with a method that uses just
enough measurements. Carry out the following steps.

(a) First we generate some problem data in matlab. (You’re free to use any other software system
instead.) Generate a 50 × 20 matrix A using A=randn(50,20). (This chooses the entries from a
normal distribution, but this doesn’t really matter for us.) Generate a noise vector v of length 50
using v=0.1*randn(50,1). Generate a measurement vector x of length 20 using x=randn(20,1).
Finally, generate a measurement vector y = Ax+ v.

(b) Find the least-squares approximate solution of y = Ax, and call it xls. Find the relative error
‖xls − x‖/‖x‖.

(c) Now form a 20-long truncated measurement vector ytrunc which consists of the first 20 entries of
y. Form an estimate of x from ytrunc. Call this estimate xjem (‘Just Enough Measurements’).
Find the relative error of xjem.

(d) Run your script (i.e., (a)–(c)) several times. You’ll generate different different data each time,
and you’ll get different numerical results in parts (b) and (c). Give a one sentence comment about
what you observe.

Note. Since you are generating the data randomly, it is remotely possible that the second method
will work better than the first, at least for one run. If this happens to you, quickly run your script
again. Do not mention the incident to anyone.

6.26 Signal reconstruction for a bandlimited signal. In this problem we refer to signals, which are just
vectors, with index interpreted as (discrete) time. It is common to write the index for a signal as an
argument, rather than as a subscript; for example, if y ∈ RN is a signal, we use y(t) to denote yt, with
t ∈ {1, 2, . . . , N}. Another notation you’ll sometimes see in signal processing texts is y[t] for yt.

The discrete cosine transformation (DCT) of the signal y ∈ RN is another signal, typically denoted
using the corresponding upper case symbol Y ∈ RN . It is defined as

Y (k) =

N∑
t=1

y(t)w(k) cos
π(2t− 1)(k − 1)

2N
, k = 1, . . . , N,

where w(k) are weights, with

w(k) =

{ √
1/N, k = 1,√
2/N, k = 2, . . . , N.

51

The number Y (k) is referred to as the kth DCT coefficient of y. The DCT bandwidth of the signal y
is the smallest K for which Y (K) 6= 0, and Y (k) = 0 for k = K + 1, . . . , N . When K < N , the signal
is called DCT bandlimited. (The term is typically used to refer to the case when the DCT bandwidth,
K, is significantly smaller than N .)

A signal y can be reconstructed from its DCT Y , via the inverse DCT transform, with

y(t) =

N∑
k=1

Y (k)w(k) cos
π(2t− 1)(k − 1)

2N
, t = 1, . . . , N,

where w(k) are the same weights as those used above in the DCT.

Now for the problem. You are given noise-corrupted values of a DCT bandlimited signal y, at some
(integer) times t1, . . . , tM , where 1 ≤ t1 < t2 < · · · < tM ≤ N :

ysamp
i = y(ti) + vi, i = 1, . . . ,M.

Here, vi are small noises or errors. You don’t know v, but you do know that its RMS value is
approximately σ, a known constant. (In signal processing, ysamp would be called a non-uniformly
sampled, noise corrupted version of y.)

Your job is to

• Determine the smallest DCT bandwidth (i.e., the smallest K) that y could have.

• Find an estimate of y, ŷ, which has this bandwidth.

Your estimate ŷ must be consistent with the sample measurements ysamp. While it need not match
exactly (you were told there was a small amount of noise in ysamp), you should ensure that the vector
of differences,

(ysamp
1 − ŷ(tsamp

1), . . . , ysamp
M − ŷ(tsamp

M)),

has a small RMS value, on the order of σ (and certainly no more than 3σ).

(a) Clearly describe how to solve this problem. You can use any concepts we have used, to date, in
EE263. You cannot use (and do not need) any concepts from outside the class. This includes the
Fourier transform and other signal processing methods you might know.

(b) Carry out your method on the data in bandlimit.m. Running this script will define N, ysamp, M,
tsamp, and sigma. It will also plot the sampled signal.

Give K, your estimate of the DCT bandwidth of y. Show ŷ on the same plot as the original
sampled signal. (We have added the command to do this in bandlimit.m, but commented it
out.)

Also, give us ŷ(129), to four significant figures.

You might find the matlab functions dct and idct useful; dct(eye(N)) and idct(eye(N)) will return
matrices whose columns are the DCT, and inverse DCT transforms, respectively, of the unit vectors.
Note, however, that you can solve the problem without using these functions.

6.27 Fitting a model for hourly temperature. You are given a set of temperature measurements (in degrees
C), yt ∈ R, t = 1, . . . , N , taken hourly over one week (so N = 168). An expert says that over this
week, an appropriate model for the hourly temperature is a trend (i.e., a linear function of t) plus a
diurnal component (i.e., a 24-periodic component):

ŷt = at+ pt,

where a ∈ R and p ∈ RN satisfies pt+24 = pt, for t = 1, . . . , N − 24. We can interpret a (which has
units of degrees C per hour) as the warming or cooling trend (for a > 0 or a < 0, respectively) over
the week.

52

(a) Explain how to find a ∈ R and p ∈ RN (which is 24-periodic) that minimize the RMS value of
y − ŷ.

(b) Carry out the procedure described in part (a) on the data set found in tempdata.m. Give the
value of the trend parameter a that you find. Plot the model ŷ and the measured temperatures
y on the same plot. (The matlab code to do this is in the file tempdata.m, but commented out.)

(c) Temperature prediction. Use the model found in part (b) to predict the temperature for the next
24-hour period (i.e., from t = 169 to t = 192). The file tempdata.m also contains a 24 long
vector ytom with tomorrow’s temperatures. Plot tomorrow’s temperature and your prediction
of it, based on the model found in part (b), on the same plot. What is the RMS value of your
prediction error for tomorrow’s temperatures?

6.28 Empirical algorithm complexity. The runtime T of an algorithm depends on its input data, which
is characterized by three key parameters: k, m, and n. (These are typically integers that give the
dimensions of the problem data.) A simple and standard model that shows how T scales with k, m,
and n has the form

T̂ = αkβmγnδ,

where α, β, γ, δ ∈ R are constants that characterize the approximate runtime model. If, for example,
δ ≈ 3, we say that the algorithm has (approximately) cubic complexity in n. (In general, the exponents
β, γ, and δ need not be integers, or close to integers.)

Now suppose you are given measured runtimes for N executions of the algorithm, with different sets
of input data. For each data record, you are given Ti (the runtime), and the parameters ki, mi, and
ni. It’s possible (and often occurs) that two data records have identical values of k, m, and n, but
different values of T . This means the algorithm was run on two different data sets that had the same
dimensions; the corresponding runtimes can be (and often are) a little different.

We wish to find values of α, β, γ, and δ for which our model (approximately) fits our measurements.
We define the fitting cost as

J = (1/N)

N∑
i=1

(
log(T̂i/Ti)

)2

,

where T̂i = αkβi m
γ
i n

δ
i is the runtime predicted by our model, using the given parameter values. This

fitting cost can be (loosely) interpreted in terms of relative or percentage fit. If (log(T̂i/Ti))
2 ≤ ε, then

T̂i lies between Ti/ exp
√
ε and Ti exp

√
ε.

Your task is to find constants α, β, γ, δ that minimize J .

(a) Explain how to do this. If your method always finds the values that give the true global minimum
value of J , say so. If your algorithm cannot guarantee finding the true global minimum, say so.
If your method requires some matrix (or matrices) to be full rank, say so.

(b) Carry out your method on the data found in empac_data.m. Give the values of α, β, γ, and δ
you find, and the corresponding value of J .

6.29 State trajectory estimation. We consider a discrete-time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t) + w(t), y(t) = Cx(t) + v(t), t = 1, 2, . . . ,

with state x(t) ∈ Rn, input u(t) ∈ Rm and output y(t) ∈ Rp. The signal w(t) is called the process
noise, and the signal v(t) is the measurement noise. You know the matrices A, B, C, the inputs u(t),
t = 1, 2, . . . , T − 1, and outputs y(t), t = 1, 2, . . . , T . You do not know x(t), w(t), or v(t). Your job
is to estimate the state trajectory x(t), for t = 1, . . . , T . We will denote your estimate of the state
trajectory as x̂(t), t = 1, . . . , T . When we guess the state trajectory x̂(t), t = 1, . . . , T , we have two
sets of residuals,

x̂(t+ 1)− (Ax̂(t) +Bu(t)), t = 1, . . . , T − 1, y(t)− Cx̂(t), t = 1, . . . , T,

53

which correspond to (implicit) estimates of w(t) and v(t), respectively.

You will choose x̂(t) so as to minimize the overall objective

J =

T−1∑
t=1

‖x̂(t+ 1)− (Ax̂(t) +Bu(t))‖2 + ρ

T∑
t=1

‖y(t)− Cx̂(t)‖2 ,

where ρ > 0 is a given parameter (related to our guess of the relative sizes of w(t) and v(t)). The
objective J is a weighted sum of norm squares of our two residuals.

(a) Explain how to find the state trajectory estimate x̂(t), t = 1, . . . , T , using any concepts from the
course. If one or more matrices must satisfy a rank condition for your method to work, say so.

(b) Carry out your method from part (a) using state_traj_estim_data.m, which gives A, B, C, the
dimensions n, m, p, the parameter ρ, and the time horizon T . The input and output trajectories
are given as m× T and p× T matrices, respectively. (The tth column gives the vector at the tth
period.)

Give the value of J corresponding to your estimate.

The mfile includes the true value of the state trajectory, x(t), (of course you may not use it in
forming your estimate x̂(t)). Plot x1(t) (the true first state component) and x̂1(t) (the estimated
first state component) on the same plot.

Matlab hints:

• The matlab command x = X(:), where X is an n by m matrix, stacks the columns of X into a
vector of dimension nm. You may then recover X with the command X = reshape(x,n,m).

• You might find the matlab function blkdiag useful.

6.30 Fleet modeling. In this problem, we will consider model estimation for vehicles in a fleet. We collect
input and output data at multiple time instances, for each vehicle in a fleet of vehicles:

x(k)(t) ∈ Rn, y(k)(t) ∈ R, t = 1, . . . , T, k = 1, . . . ,K.

Here k denotes the vehicle number, t denotes the time, x(k)(t) ∈ Rn the input, and y(k)(t) ∈ R the
output. (In the general case the output would also be a vector; but for simplicity here we consider the
scalar output case.)

While it does not affect the problem, we describe a more specific application, where the vehicles are
airplanes. The components of the inputs might be, for example, the deflections of various control
surfaces and the thrust of the engines; the output might be vertical acceleration. Airlines are required
to collect this data, called FOQA data, for every commercial flight. (This description is not needed to
solve the problem.)

We will fit a model of the form
y(k)(t) ≈ aTx(k)(t) + b(k),

where a ∈ Rn is the (common) linear model parameter, and b(k) ∈ R is the (individual) offset for the
kth vehicle.

We will choose these to minimize the mean square error

E =
1

TK

T∑
t=1

K∑
k=1

(
y(k)(t)− aTx(k)(t)− b(k)

)2

.

(a) Explain how to find the model parameters a and b(1), . . . , b(K).

54

(b) Carry out your method on the data given in fleet_mod_data.m. The data is given using cell
arrays X and y. The columns of the n × T matrix X{k} are x(k)(1), . . . , x(k)(T), and the 1 × T
row vector y{k} contains y(k)(1), . . . , y(k)(T). Give the model parameters a and b(1), . . . , b(K),
and report the associated mean square error E. Compare E to the (minimum) mean square error
Ecom obtained using a common offset b = b(1) = · · · = b(K) for all vehicles.

By examining the offsets for the different vehicles, suggest a vehicle you might want to have a
maintenance crew check out. (This is a simple, straightforward question; we don’t want to hear
a long explanation or discussion.)

6.31 Regulation using ternary inputs. Consider a discrete-time linear dynamical system

x(t+ 1) = Ax(t) + bu(t), t = 1, 2, . . . ,

with x(t) ∈ Rn, u(t) ∈ {−1, 0, 1}, and b ∈ Rn, b 6= 0. (The problem title comes from the restriction
that the input can only take three possible values.) Our goal is to regulate the system, i.e., choose the
inputs u(t) so as to drive the state x(t) towards zero. We will adopt a greedy strategy: At each time
t, we will choose u(t) so as to minimize ‖x(t+ 1)‖.

(a) Show that u(t) has the form u(t) = round(kx(t)), where k ∈ R1×n, and round(a) rounds the
number a to the closest of {−1, 0, 1}, i.e.,

round(a) =

 1 a > 1/2
0 |a| ≤ 1/2
−1 a < −1/2.

(We don’t care about what happens when there are ties; we have arbitrarily broken ties in favor
of a = 0.) Give an explicit expression for k.

(b) Consider the specific problem with data

A =


1 .2 −.2 0

−.2 1 0 .15
.2 0 .9 0
0 −.15 0 1

 , b =


.1
−.1
.1
−.1

 , x(1) =


−4

0
0
−4

 .
Give k, and plot ‖x(t)‖ and u(t) for t = 1, . . . , 100. Use the matlab function stairs to plot u(t).

6.32 Extracting diurnal and weather-related components from power consumption profiles. We have data on
hourly electrical power consumption (in kWh) of a household, from time t = 1 (say, 1 am) to t = n,
given as a vector c ∈ Rn, as well as data on the outdoor temperature (in degrees C) over the same
period, given as a vector T ∈ Rn. (You can assume that the data contains an integral number of days,
i.e., n is a multiple of 24, with at least two days of data.) Our goal is to break up the consumption
into three components:

c = d+ w + r,

described below.

• The diurnal component d ∈ Rn is the diurnal (repeated daily) consumption component, meaning
that it is 24-hour periodic: dt+24 = dt, for t = 1, . . . , n− 24.

• The weather-related component w ∈ Rn is the consumption component due to air conditioning,
which is a function of the outdoor temperature:

wt = αmax{Tt − 25, 0}.

(The parameter α is to be determined.)

55

• The residual r ∈ Rn is r = c− d− w, which we assume is small, or at least not large.

To carry out this decomposition, we choose the diurnal component d and the weather-related component
w (i.e., we choose α) so as to minimize the RMS value of the residual,(

1

n

n∑
t=1

r2
t

)1/2

.

(a) Explain how to find the diurnal and weather-related components. If your method requires a
rank assumption to work, state the assumption. Give a brief discussion, in terms of the original
problem, of the conditions under which the rank assumption fails.

(b) Carry out the method of part (a) on the data found in diur_weath_decomp_data.m.

Plot c, d, and w, and r. Give the RMS value of r.

(c) Electricity consumption prediction. The data file includes consumption data for the day after the
end of the given data, as well as a prediction of the temperature over that day. Use these data to
predict the hourly consumption over the next day, by continuing the diurnal component found in
part (b) and using the weather-related model found in part (b). Compare your prediction with
the true power consumption for the following day. Plot both, on the same plot and report the
RMS value of the prediction error.

6.33 Fitting vector auto-regressive model coefficients to data. A vector auto-regressive (VAR) model has the
form

y(t+ 1) = A1y(t) + · · ·+Apy(t− p+ 1) + v(t), t = p, p+ 1,

Here y(t) ∈ Rn is a vector, and the coefficients Ai are matrices. The sequence y is the signal we are
interested in, and the sequence v is the residual or noise in the AR model, which we assume is small,
or at least, not large. The model is called auto-regressive since it expresses the next signal value as a
linear combination of the p last values, plus a noise.

Note that if we fix the VAR coefficients A1, . . . , Ap, we can make a simple prediction at time step t of
the next signal value y(t+ 1):

ŷ(t+ 1|t) = A1y(t) + · · ·+Apy(t− p+ 1), t = p, p+ 1,

The notation ŷ(t + 1|t) means this quantity is our estimate of y(t + 1) that we make at time t (i.e.,
knowing y(t), y(t− 1), . . .). The one-step-ahead predictor is obtained by simply assuming that v(t) is
zero. (You can probably imagine many practical applications where the ability to make a prediction
of the next value of a time series or signal is very valuable. One obvious example is finance.)

The associated one-step-ahead prediction error is defined as

e(t+ 1) = ŷ(t+ 1|t)− y(t+ 1).

Suppose we are given the data y(1), . . . , y(T). One common method for choosing the coefficients
A1, . . . , Ap is by minimizing the RMS value of the prediction error over t = p, . . . , T − 1,(

1

T − p

T−1∑
t=p

‖e(t+ 1)‖2
)1/2

.

Now we get to the problem. The file vector_ar_model_data.m contains a vector signal y, given as an
n× T matrix. Find the coefficients A1 and A2 (we take p = 2) that minimize the RMS value of e over
t = p, . . . , T − 1. Give the RMS value of the prediction error obtained with your coefficients.

56

A second (test) data set is given in the matrix y_test. Evaluate the VAR model found above (using
the data in y), by calculating the one-step-ahead prediction for y_test for t = p, . . . , T − 1. For all
components plot the original as well as predicted signals. Compute and report the RMS prediction
error.

6.34 Auto-Bob. A set of 10 powerful lamps, each of whose powers we can choose over the traditional scale
[0, 10], is used to heat the surface of an object to a target temperature T des (in degrees C). We let
p ∈ R10 denote the lamp powers, and we let T ∈ R100 denote the temperature of the surface at
100 locations on a 10 × 10 grid. The mapping between p and T , T = F (p), is not quite affine, but
reasonably close. The mapping F : R10 → R100 is quite complicated, since every lamp power affects
every surface location temperature, and various linear and nonlinear heat transport mechanisms are
involved. In principle, we could derive a physics-based model of F , but this hasn’t been done. But
we do have the device itself, which means we can set the lamp powers to any levels we like (with
pi ∈ [0, 10]) and measure the resulting surface temperature vector T ∈ R100. In other words, we can
carry out experiments to evaluate the function F .

We want to find p ∈ R10, with 0 ≤ pi ≤ 10, that (at least approximately) minimizes the RMS
temperature error,

e =

(
1

100

100∑
i=1

(Ti − T des)2

)1/2

,

where T des is a given target temperature.

Bob, a technician in the lab, is very good at adjusting the lamp powers by hand so that e is small. He
does this by adjusting one lamp power at a time and observing the resulting temperature profile. Your
goal is to use the material you have learned in EE263 to adjust the lamp powers as well as, or perhaps
better than, Bob. Thus the problem title.

We have given you the function F as a matlab p-file surface_heating_sim.p. If you call this function
as surface_heating_sim(p), where p is a 10-vector of powers (with entries in the allowed range [0, 10]),
it will return the 100-vector of temperatures, and also give a 2D plot of the surface temperature.

The implementation of the function (i.e., exactly what it does) is obscured. And it takes a few seconds
to evaluate it, so calling the p-file function is something like a carrying out a real physical experiment.

To get a feel for the heating system, we recommend that you try out various powers to see the resulting
temperature profile. For example, you might try p = 10ei, i = 1, . . . , 10, which corresponds to turning
on each lamp at full power. You might also try p = α1, for some values of α between 0 and 10, which
corresponds to turning on all lamps at the same power level. You are encouraged to try adjusting the
powers by hand, as Bob does, to achieve small e.

Explain how you would use the ideas of EE263 to approximately solve this problem, for target tem-
perature T des = 500. We are not looking for a complicated method (e.g., an iterative method); we
are looking for a simple method that can achieve the goal of finding lamp powers that achieve small e,
using just a few tens of experiments (calls of the p-file function), and does not rely on Bob.

Give the lamp powers that your method finds, and the associated value of e. Print out the temperature
profile that is displayed by the p-file. (We will accept a black and white plot, if you don’t have access
to a color printer.) Report the number of times you need to call the surface_heating_sim function
in order to obtain your power settings estimate, not counting the first few tens of calls when you are
just getting a feel for what F looks like. (We will penalize solutions that require more than a few tens
of function calls.)

57

Lecture 7 – Regularized least-squares and Gauss-Newton method

7.1 Fitting a Gaussian function to data. A Gaussian function has the form

f(t) = ae−(t−µ)2/σ2

.

Here t ∈ R is the independent variable, and a ∈ R, µ ∈ R, and σ ∈ R are parameters that affect its
shape. The parameter a is called the amplitude of the Gaussian, µ is called its center, and σ is called
the spread or width. We can always take σ > 0. For convenience we define p ∈ R3 as the vector of the
parameters, i.e., p = [a µ σ]T . We are given a set of data,

t1, . . . , tN , y1, . . . , yN ,

and our goal is to fit a Gaussian function to the data. We will measure the quality of the fit by the
root-mean-square (RMS) fitting error, given by

E =

(
1

N

N∑
i=1

(f(ti)− yi)2

)1/2

.

Note that E is a function of the parameters a, µ, σ, i.e., p. Your job is to choose these parameters to
minimize E. You’ll use the Gauss-Newton method.

(a) Work out the details of the Gauss-Newton method for this fitting problem. Explicitly describe the
Gauss-Newton steps, including the matrices and vectors that come up. You can use the notation
∆p(k) = [∆a(k) ∆µ(k) ∆σ(k)]T to denote the update to the parameters, i.e.,

p(k+1) = p(k) + ∆p(k).

(Here k denotes the kth iteration.)

(b) Get the data t, y (and N) from the file gauss_fit_data.m, available on the class website. Im-
plement the Gauss-Newton (as outlined in part (a) above). You’ll need an initial guess for the
parameters. You can visually estimate them (giving a short justification), or estimate them by
any other method (but you must explain your method). Plot the RMS error E as a function of
the iteration number. (You should plot enough iterations to convince yourself that the algorithm
has nearly converged.) Plot the final Gaussian function obtained along with the data on the same
plot. Repeat for another reasonable, but different initial guess for the parameters. Repeat for
another set of parameters that is not reasonable, i.e., not a good guess for the parameters. (It’s
possible, of course, that the Gauss-Newton algorithm doesn’t converge, or fails at some step; if
this occurs, say so.) Briefly comment on the results you obtain in the three cases.

7.2 E-911. The federal government has mandated that cellular network operators must have the ability to
locate a cell phone from which an emergency call is made. This problem concerns a simplified version of
an E-911 system that uses time of arrival information at a number of base stations to estimate the cell
phone location. A cell phone at location x ∈ R2 (we assume that the elevation is zero for simplicity)
transmits an emergency signal at time τ . This signal is received at n base stations, located at locations
s1, . . . , sn ∈ R2. Each base station can measure the time of arrival of the emergency signal, within a
few tens of nanoseconds. (This is possible because the base stations are synchronized using the Global
Positioning System.) The measured times of arrival are

ti =
1

c
‖si − x‖+ τ + vi, i = 1, . . . , n,

where c is the speed of light, and vi is the noise or error in the measured time of arrival. You can
assume that vi is on the order of a few tens of nanseconds. The problem is to estimate the cell phone

58

position x ∈ R2, as well as the time of transmission τ , based on the time of arrival measurements
t1, . . . , tn. The mfile e911_data.m, available on the course web site, defines the data for this problem.
Specifically, it defines a 2× 9 matrix S, whose columns give the positions of the 9 basestations, a 1× 9
vector t that contains the measured times of arrival, and the constant c, which is the speed of light.
Distances are given in meters, times in nanoseconds, and the speed of light in meters/nanosecond. You
can assume that the position x is somewhere in the box

|x1| ≤ 3000, |x2| ≤ 3000,

and that |τ | ≤ 5000 (although all that really matters are the time differences). Your solution must
contain the following:

• An explanation of your approach to solving this problem, including how you will check that your
estimate is reasonable.

• The matlab source code you use to solve the problem, and check the results.

• The numerical results obtained by your method, including the results of any verification you do.

7.3 Curve-smoothing. We are given a function F : [0, 1]→ R (whose graph gives a curve in R2). Our goal
is to find another function G : [0, 1]→ R, which is a smoothed version of F . We’ll judge the smoothed
version G of F in two ways:

• Mean-square deviation from F , defined as

D =

∫ 1

0

(F (t)−G(t))2 dt.

• Mean-square curvature, defined as

C =

∫ 1

0

G′′(t)2 dt.

We want both D and C to be small, so we have a problem with two objectives. In general there will be
a trade-off between the two objectives. At one extreme, we can choose G = F , which makes D = 0; at
the other extreme, we can choose G to be an affine function (i.e., to have G′′(t) = 0 for all t ∈ [0, 1]),
in which case C = 0. The problem is to identify the optimal trade-off curve between C and D, and
explain how to find smoothed functions G on the optimal trade-off curve. To reduce the problem to a
finite-dimensional one, we will represent the functions F and G (approximately) by vectors f, g ∈ Rn,
where

fi = F (i/n), gi = G(i/n).

You can assume that n is chosen large enough to represent the functions well. Using this representation
we will use the following objectives, which approximate the ones defined for the functions above:

• Mean-square deviation, defined as

d =
1

n

n∑
i=1

(fi − gi)2.

• Mean-square curvature, defined as

c =
1

n− 2

n−1∑
i=2

(
gi+1 − 2gi + gi−1

1/n2

)2

.

In our definition of c, note that
gi+1 − 2gi + gi−1

1/n2

gives a simple approximation of G′′(i/n). You will only work with this approximate version of the
problem, i.e., the vectors f and g and the objectives c and d.

59

(a) Explain how to find g that minimizes d + µc, where µ ≥ 0 is a parameter that gives the relative
weighting of sum-square curvature compared to sum-square deviation. Does your method always
work? If there are some assumptions you need to make (say, on rank of some matrix, independence
of some vectors, etc.), state them clearly. Explain how to obtain the two extreme cases: µ = 0,
which corresponds to minimizing d without regard for c, and also the solution obtained as µ→∞
(i.e., as we put more and more weight on minimizing curvature).

(b) Get the file curve smoothing.m from the course web site. This file defines a specific vector f that
you will use. Find and plot the optimal trade-off curve between d and c. Be sure to identify any
critical points (such as, for example, any intersection of the curve with an axis). Plot the optimal
g for the two extreme cases µ = 0 and µ → ∞, and for three values of µ in between (chosen to
show the trade-off nicely). On your plots of g, be sure to include also a plot of f , say with dotted
line type, for reference. Submit your matlab code.

7.4 Laplacian smoothing. We are given a set of noisy measurements of some quantity at n locations, given
by y1, . . . , yn ∈ R. We will use knowledge of some relationships between the quantities to smooth the
measurements. The knowledge is given as a graph on the indices 1, . . . , n, given as a set of edges E ,
where an edge is a pair of indices (i, j) with i < j. (The graph is symmetric, so the edge (i, j) simply
means that i and j are connected by an edge.) An edge (i, j) tells us that the locations are ‘near’,
‘connected’, or ‘directly related’.

To carry out smoothing, we choose ŷi ∈ R, i = 1, . . . , n, so as to minimize

n∑
i=1

(ŷi − yi)2 + λ
∑

(i,j)∈E

(ŷi − ŷj)2,

where λ > 0 is a parameter used to control the level of smoothing desired. The first term penalizes
deviations of the smoothed quantities ŷi from the measurements yi, and the second term penalizes
differences in smoothed quantities that are neighbors in the graph.

Here is a sample application (which is not needed to solve the problem). The locations are users of
a social network, the edges represent friendships between users, the quantities are user parameters of
interest (say, to advertisers), and the measurements are (noisy) estimates of the parameters obtained
from other sources or information. Smoothing relies on the idea that users who are friends tend have
similar values of the parameter.

(a) Explain how to find the smoothed quantities ŷi, using concepts from the course. You must justify
that any matrix inverses you use actually exist; you cannot simply assume that matrices appearing
in your solution are invertible (as we often let you do).

(b) Carry out your method on the data given in laplacian_smoothing_data.m, for the regularization
parameter values λ = 0.2, λ = 2, and λ = 20. (This will produce three different smoothed
estimates.) The graph is given as a K × 2 matrix Edges, with each row giving one edge (i, j).

In this data set the locations are arranged on a grid, with edges between adjacent locations except
when there is an obstruction. Executing the mfile will plot the noisy data, and the ‘true’ data
(i.e., the values of the quantities without the noise). Black lines in the plots denote obstructions,
i.e., adjacent locations on the grid which are not connected by an edge.

Use the function in laplacian_smoothing_plot.m to show the smoothed estimates for λ = 0.2,
λ = 2, and λ = 20.

Note. In any real application you would not have access to the ‘true’ quantity values, as you do
here. We give it so you can see how well (or poorly) the smoothing does.

60

Lecture 8 – Least-norm solutions of underdetermined equations

8.1 Optimal control of unit mass. In this problem you will use matlab to solve an optimal control problem
for a force acting on a unit mass. Consider a unit mass at position p(t) with velocity ṗ(t), subjected
to force f(t), where f(t) = xi for i− 1 < t ≤ i, for i = 1, . . . , 10.

(a) Assume the mass has zero initial position and velocity: p(0) = ṗ(0) = 0. Find x that minimizes∫ 10

t=0

f(t)2 dt

subject to the following specifications: p(10) = 1, ṗ(10) = 0, and p(5) = 0. Plot the optimal force
f , and the resulting p and ṗ. Make sure the specifications are satisfied. Give a short intuitive
explanation for what you see.

(b) Assume the mass has initial position p(0) = 0 and velocity ṗ(0) = 1. Our goal is to bring the
mass near or to the origin at t = 10, at or near rest, i.e., we want

J1 = p(10)2 + ṗ(10)2,

small, while keeping

J2 =

∫ 10

t=0

f(t)2 dt

small, or at least not too large. Plot the optimal trade-off curve between J2 and J1. Check that
the end points make sense to you. Hint: the parameter µ has to cover a very large range, so it
usually works better in practice to give it a logarithmic spacing, using, e.g., logspace in matlab.
You don’t need more than 50 or so points on the trade-off curve.

Your solution to this problem should consist of a clear written narrative that explains what you are
doing, and gives formulas symbolically; the matlab source code you devise to find the numerical answers,
along with comments explaining it all; and the final plots produced by matlab.

8.2 Smallest input that drives a system to a desired steady-state output. We start with the discrete-time
model of the system used in lecture 1:

x(t+ 1) = Adx(t) +Bdu(t), y(t) = Cdx(t), t = 1, 2, . . . ,

where Ad ∈ R16×16, Bd ∈ R16×2, Cd ∈ R2×16. The system starts from the zero state, i.e., x(1) = 0.
(We start from initial time t = 1 rather than the more conventional t = 0 since matlab indexes vectors
starting from 1, not 0.) The data for this problem can be found in ss_small_input_data.m.

The goal is to find an input u that results in y(t) → ydes = (1,−2) as t → ∞ (i.e., asymptotic
convergence to a desired output) or, even better, an input u that results in y(t) = ydes for t = T +1, . . .
(i.e., exact convergence after T steps).

(a) Steady-state analysis for desired constant output. Suppose that the system is in steady-state, i.e.,
x(t) = xss, u(t) = uss and y(t) = ydes are constant (do not depend on t). Find uss and xss.

(b) Simple simulation. Find y(t), with initial state x(1) = 0, with u(t) = uss, for t = 1, . . . , 20000.
Plot u and y versus t. If you’ve done everything right, you should observe that y(t) appears to
be converging to ydes.

You can use the following matlab code to obtain plots that look like the ones in lecture 1.

figure;

subplot(411); plot(u(1,:));

subplot(412); plot(u(2,:));

subplot(413); plot(y(1,:));

subplot(414); plot(y(2,:));

61

Here we assume that u and y are 2× 20000 matrices. There will be two differences between these
plots and those in lecture 1: These plots start from t = 1, and the plots in lecture 1 scale t by a
factor of 0.1.

(c) Smallest input. Let u?(t), for t = 1, . . . , T , be the input with minimum RMS value(
1

T

T∑
t=1

‖u(t)‖2
)1/2

that yields x(T + 1) = xss (the value found in part (a)). Note that if u(t) = u?(t) for t = 1, . . . , T ,
and then u(t) = uss for t = T + 1, T + 2, . . ., then y(t) = ydes for t ≥ T + 1. In other words, we
have exact convergence to the desired output in T steps.

For the three cases T = 100, T = 200, and T = 500, find u? and its associated RMS value. For
each of these three cases, plot u and y versus t.

(d) Plot the RMS value of u? versus T for T between 100 and 1000 (for multiples of 10, if you like).
The plot is probably better viewed on a log-log scale, which can be done using the command
loglog instead of the command plot.

8.3 Minimum fuel and minimum peak input solutions. Suppose A ∈ Rm×n is fat and full rank, so there
are many x’s that satisfy Ax = y. In lecture we encountered the least-norm solution given by xln =
AT (AAT)−1y. This solution has the minimum (Euclidean) norm among all solutions of Ax = y. In
many applications we want to minimize another norm of x (i.e., measure of size of x) subject to Ax = y.
Two common examples are the 1-norm and ∞-norm, which are defined as

‖x‖1 =

n∑
i=1

|xi|, ‖x‖∞ = max
i=1,...,n

|xi|.

The 1-norm, for example, is often a good measure of fuel use; the ∞-norm is the peak of the vector or
signal x. There is no simple formula for the least 1-norm or ∞-norm solution of Ax = y, like there is
for the least (Euclidean) norm solution. They can be computed very easily, however. (That’s one of the
topics of EE364.) The analysis is a bit trickier as well, since we can’t just differentiate to verify that
we have the minimizer. For example, how would you know that a solution of Ax = y has minimum
1-norm? In this problem you will explore this idea. First verify the following inequality, which is like
the Cauchy-Schwarz inequality (but even easier to prove): for any v, w ∈ Rp, the following inequality
holds: wT v ≤ ‖v‖∞‖w‖1. From this inequality it follows that whenever v 6= 0,

‖w‖1 ≥
wT v

‖v‖∞
.

Now let z be any solution of Az = y, and let λ ∈ Rm be such that ATλ 6= 0. Explain why we must
have

‖z‖1 ≥
λT y

‖ATλ‖∞
.

Thus, any solution of Az = y must have 1-norm at least as big as the righthand side expression.
Therefore if you can find xmf ∈ Rn (mf stands for minimum fuel) and λ ∈ Rm such that Axmf = y
and

‖xmf‖1 =
λT y

‖ATλ‖∞
,

then xmf is a minimum fuel solution. (Explain why.) Methods for computing xmf and the mysterious
vector λ are described in EE364. In the rest of this problem, you’ll use these ideas to verify a statement
made during lecture. Now consider the problem from the lecture notes of a unit mass acted on by forces
x1, . . . , x10 for one second each. The mass starts at position p(0) = 0 with zero velocity and is required

62

to satisfy p(10) = 1, ṗ(10) = 0. There are, of course, many force vectors that satisfy these requirements.
In the lecture notes, you can see a plot of the least (Euclidean) norm force profile. In class I stated
that the minimum fuel solution is given by xmf = (1/9, 0, . . . , 0,−1/9), i.e., an accelerating force at
the beginning, 8 seconds of coasting, and a (braking) force at the end to decelerate the mass to zero
velocity at t = 10. Prove this. Hint: try λ = (1,−5). Verify that the 1-norm of xmf is less than the 1-
norm of xln, the (Euclidean) least-norm solution. Feel free to use matlab. There are several convenient
ways to find the 1- and ∞-norm of a vector z, e.g., norm(z,1) and norm(z,inf) or sum(abs(z)) and
max(abs(z)). One last question, for fun: what do you think is the minimum peak force vector xmp?
How would you verify that a vector xmp (mp for minimum peak) is a minimum ∞-norm solution of
Ax = y? This input, by the way, is very widely used in practice. It is (basically) the input used in a
disk drive to move the head from one track to another, while respecting a maximum possible current
in the disk drive motor coil. Hints:

• The input is called bang-bang.

• Some people drive this way.

8.4 Simultaneous left inverse of two matrices. Consider a system where

y = Gx, ỹ = G̃x

where G ∈ Rm×n, G̃ ∈ Rm×n. Here x is some variable we wish to estimate or find, y gives the
measurements with some set of (linear) sensors, and ỹ gives the measurements with some alternate set
of (linear) sensors. We want to find a reconstruction matrix H ∈ Rn×m such that HG = HG̃ = I.
Such a reconstruction matrix has the nice property that it recovers x perfectly from either set of
measurements (y or ỹ), i.e., x = Hy = Hỹ. Consider the specific case

G =


2 3
1 0
0 4
1 1
−1 2

 , G̃ =


−3 −1
−1 0

2 −3
−1 −3

1 2

 .
Either find an explicit reconstruction matrix H, or explain why there is no such H.

8.5 Phased-array antenna weight design. We consider the phased-array antenna system shown below.

d

theta

The array consists of n individual antennas (called antenna elements) spaced on a line, with spacing d
between elements. A sinusoidal plane wave, with wavelength λ and angle of arrival θ, impinges on the
array, which yields the output e2πj(k−1)(d/λ) cos θ (which is a complex number) from the kth element.
(We’ve chosen the phase center as element 1, i.e., the output of element 1 does not depend on the

63

incidence angle θ.) A (complex) linear combination of these outputs is formed, and called the combined
array output,

y(θ) =

n∑
k=1

wke
2πj(k−1)(d/λ) cos θ.

The complex numbers w1, . . . , wn, which are the coefficients of the linear combination, are called the
antenna weights. We can choose, i.e., design, the weights. The combined array output depends on
the angle of arrival of the wave. The function |y(θ)|, for 0◦ ≤ θ ≤ 180◦, is called the antenna array
gain pattern. By choosing the weights w1, . . . , wn intelligently, we can shape the gain pattern to satisfy
some specifications. As a simple example, if we choose the weights as w1 = 1, w2 = · · · = wn = 0, then
we get a uniform or omnidirectional gain pattern; |y(θ)| = 1 for all θ. In this problem, we want a gain
pattern that is one in a given (‘target’) direction θtarget, but small at other angles. Such a pattern would
receive a signal coming from the direction θtarget, and attenuate signals (e.g., ‘jammers’ or multipath
reflections) coming from other directions. Here’s the problem. You will design the weights for an array
with n = 20 elements, and a spacing d = 0.4λ (which is a typical value). We want y(70◦) = 1, and we
want |y(θ)| small for 0◦ ≤ θ ≤ 60◦ and 80◦ ≤ θ ≤ 180◦. In other words, we want the antenna array
to be relatively insensitive to plane waves arriving from angles more than 10◦ away from the target
direction. (In the language of antenna arrays, we want a beamwidth of 20◦ around a target direction of
70◦.) To solve this problem, you will first discretize the angles between 0◦ and 180◦ in 1◦ increments.
Thus y ∈ C180 will be a (complex) vector, with yk equal to y(k◦), i.e., y(πk/180), for k = 1, . . . , 180.
You are to choose w ∈ C20 that minimizes

60∑
k=1

|yk|2 +

180∑
k=80

|yk|2

subject to the constraint y70 = 1. As usual, you must explain how you solve the problem. Give the
weights you find, and also a plot of the antenna array response, i.e., |yk|, versus k (which, hopefully,
will achieve the desired goal of being relatively insensitive to plane waves arriving at angles more than
10◦ from θ = 70◦). Hints:

• You’ll probably want to rewrite the problem as one involving real variables (i.e., the real and
imaginary parts of the antenna weights), and real matrices. You can then rewrite your solution
in a more compact formula that uses complex matrices and vectors (if you like).

• Very important: in matlab, the prime is actually the Hermitian conjugate operator. In other
words, if A is a complex matrix or vector, A’ gives the conjugate transpose, or Hermitian conjugate,
of A.

• Although we don’t require you to, you might find it fun to also plot your antenna gain pattern
on a polar plot, which allows you to easily visualize the pattern. In matlab, this is done using the
polar command.

8.6 Modifying measurements to satisfy known conservation laws. A vector y ∈ Rn contains n measurements
of some physical quantities x ∈ Rn. The measurements are good, but not perfect, so we have y ≈ x.
From physical principles it is known that the quantities x must satisfy some linear equations, i.e.,

aTi x = bi, i = 1, . . . ,m,

where m < n. As a simple example, if x1 is the current in a circuit flowing into a node, and x2

and x3 are the currents flowing out of the node, then we must have x1 = x2 + x3. More generally,
the linear equations might come from various conservation laws, or balance equations (mass, heat,
energy, charge . . .). The vectors ai and the constants bi are known, and we assume that a1, . . . , am are
independent. Due to measurement errors, the measurement y won’t satisfy the conservation laws (i.e.,

64

linear equations above) exactly, although we would expect aTi y ≈ bi. An engineer proposes to adjust
the measurements y by adding a correction term c ∈ Rn, to get an adjusted estimate of x, given by

yadj = y + c.

She proposes to find the smallest possible correction term (measured by ‖c‖) such that the adjusted
measurements yadj satisfy the known conservation laws. Give an explicit formula for the correction
term, in terms of y, ai, bi. If any matrix inverses appear in your formula, explain why the matrix to
be inverted is nonsingular. Verify that the resulting adjusted measurement satisfies the conservation
laws, i.e., aTi yadj = bi.

8.7 Estimator insensitive to certain measurement errors. We consider the usual measurement setup: y =
Ax+ v, where

• y ∈ Rm is the vector of measurements

• x ∈ Rn is the vector of parameters we wish to estimate

• v ∈ Rm is the vector of measurement errors

• A ∈ Rm×n is the coefficient matrix relating the parameters to the measurements

You can assume that m > n, and A is full rank. In this problem we assume that the measurement
errors lie in the subspace

V = span{f1, . . . , fk},

where f1, . . . , fk ∈ Rm are given, known vectors. Now consider a linear estimator of the form x̂ = By.
Recall that the estimator is called unbiased if whenever v = 0, we have x̂ = x, for any x ∈ Rn. In other
words, an unbiased estimator predicts x perfectly when there is no measurement error. In this problem
we consider the stronger condition that the estimator predicts x perfectly, for any measurement error
in V. In other words, we have x̂ = x, for any x ∈ Rn, and any v ∈ V. If this condition holds, we say
that the estimator is insensitive to measurement errors in V. (Note that this condition is a stronger
condition than the estimator being unbiased.)

(a) Show that if R(A) ∩ V 6= {0}, then there is no estimator insensitive to measurement errors in V.

(b) Now we consider a specific example, with

A =


1 0
1 1
1 −1
2 1
−1 2

 , f1 =


1
2
−1

1
0

 , f2 =


3
3
2
2
1

 .

Either construct a specific B ∈ R2×5 for which the linear estimator x̂ = By is insensitive to
measurement errors in V, or explain in detail why none exists. If you find such a B, you must
explain how you found it, and verify (say, in matlab) that it satisfies the required properties.
(We’ll be really annoyed if you just give a matrix and leave the verification to us!)

8.8 Optimal flow on a data collection network. We consider a communications network with m nodes,
plus a special destination node, and n communication links. Each communication link connects two
(distinct) nodes and is bidirectional, i.e., information can flow in either direction. We will assume that
the network is connected, i.e., there is a path, or sequence of links, from every node (including the
special destination node) to every other node. With each communication link we associate a directed
arc, which defines the direction of information flow that we will call positive. Using these reference
directions, the flow or traffic on link j is denoted fj . (The units are bits per second, but that won’t
matter to us.) The traffic on the network (i.e., the flow in each communication link) is given by a

65

vector f ∈ Rn. A small example is shown in part 2 of this problem. In this example, nodes 1 and 3
are connected by communication link 4, and the associated arc points from node 1 to node 3. Thus
f4 = 12 means the flow on that link is 12 (bits per second), from node 1 to node 3. Similarly, f4 = −3
means the flow on link 4 is 3 (bits per second), from node 3 to node 1. External information enters
each of the m regular nodes and flows across links to the special destination node. In other words,
the network is used to collect information from the nodes and route it through the links to the special
destination node. (That explains why we call it a data collection network.) At node i, an external
information flow si (which is nonnegative) enters. The vector s ∈ Rm of external flows is sometimes
called the source vector. Information flow is conserved. This means that at each node (except the
special destination node) the sum of all flows entering the node from communication links connected
to that node, plus the external flow, equals the sum of the flows leaving that node on communication
links. As an example, consider node 3 in the network of part 2. Links 4 and 5 enter this node, and
link 6 leaves the node. Therefore, flow conservation at node 3 is given by

f4 + f5 + s3 = f6.

The first two terms on the left give the flow entering node 3 on links 4 and 5; the last term on the left
gives the external flow entering node 3. The term on the righthand side gives the flow leaving over link
6. Note that this equation correctly expresses flow conservation regardless of the signs of f4, f5, and
f6. Finally, here is the problem.

(a) The vector of external flows, s ∈ Rm, and the network topology, are given, and you must find
the flow f that satisfies the conservation equations, and minimizes the mean-square traffic on the
network, i.e.,

1

n

n∑
j=1

f2
j .

Your answer should be in terms of the external flow s, and the node incidence matrix A ∈ Rm×n

that describes the network topology. The node incidence matrix is defined as

Aij =

 1 arc j enters (or points into) node i
−1 arc j leaves (or points out of) node i

0 otherwise.

Note that each row of A is associated with a node on the network (not including the destination
node), and each column is associated with an arc or link.

(b) Now consider the specific (and very small) network shown below. The nodes are shown as circles,
and the special destination node is shown as a square. The external flows are

s =


1
4
10
10

 .
One simple feasible flow is obtained by routing all the external flow entering each node along a
shortest path to the destination. For example, all the external flow entering node 2 goes to node
1, then to the destination node. For node 3, which has two shortest paths to the destination, we
arbitrarily choose the path through node 4. This simple routing scheme results in the feasible
flow

fsimple =



5
4
0
0
0
10
20


.

66

Find the mean square optimal flow for this problem (as in part 1). Compare the mean square
flow of the optimal flow with the mean square flow of fsimple.

d

1

2

3

4

f3

s2

s3

s4

s1

f2
f4

f7

f1

f5

f6

8.9 Random geometry antenna weight design. We consider the phased-array antenna system shown below.

x

y

The array consists of n individual antennas (called antenna elements) randomly placed on 2d space,
with the coordinates of the kth element being xk and yk. A sinusoidal plane wave, with wavelength λ
and angle of arrival θ, impinges on the array, which yields the output ej

2π
λ (xk cos θ+yk sin θ) (which is a

complex number) from the kth element. A (complex) linear combination of these outputs is formed,
and called the combined array output,

r(θ) =

n∑
k=1

wke
j 2π
λ (xk cos θ+yk sin θ).

The complex numbers w1, . . . , wn, which are the coefficients of the linear combination, are called the
antenna weights. We can choose, i.e., design, the weights. The combined array output depends on
the angle of arrival of the wave. The function |r(θ)|, for 0◦ ≤ θ < 360◦, is called the antenna array
gain pattern. By choosing the weights w1, . . . , wn intelligently, we can shape the gain pattern to satisfy
some specifications. In this problem, we want a gain pattern that is one in a given (‘target’) direction
θtarget, but small at other angles. Such a pattern would receive a signal coming from the direction
θtarget, and attenuate signals (e.g., ‘jammers’ or multipath reflections) coming from other directions.
Here’s the problem. Design the weights for the antenna array, whose elements have coordinates given
in the file antenna_geom.m. We want r(70◦) = 1, and we want |r(θ)| small for 0◦ ≤ θ ≤ 60◦ and
80◦ ≤ θ < 360◦. In other words, we want the antenna array to be relatively insensitive to plane waves
arriving from angles more that 10◦ away from the target direction. (In the language of antenna arrays,

67

we want a beamwidth of 20◦ around a target direction of 70◦.) You are told that λ = 1. To solve this
problem, you will first discretize the angles between 1◦ and 360◦ in 1◦ increments. Thus r ∈ C360 will
be a (complex) vector, with rk equal to r(k◦), i.e., r(πk/180), for k = 1, . . . , 360. You are to choose
w ∈ Cn that minimizes

60∑
k=1

|rk|2 +

360∑
k=80

|rk|2

subject to the constraint r70 = 1. As usual, you must explain how you solve the problem. Give the
weights you find, and also a plot of the antenna array response, i.e., |rk|, versus k (which, hopefully,
will achieve the desired goal of being relatively insensitive to plane waves arriving at angles more than
10◦ from θ = 70◦). Hints:

• You’ll probably want to rewrite the problem as one involving real variables (i.e., the real and
imaginary parts of the antenna weights), and real matrices. You can then rewrite your solution
in a more compact formula that uses complex matrices and vectors (if you like).

• Very important: in matlab, the prime is actually the Hermitian conjugate operator. In other
words, if A is a complex matrix or vector, A’ gives the conjugate transpose, or Hermitian conjugate,
of A.

• Although we don’t require you to, you might find it fun to also plot your antenna gain pattern
on a polar plot, which allows you to easily visualize the pattern. In matlab, this is done using the
polar command.

8.10 Estimation with known input norm. We consider a standard estimation setup: y = Ax + v, where
A ∈ Rm×n is a full rank, skinny matrix, x ∈ Rn is the vector we wish to estimate, v ∈ Rm is an
unknown noise vector, and y ∈ Rm is the measurement vector. As usual, we assume that smaller
values of ‖v‖ are more plausible than larger values. In this problem, we add one more piece of prior
information: we know that ‖x‖ = 1. (In other words, the vector we are estimating is known ahead of
time to have norm one.) This might occur in a communications system, where the transmitted signal
power is known to be equal to one. (You may assume that the norm of the least-squares approximate
solution exceeds one, i.e., ‖(ATA)−1AT y‖ > 1.)

(a) Explain clearly how would you find the best estimate of x, taking into account the prior informa-
tion ‖x‖ = 1. Explain how you would compute your estimate x̂, given A and y. Is your estimate
x̂ a linear function of y?

(b) On the EE263 webpage, you will find the file mtprob4.m, which gives the matrix A and the
observed vector y. Carry out the estimation procedure you developed in part (a). Give your
estimate x̂, and verify that it satisfies ‖x̂‖ = 1. Give the matlab source you use to compute x̂.

8.11 Minimum energy rendezvous. The dynamics of two vehicles, at sampling times t = 0, 1, 2, . . ., are given
by

x(t+ 1) = Ax(t) + bu(t), z(t+ 1) = Fz(t) + gv(t)

where

• x(t) ∈ Rn is the state of vehicle 1

• z(t) ∈ Rn is the state of vehicle 2

• u(t) ∈ R is the (scalar) input to vehicle 1

• v(t) ∈ R is the (scalar) input to vehicle 2

The initial states of the two vehicles are fixed and given:

x(0) = x0, z(0) = z0.

68

We are interested in finding inputs for the two vehicles over the time interval t = 0, 1, . . . , N − 1 so
that they rendezvous at state w ∈ Rn at time t = N , i.e., x(N) = w, z(N) = w. (The point w ∈ Rn

is called the rendezvous point.) You can select the inputs to the two vehicles,

u(0), u(1), . . . , u(N − 1), v(0), v(1), . . . , v(N − 1),

as well as the rendezvous point w ∈ Rn. Among choices of u, v, and w that satisfy the rendezvous
condition, we want the one that minimizes the total input energy defined as

E =

N−1∑
t=0

u(t)2 +

N−1∑
t=0

v(t)2.

Give explicit formulas for the optimal u, v, and w in terms of the problem data, i.e., A, b, F , g, x0,
and z0. If you need to assume that one or more matrices that arise in your solution are invertible, full
rank, etc., that’s fine, but be sure to make very clear what you’re assuming.

8.12 Least-norm solution of nonlinear equations. Suppose f : Rn → Rm is a function, and y ∈ Rm is a
vector, where m < n (i.e., x has larger dimension than y). We say that x ∈ Rn is a least-norm solution
of f(x) = y if for any z ∈ Rn that satisfies f(z) = y, we have ‖z‖ ≥ ‖x‖. When the function f is linear
or affine (i.e., linear plus a constant), the equations f(x) = y are linear, and we know how to find
the least-norm solution for such problems. In general, however, it is an extremely difficult problem to
compute a least-norm solution to a set of nonlinear equations. There are, however, some good heuristic
iterative methods that work well when the function f is not too far from affine, i.e., its nonlinear terms
are small compared to its linear and constant part. You may assume that you have a starting guess,
which we’ll call x(0). This guess doesn’t necessarily satisfy the equations f(x) = y.

(a) Suggest an iterative method for (approximately) solving the nonlinear least-norm problem, start-
ing from the initial guess x(0). Use the notation x(k) to denote the kth iteration of your method.
Explain clearly how you obtain x(k+1) from x(k). If you need to make any assumptions about
rank of some matrix, do so. (You don’t have to worry about what happens if the matrix is not
full rank.) Your method should have the property that f(x(k)) converges to y as k increases. (In
particular, we don’t need to have the iterates satsfiy the nonlinear equations exactly.) Suggest
a name for the method you invent. Your method should not be complicated or require a long
explanation. You do not have to prove that the method converges, or that when it converges, it
converges to a least-norm solution. All you have to do is suggest a sensible, simple method that
ought to work well when f is not too nonlinear, and the starting guess x(0) is good.

(b) Now we consider a specific example, with the function f : R5 → R2 given by

f1(x) = 2x1 − 3x3 + x5 + 0.1x1x2 − 0.5x2x5,

f2(x) = −x2 + x3 − x4 + x5 − 0.6x1x4 + 0.3x3x4.

Note that each component of f consists of a linear part, and also a quadratic part. Use the
method you invented in part a to find the least-norm solution of

f(x) = y =

[
1
1

]
.

(We repeat that you do not have to prove that the solution you found is really the least-norm
one.) As initial guess, you can use the least-norm solution of the linear equations resulting if you
ignore the quadratic terms in f . Make sure to turn in your matlab code as well as to identify the
least-norm x you find, its norm, and the equation residual, i.e., f(x) − y (which should be very
small).

69

8.13 The smoothest input that takes the state to zero. We consider the discrete-time linear dynamical system
x(t+ 1) = Ax(t) +Bu(t), with

A =

 1.0 0.5 0.25
0.25 0 1.0
1.0 −0.5 0

 , B =

 1.0
0.1
0.5

 , x(0) =

 25
0

−25

 .
The goal is to choose an input sequence u(0), u(1), . . . , u(19) that yields x(20) = 0. Among the input
sequences that yield x(20) = 0, we want the one that is smoothest, i.e., that minimizes

Jsmooth =

(
1

20

19∑
t=0

(u(t)− u(t− 1))2

)1/2

,

where we take u(−1) = 0 in this formula. Explain how to solve this problem. Plot the smoothest input
usmooth, and give the associated value of Jsmooth.

8.14 Minimum energy input with way-point constraints. We consider a vehicle that moves in R2 due to
an applied force input. We will use a discrete-time model, with time index k = 1, 2, . . .; time index
k corresponds to time t = kh, where h > 0 is the sample interval. The position at time index k is
denoted by p(k) ∈ R2, and the velocity by v(k) ∈ R2, for k = 1, . . . ,K + 1. These are related by the
equations

p(k + 1) = p(k) + hv(k), v(k + 1) = (1− α)v(k) + (h/m)f(k), k = 1, . . . ,K,

where f(k) ∈ R2 is the force applied to the vehicle at time index k, m > 0 is the vehicle mass, and
α ∈ (0, 1) models drag on the vehicle: In the absence of any other force, the vehicle velocity decreases
by the factor 1−α in each time index. (These formulas are approximations of more accurate formulas
that we will see soon, but for the purposes of this problem, we consider them exact.) The vehicle starts
at the origin, at rest, i.e., we have p(1) = 0, v(1) = 0. (We take k = 1 as the initial time, to simplify
indexing.)

The problem is to find forces f(1), . . . , f(K) ∈ R2 that minimize the cost function

J =

K∑
k=1

‖f(k)‖2,

subject to way-point constraints
p(ki) = wi, i = 1, . . . ,M,

where ki are integers between 1 and K. (These state that at the time ti = hki, the vehicle must
pass through the location wi ∈ R2.) Note that there is no requirement on the vehicle velocity at the
way-points.

(a) Explain how to solve this problem, given all the problem data (i.e., h, α, m, K, the way-points
w1, . . . , wM , and the way-point indices k1, . . . , kM).

(b) Carry out your method on the specific problem instance with data h = 0.1, m = 1, α = 0.1,
K = 100, and the M = 4 way-points

w1 =

[
2
2

]
, w2 =

[
−2

3

]
, w3 =

[
4
−3

]
, w4 =

[
−4
−2

]
,

with way-point indices k1 = 10, k2 = 30, k3 = 40, and k4 = 80.

Give the optimal value of J .

Plot f1(k) and f2(k) versus k, using

70

subplot(211); plot(f(1,:));

subplot(212); plot(f(2,:));

We assume here that f is a 2×K matrix, with columns f(1), . . . , f(K).

Plot the vehicle trajectory, using plot(p(1,:),p(2,:)). Here p is a 2 × (K + 1) matrix with
columns p(1), . . . , p(K + 1).

8.15 In this problem you will show that, for any matrix A, and any positive number µ, the matrices ATA+µI
and AAT + µI are both invertible, and

(ATA+ µI)−1AT = AT (AAT + µI)−1.

(a) Let’s first show that ATA + µI is invertible, assuming µ > 0. (The same argument, with AT

substituted for A, will show that AAT + µI is invertible.) Suppose that (ATA + µI)z = 0.
Multiply on the left by zT , and argue that z = 0. This is what we needed to show. (Your job is
to fill all details of the argument.)

(b) Now let’s establish the identity above. First, explain why

AT (AAT + µI) = (ATA+ µI)AT

holds. Then, multiply on the left by (ATA + µI)−1, and on the right by (AAT + µI)−1. (These
inverses exist, by part (a).)

(c) Now assume that A is fat and full rank. Show that as µ tends to zero from above (i.e., µ is
positive) we have

(ATA+ µI)−1AT → AT (AAT)−1.

(This is asserted, but not shown, in the lecture notes on page 8-12.)

8.16 Singularity of the KKT matrix. This problem concerns the general norm minimization with equality
constraints problem (described in the lectures notes on pages 8-13),

minimize ‖Ax− b‖
subject to Cx = d,

where the variable is x ∈ Rn, A ∈ Rm×n, and C ∈ Rk×n. We asume that C is fat (k ≤ n), i.e., the
number of equality constraints is no more than the number of variables.

Using Lagrange multipliers, we found that the solution can be obtained by solving the linear equations[
ATA CT

C 0

] [
x
λ

]
=

[
AT b
d

]
for x and λ. (The vector x gives the solution of the norm minimization problem above.) The matrix

above, which we will call K ∈ R(n+k)×(n+k), is called the KKT matrix for the problem. (KKT are the
initials of some of the people who came up with the optimality conditions for a more general type of
problem.)

One question that arises is, when is the KKT matrix K nonsingular? The answer is: K is nonsingular
if and only if C is full rank and N (A) ∩N (C) = {0}.
You will fill in all details of the argument below.

(a) Suppose C is not full rank. Show that K is singular.

(b) Suppose that there is a nonzero u ∈ N (A) ∩N (C). Use this u to show that K is singular.

71

(c) Suppose that K is singular, so there exists a nonzero vector [uT vT]T for which[
ATA CT

C 0

] [
u
v

]
= 0.

Write this out as two block equations, ATAu+ CT v = 0 and Cu = 0. Conclude that u ∈ N (C).
Multiply ATAu+ CT v = 0 on the left by uT , and use Cu = 0 to conclude that ‖Au‖ = 0, which
implies u ∈ N (A). Finish the argument that leads to the conclusion that either C is not full rank,
or N (A) ∩N (C) 6= {0}.

8.17 Minimum energy roundtrip. We consider the linear dynamical system

x(t+ 1) = Ax(t) +Bu(t), x(0) = 0,

with u(t) ∈ R and x(t) ∈ Rn. We must choose u(0), u(1), . . . , u(T − 1) so that x(T) = 0 (i.e., after T
steps we are back at the zero state), and x(tdest) = xdest (i.e., at time tdest the state is equal to xdest).
Here xdest ∈ Rn is a given destination state. The time tdest is not given; it can be any integer between
1 and T − 1. The goal is to minimize the total input energy, defined as

E =

T−1∑
t=0

u(t)2.

Note that you have to find tdest, the time when the state hits the desired state, as well as the input
trajectory u(0), . . . , u(T − 1).

(a) Explain how to do this. For this problem, you may assume that n ≤ tdest ≤ T − n. If you need
some matrix or matrices that arise in your analysis to be full rank, you can just assume they are.
But you must state this clearly.

(b) Carry out your method on the particular problem instance with data

A =

 1 0 0
1 1 0
0 1 1

 , B =

 1
0
0

 , T = 30, xdest =

 1
1
−1

 .
Give the optimal value of tdest and the associated value of E, and plot the optimal input trajectory
u.

8.18 Optimal dynamic purchasing. You are to complete a large order to buy a certain number, B, of shares
in some company. You are to do this over T time periods. (Depending on the circumstances, a single
time period could be between tens of milliseconds and minutes.) We will let bt denote the number
of shares bought in time period t, for t = 1, . . . , T , so we have b1 + · · · + bT = B. (The quantities
B, b1, . . . , bT can all be any real number; bt < 0, for example, means we sold shares in the period t.
We also don’t require bt to be integers.) We let pt denote the price per share in period t, so the total
cost of purchasing the B shares is C = p1b1 + · · ·+ pT bT .

The amounts we purchase are large enough to have a noticeable effect on the price of the shares. The
prices change according to the following equations:

p1 = p̄+ αb1, pt = θpt−1 + (1− θ)p̄+ αbt, t = 2, . . . , T.

Here p̄ is the base price of the shares and α and θ are parameters that determine how purchases affect
the prices. The parameter α, which is positive, tells us how much the price goes up in the current
period when we buy one share. The parameter θ, which lies between 0 and 1, measures the memory :
If θ = 0 the share price has no memory, and the purchase made in period t only affects the price in

72

that period; if θ is 0.5 (say), the effect a purchase has on the price decays by a factor of two between
periods. If θ = 1, the price has perfect memory and the price change will persist for all future periods.

If purchases didn’t increase the price, the cost of purchasing the shares would always be p̄B. The
difference between the total cost and this cost, C − p̄B, is called the transaction cost.

Find the purchase quantities b1, . . . , bT that minimize the transaction cost C − p̄B, for the particular
problem instance with

B = 10000, T = 10, p̄ = 10, θ = 0.8, α = 0.00015.

Give the optimal transaction cost. Also give the transaction cost if all the shares were purchased in
the first period, and the transaction cost if the purchases were evenly spread over the periods (i.e., if
1000 shares were purchased in each period). Compare these three quantities.

You must explain your method clearly, using any concepts from this class, such as least-squares, pseudo-
inverses, eigenvalues, singular values, etc. If your method requires that some rank or other conditions
to hold, say so. You must also check, in your matlab code, that these conditions are satisfied for the
given problem instance.

8.19 Least-squares classification. For each of N documents we are given a feature vector x(i) ∈ Rn, and
a label yi ∈ {−1, 1}. (This is called a binary label.) Each component of the feature vector could be,
for example, the number of occurrences of a certain term in the document; the label could be decided
by a person working with the documents, with +1 meaning the document is interesting or useful, and
−1 meaning the document is not (for example, spam). From this data set we construct w ∈ Rn and
v ∈ R that minimize

N∑
i=1

(wTx(i) + v − yi)2.

We can now use w and v to predict the label for other documents, i.e., to guess whether an as-yet-
unread document is interesting, by forming ŷ = sign(wTx+ v). For scalar a, we define sign(a) = +1
for a ≥ 0 and sign(a) = −1 for a < 0; for vector arguments, sign() is taken elementwise.

(a) Explain (briefly) how to find w and v. If you need to make an assumption about the rank of a
matrix, say so.

(b) Find w and v for the data in ls_classify_data.m, which defines X, whose columns are x(i), and
y. This M-file will also define a second data set, Xtest and ytest, of the same size (i.e., n and
N). Use the w and v you found to make predictions about whether the documents in the test
set are interesting. Give the number of correct predictions (for which ŷi = yi), false positives
(ŷi = +1 while yi = −1), and false negatives (ŷi = −1 while yi = +1) for the test set.

You may find the matlab function sign() useful. To count false positives, for example, you can
use sum((yhat == 1) & (y == -1)).

Remark. There are better methods for binary classification, which you can learn about in a modern
statistics or machine learning course, or in EE364a. But least-squares classification can sometimes
work well.

8.20 Minimum time control. We consider a discrete-time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, . . . ,

with x(t) ∈ Rn, u(t) ∈ Rm.

(a) You are given A, B, and x(0) = xinit. Explain how to find an input sequence u(0), u(1), . . . , u(N−
1), so that x(N) = 0, with N is as small as possible. Your answer can involve any of the concepts
used in the course so far, e.g., range, rank, nullspace, least-squares, QR factorization, etc.

73

(b) Apply the method described in part (a) to the specific problem instance with data

A =


0 0 1 1
0 1 1 1
1 0 1 0
1 1 1 0

 , B =


0
1
0
1

 , xinit =


1
1
1
1

 ,
(where n = 4 and m = 1). You must give us the (minimum) value of N , and a sequence of inputs
u(0), . . . , u(N − 1) that results in x(N) = 0.

8.21 Interference cancelling equalizers. Two vector signals x ∈ Rp and y ∈ Rq are to be transmitted to two
receivers. The transmitter broadcasts the signal z = Ax + By ∈ Rn to each receiver. (The matrices
A and B are called the coding matrices, and are known.) Receiver 1 forms an estimate of the signal x
using the linear decoder x̂ = Fz; receiver 2 forms an estimate of the signal y using the linear decoder
ŷ = Gz. (The matrices F ∈ Rp×n and G ∈ Rq×n are called the decoding matrices.)

The goal is to find F and G so that x̂ = x and ŷ = y, no matter what values x and y take. This means
that both decoders are perfect; each reconstructs the exact desired signal, while completely rejecting
the other (undesired) signal. For this reason we call decoding matrices with this property perfect.

(a) When is it possible to find perfect decoding matrices F and G? (The conditions, of course, depend
on A and B.) Your answer can involve any of the concepts we’ve seen so far in EE263.

(b) Suppose that A and B satisfy the conditions in part (a). How would you find perfect decoding
matrices that, among all perfect decoding matrices, minimize

p∑
i=1

n∑
j=1

F 2
ij +

q∑
i=1

n∑
j=1

G2
ij .

We call such decoding matrices minimum norm perfect decoding matrices.

(c) Find minimum norm perfect decoding matrices for the data (i.e., A and B) given in the M-file
mn_perf_dec_data.m.

8.22 Piecewise affine fitting. In this problem we refer to vectors in RN as signals. We say that a signal z
is piecewise-affine (PWA), with kink points i1, . . . , iK+1, which are integers satisfying i1 = 1 < i2 <
· · · < iK+1 = N + 1, if

zj = αkj + βk, for ik ≤ j < ik+1,

for k = 1, . . . ,K. Thus, the signal value is an affine function of the index j (which we might interpret
as time in this problem) over the (integer) intervals

1, . . . , i2 − 1; i2, . . . , i3 − 1; . . . iK , . . . , N.

We call αk and βk the slope and offset, respectively, in the kth interval. (It is very common to refer to
such a signal as piecewise-linear, since ‘linear’ is sometimes used to mean ‘affine’.)

We can also add a continuity requirement,

αkik+1 + βk = αk+1ik+1 + βk+1, k = 1, . . . ,K − 1.

This means that if each piecewise affine segment were extrapolated to the next index, the value would
agree with the starting value for the next segment. When a PWA signal satisfies this condition, we
say that it is continuous. (Of course, it doesn’t make sense to refer to a discrete signal as continuous;
this is just special notation for PWA signals that refers to the condition above.)

Finally, we get to the problem.

74

(a) You are given a signal y ∈ RN , and some kink points i1, . . . , iK+1. How would one find the best
PWA approximation ŷpwa of y, with approximation error measured in the RMS sense, 1

N

N∑
j=1

(ŷpwa
j − yj)2

1/2

.

(b) Repeat part (a), but this time, you are to find the continuous PWA approximation ŷpwac that
minimizes the RMS deviation from y.

(c) Carry out your methods from parts (a) and (b) on the data given in pwa_data.m. Running this
data file will define y and the kink points. The data file also includes a commented out code
template for plotting your results. Using this template, plot the original signal along with the
PWA and continuous PWA approximations. Give us the RMS approximation error in both cases.

8.23 Robust input design. We are given a system, which we know follows y = Ax, with A ∈ Rm×n. Our
goal is to choose the input x ∈ Rn so that y ≈ ydes, where ydes ∈ Rm is a given target outcome. We’ll
assume that m ≤ n, i.e., we have more degrees of freedom in our choice of input than specifications
for the outcome. If we knew A, we could use standard EE263 methods to choose x. The catch here,
though, is that we don’t know A exactly; it varies a bit, say, day to day. But we do have some possible
values of A,

A(1), . . . , A(K),

which might, for example, be obtained by measurements of A taken on different days. We now define
y(i) = A(i)x, for i = 1, . . . ,K. Our goal is to choose x so that y(i) ≈ ydes, for i = 1, . . . ,K.

We will consider two different methods to choose x.

• Least norm method. Define Ā = (1/K)
∑K
i=1A

(i). Choose xln to be the least-norm solution of
Āx = ydes. (You can assume that Ā is full rank.)

• Mean-square error minimization method. Choose xmmse to minimize the mean-square error

1

K

K∑
i=1

‖y(i) − ydes‖2.

(a) Give formulas for xln and xmmse, in terms of ydes and A(1), . . . , A(K). You can make any needed
rank assumptions about matrices that come up, but please state them explicitly.

(b) Find xln and xmmse for the problem with data given in rob_inp_des_data.m. Running this M-file
will define ydes and the matrices A(i) (given as a 3 dimensional array; for example, A(:,:,13)
is A(13)). Also included in the data file (commented out) is code to produce scatter plots of your
results. Write down the values of xln and xmmse you found. Produce and submit scatter plots of
y(i) for xln and xmmse. Use the code we provided as a template for your plots.

8.24 Unbiased estimation with deadlines. We consider a standard measurement set up, with y = Ax + v,
where y ∈ Rm is the vector of measurements, v ∈ Rm is the vector of measurement noises, x ∈ Rn is
the vector of parameters to be estimated, and A ∈ Rm×n characterizes the measurement system. In
this problem, you should think of the index for y as denoting a time period, and you should imagine the
measurements (i.e., the components of y) as arriving sequentially. In the first time period, y1 becomes
available, in the next time period y2 becomes available, and so on, so that all m measurements are
available in the mth time period.

You are to design a linear estimator, given by a matrix B ∈ Rn×m, with the estimate of x given by
x̂ = By. We require that the estimator be unbiased, i.e., that x̂ = x when v = 0.

75

In addition, we have deadline constraints, which we now explain. We require that x̂i can be computed
after ki time periods, i.e., we require that x̂i must be a function of y1, . . . , yki only. We say that ki
is the deadline for computing x̂i, our estimate of the ith parameter to be estimated. You are given
increasing deadlines,

0 < k1 < k2 < · · · < kn = m.

Thus, x̂1 may only be computed from y1, . . . , yk1 , while x̂n may be computed from all of the measure-
ments y1, . . . , ym.

The data in this problem are the measurement matrix A and the deadlines k1, . . . , kn.

(a) How would you determine whether or not an unbiased linear estimator, which respects the given
deadlines, exists? Your answer does not have to be a single condition, such as ‘A is skinny and
full rank’; it can involve a sequence of tests.

(b) Assume that it is possible to find an unbiased linear estimator that respects the deadlines. Explain
how to find the smallest such estimator matrix, i.e., the B that minimizes

J =

n∑
i=1

m∑
j=1

B2
ij .

If your method requires some matrix or matrices to be full rank, you can just assume they are,
but you must state this clearly.

(c) Carry out the method described in part (b) on the data found in the M-file unbdl_data.m.
Compare the value of J found for your estimator with the value of J for B = A†. The increase
in J can be thought of as the cost of imposing the deadlines, in terms of the size of estimator
matrix.

8.25 Portfolio selection with sector neutrality constraints. We consider the problem of selecting a portfolio
composed of n assets. We let xi ∈ R denote the investment (say, in dollars) in asset i, with xi < 0
meaning that we hold a short position in asset i. We normalize our total portfolio as 1Tx = 1, where
1 is the vector with all entries 1. (With normalization, the xi are sometimes called portfolio weights.)

The portfolio (mean) return is given by r = µTx, where µ ∈ Rn is a vector of asset (mean) returns.
We want to choose x so that r is large, while avoiding risk exposure, which we explain next.

First we explain the idea of sector exposure. We have a list of k economic sectors (such as manufacturing,
energy, transportation, defense, . . .). A matrix F ∈ Rk×n, called the factor loading matrix, relates the
portfolio x to the factor exposures, given as Rfact = Fx ∈ Rk. The number Rfact

i is the portfolio risk
exposure to the ith economic sector. If Rfact

i is large (in magnitude) our portfolio is exposed to risk
from changes in that sector; if it is small, we are less exposed to risk from that sector. If Rfact

i = 0, we
say that the portfolio is neutral with respect to sector i.

Another type of risk exposure is due to fluctations in the returns of the individual assets. The idiosyn-
cratic risk is given by

Rid =

n∑
i=1

σ2
i x

2
i ,

where σi > 0 are the standard deviations of the asset returns. (You can take the formula above as a
definition; you do not need to understand the statistical interpretation.)

We will choose the portfolio weights x so as to maximize r − λRid, which is called the risk-adjusted
return, subject to neutrality with respect to all sectors, i.e., Rfact = 0. Of course we also have the
normalization constraint 1Tx = 1. The parameter λ, which is positive, is called the risk aversion
parameter. The (known) data in this problem are µ ∈ Rn, F ∈ Rk×n, σ = (σ1, . . . , σn) ∈ Rn, and
λ ∈ R.

76

(a) Explain how to find x, using methods from the course. You are welcome (even encouraged) to
express your solution in terms of block matrices, formed from the given data.

(b) Using the data given in sector_neutral_portfolio_data.m, find the optimal portfolio. Report
the associated values of r (the return), and Rid (the idiosyncratic risk). Verify that 1Tx = 1 (or
very close) and Rfact = 0 (or very small).

8.26 Minimum energy control with delayed destination knowledge. We consider a vehicle moving in R2, with
dynamics

x(t+ 1) = Ax(t) +Bu(t), p(t) = Cx(t), t = 1, 2, . . . , x(1) = 0,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and p(t) ∈ R2 is the position of the vehicle, at
time t. The matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ R2×n, and the initial state x(1), are given.

The vehicle must reach a destination d ∈ R2 at time t = M +N + 1, where M > 0 and N > 0, i.e., we
must have p(M +N + 1) = d. The subtlety here is that we are not told what d is at t = 1; we simply
know that it is one of K possible destinations d(1), . . . , d(K) (which we are given). At time t = M + 1,
the destination (which is one of d(1), . . . , d(K)) will be revealed to you.

Thus, you must choose the inputs up to time M , u(1), u(2), . . . , u(M), independent of the actual final
destination; but you can choose u(M + 1), . . . , u(M + N) depending on the final destination. We
will denote the choice of these inputs, in the case when the final destination is d(k), as u(k)(M +
1), . . . , u(k)(M +N).

We will choose the inputs to minimize the cost function

M∑
t=1

‖u(t)‖2 +
1

K

K∑
k=1

M+N∑
t=M+1

‖u(k)(t)‖2,

which is the sum of squared-norm costs, averaged over all destinations.

(a) Explain how to find u(1), . . . , u(M) and u(k)(M + 1), . . . , u(k)(M +N), for k = 1, . . . ,K.

(b) Carry out your method on the data given in delayed_dest_data.m. Report the optimal cost func-
tion value, and for each possible destination plot the position of the vehicle p(k)(1), . . . , p(k)(M +
N + 1). (The data file contains commented-out code for producing your plots.)

Comment briefly on the following statement: “Since we do not know where we are supposed to
go until t = M + 1, there’s no point using the input (for which we are charged) until then.”

8.27 Smooth and least-norm force profiles. Consider the mass/force example described in the lecture notes
(slides 2-11 and 8-10) with n = 10. For this problem, we are interested in input force sequences which
move the mass from an initial position and velocity of zero to final position 1 and final velocity zero.

(a) Find the sequence of forces that will move the mass as required, while minimizing the norm of
the force vector.

(b) Define the roughness R of a vector x ∈ Rn as

R =

n∑
i=0

(xi+1 − xi)2,

where we let x0 = xn+1 = 0. Find the sequence of forces with the smallest roughness R. Show
both force profiles in a single plot.

Remark. Please solve these problems exactly, i.e., do not solve a regularized least-squares problem
with µ set very large or small.

77

8.28 Minimum energy control of docking vehicles. We consider two vehicles moving under the influence
of applied forces, which can operate in docked mode (connected together to move as one unit) or in
undocked mode, in which they move independently.

We will use a discrete time model. We let pi(k) ∈ R2 (vi(k) ∈ R2), k = 1, . . . denote the position
(velocity) of vehicle i at (continuous) time t = kh, for i = 1, 2. (We start at k = 1 to simplify the
indexing in your code.) The vehicles are docked in time periods k = 1, . . . ,K − 1, and undocked in
periods k = K,

When the vehicles are docked, i.e., for k = 1, . . . ,K − 1, we have p1(k) = p2(k), v1(k) = v2(k), and

pi(k + 1) = pi(k) + hvi(k) +
h2

2(m1 +m2)
(f1(k) + f2(k)),

vi(k + 1) = vi(k) +
h

m1 +m2
(f1(k) + f2(k)),

for i = 1, 2. Here mi is the (positive) mass of vehicle i, h > 0 is the sampling time, and fi(k) ∈ R2 is
the force applied to vehicle i over (continuous) time interval kh ≤ t < (k + 1)h.

When the vehicles are undocked, i.e., for k = K, . . . , N , we have, for i = 1, 2,

pi(k + 1) = pi(k) + hvi(k) +
h2

2mi
fi(k),

vi(k + 1) = vi(k) +
h

mi
fi(k).

The vehicles are given initial position and velocities pi(1) = pinit, and vi(1) = vinit, for i = 1, 2. The
vehicles must arrive at time period N + 1 at (different) given final destinations, with zero velocity, i.e.,
for i = 1, 2,

pi(N + 1) = pdest
i , vi(N + 1) = v2(N + 1) = 0.

The problem is to find forces fi(k), k = 1, . . . , N , i = 1, 2, and the undocking time K, that minimize
the cost function

J =
1

N

2∑
i=1

N∑
k=1

‖fi(k)‖2.

Solve this problem with the data h = 0.01, m1 = 1, m2 = 4, N = 100, and

pinit =

[
0
0

]
, vinit =

[
−1
1

]
, pdest

1 =

[
0.5
0.5

]
, pdest

2 =

[
2
0

]
.

Give the optimal undocking time K and the associated value of J . Plot the trajectory of the two
vehicles in R2 using something similar to plot(p1(1,:),p1(2,:),p2(1,:),p2(2,:)). Also, plot the
optimal forces for each of the vehicles as a function of time.

78

Lecture 9 – Autonomous linear dynamical systems

9.1 A simple population model. We consider a certain population of fish (say) each (yearly) season. x(t) ∈
R3 will describe the population of fish at year t ∈ Z, as follows:

• x1(t) denotes the number of fish less than one year old

• x2(t) denotes the number of fish between one and two years old

• x3(t) denotes the number of fish between two and three years

(We will ignore the fact that these numbers are integers.) The population evolves from year t to year
t+ 1 as follows.

• The number of fish less than one year old in the next year (t+ 1) is equal to the total number of
offspring born during the current year. Fish that are less than one year old in the current year
(t) bear no offspring. Fish that are between one and two years old in the current year (t) bear an
average of 2 offspring each. Fish that are between two and three years old in the current year (t)
bear an average of 1 offspring each.

• 40% of the fish less than one year old in the current year (t) die; the remaining 60% live on to be
between one and two years old in the next year (t+ 1). fish, and 50% of the old fish.

• 30% of the one-to-two year old fish in the current year die, and 70% live on to be two-to-three
year old fish in the next year.

• All of the two-to-three year old fish in the current year die.

Express the population dynamics as an autonomous linear system with state x(t), i.e., in the form
x(t+ 1) = Ax(t). Remark: this example is silly, but more sophisticated population dynamics models
are very useful and widely used.

9.2 Tridiagonal systems. A square matrix A is called tridiagonal if Aij = 0 whenever |i−j| > 1. Tridiagonal
matrices arise in many applications.

(a) Draw a pretty block diagram of ẋ = Ax, where A ∈ R4×4 is tridiagonal.

(b) Consider a Markov chain with four states labeled 1,2,3,4. Let z(k) denote the state at time k. The
state transition probabilities are described as follows: when z is not 4, it increases by one with
probability 0.3; when z is not 1, it decreases by one with probability 0.2. (If z neither increases
nor decreases, it stays the same, i.e., z(k + 1) = z(k)). Draw a graph of this Markov chain as in
the lecture notes. Give the discrete time linear system equations that govern the evolution of the
state distribution.

(c) Find the linear dynamical system description for the circuit shown below. Use state x = [v1 v2 v3 v4]T ,
where vi is the voltage across the capacitor Ci.

R1 C1 R2 C2 C3 R3 C4 R4

R5 R6 R7

9.3 A distributed congestion control scheme. A data network is modeled as a set of l directed links that
connect n nodes. There are p routes in the network, which is a path from a source node, along one or
more links in the network, to the destination node. The routes are determined and known. Each route

79

has a source rate (in, say, bits per second). We denote the source rate for route j at time t as xj(t),
t = 0, 1, 2, (We assume the system operates in discrete time.) The total traffic on a link is the sum
of the source rates for the routes that pass through it. We use Ti(t) to denote the total traffic on link i
at time t, for i = 1, . . . , l. Each link has a target traffic level, which we denote T target

i , i = 1, . . . , l. We
define the congestion on link i as Ti(t) − T target

i , i = 1, . . . , l. The congestion is positive if the traffic
exceeds the target rate, and negative if it is below the target rate. The goal in congestion control is
to adjust the source rates in such a way that the traffic levels converge to the target levels if possible,
or close to the target levels otherwise. In this problem we consider a very simple congestion control
protocol. Each route monitors the congestion for the links along its route. It then adjusts its source
rate proportional to the sum of the congestion along its route. This can be expressed as:

xj(t+ 1) = xj(t)− α (sum of congestion along route j) , j = 1, . . . , p,

where α is a positive scalar that determines how aggressively the source rates react to congestion.
Note that this congestion control method is distributed ; each source only needs to know the congestion
along its own route, and does not directly coordinate its adjustments with the other routes. In real
congestion control, the rates and traffic are nonnegative, and the traffic on each link must be below
a maximum allowed level called the link capacity. In this problem, however, we ignore these effects;
we do not take into account the link capacities, and allow the source rates and total traffic levels to
become negative. Before we get to the questions, we define a matrix that may be useful. The route-link
matrix R ∈ Rl×p, is defined as

Rij =

{
1 route j utilizes link i
0 otherwise.

(a) Show that x(t), the vector of source rates, can be expressed as a linear dynamical system with
constant input, i.e., we have x(t+ 1) = Ax(t) + b. Be as explicit as you can about what A and b
are. Try to use the simplest notation you can. Hint: use the matrix R.

(b) Simulate the congestion control algorithm for the network shown in figure 1, from two different
initial source rates, using algorithm parameter α = 0.1, and all target traffic levels equal to one.
Plot the traffic level Ti(t) for each link (on the same plot) versus t, for each of the initial source
rates. (You are welcome to simulate the system from more than two initial source rates; we only
ask you to hand in the plots for two, however.) Make a brief comment on the results.

(c) Now we come back to the general case (and not just the specific example from part (b)). Assume
the congestion control update (i.e., the linear dynamical system found in part (a)) has a unique
equilibrium point x̄, and that the rate x(t) converges to it as t→∞. What can you say about x̄?
Limit yourself to a few sentences. Does the rate x̄ always correspond to zero congestion on every
link? Is it optimal in any way?

9.4 Sequence transmission with constraints. A communication system is based on 3 symbols: 1, 0, and
−1. For this communication system, a valid sequence of symbols x1, x2, . . . , xk, must satisfy several
constraints:

• Transition constraint: Consecutive symbols cannot be more than one apart from each other: we
must have |xi+1 − xi| ≤ 1, for i = 1, . . . , k − 1. Thus, for example, a 0 or a 1 can follow a 1, but
a −1 cannot follow a 1.

• Power constraint: The sum of the squares of any three consecutive symbols cannot exceed 2:

x2
i + x2

i+1 + x2
i+2 ≤ 2,

for i = 1, . . . , k − 2.

80

1 2

5 3

4

2 1

3

4

Figure 1: Data network for part (b), with links shown darker. Route 1 is (1, 2, 3), route 2 is (1, 2, 3, 4), route
3 is (3, 4, 5), and route 4 is (4, 5, 1), where routes are defined as sequences of links. All traffic and routes flow
counterclockwise (although this doesn’t matter).

• Average constraint: The sum of any three consecutive symbols must not exceed one in absolute
value:

|xi + xi+1 + xi+2| ≤ 1,

for i = 1, . . . , k − 2. So, for example, a sequence that contains 1100 would not be valid, because
the sum of the first three consecutive symbols is 2.

How many different (valid) sequences of length 20 are there?

9.5 Consider the mechanical system shown below:

�� ��

m1 m2

k2k1

q1 q2

Here qi give the displacements of the masses, mi are the values of the masses, and ki are the spring
stiffnesses, respectively. The dynamics of this system are

ẋ =


0 0 1 0
0 0 0 1

−k1+k2
m1

k2
m1

0 0
k2
m2

− k2
m2

0 0

x
where the state is given by

x =


q1

q2

q̇1

q̇2

 .

81

Immediately before t = 0, you are able to apply a strong impulsive force αi to mass i, which results in
initial condition

x(0) =


0
0

α1/m1

α2/m2

 .
(i.e., each mass starts with zero position and a velocity determined by the impulsive forces.) This
problem concerns selection of the impulsive forces α1 and α2. For parts a–c below, the parameter
values are

m1 = m2 = 1, k1 = k2 = 1.

Consider the following specifications:

(a) q2(10) = 2

(b) q1(10) = 1, q2(10) = 2

(c) q1(10) = 1, q2(10) = 2, q̇1(10) = 0, q̇2(10) = 0

(d) q2(10) = 2 when the parameters have the values used above (i.e., m1 = m2 = 1, k1 = k2 = 1),
and also, q2(10) = 2 when the parameters have the values m1 = 1, m2 = 1.3, k1 = k2 = 1.

Determine whether each of these specifications is feasible or not (i.e., whether there exist α1, α2 ∈ R
that make the specification hold). If the specification is feasible, find the particular α1, α2 that satisfy
the specification and minimize α2

1 +α2
2. If the specification is infeasible, find the particular α1, α2 that

come closest, in a least-squares sense, to satisfying the specification. (For example, if you cannot find
α1, α2 that satisfy q1(10) = 1, q2(10) = 2, then find αi that minimize (q1(10) − 1)2 + (q2(10) − 2)2.)
Be sure to be very clear about which alternative holds for each specification.

9.6 Invariance of the unit square. Consider the linear dynamical system ẋ = Ax with A ∈ R2×2. The unit
square in R2 is defined by

S = { x | − 1 ≤ x1 ≤ 1, − 1 ≤ x2 ≤ 1 }.

(a) Find the exact conditions on A for which the unit square S is invariant under ẋ = Ax. Give the
conditions as explicitly as possible.

(b) Consider the following statement: if the eigenvalues of A are real and negative, then S is invariant
under ẋ = Ax. Either show that this is true, or give an explicit counterexample.

9.7 Iterative solution of linear equations. In many applications we need to solve a set of linear equations
Ax = b, where A is nonsingular (square) and x is very large (e.g., x ∈ R100000). We assume that Az can
be computed at reasonable cost, for any z, but the standard methods for computing x = A−1b (e.g., LU
decomposition) are not feasible. A common approach is to use an iterative method, which computes a
sequence x(1), x(2) , . . . that converges to the solution x = A−1b. These methods rely on another matrix
Â, which is supposed to be ‘close’ to A. More importantly, Â has the property that Â−1z is easily or
cheaply computed for any given z. As a simple example, the matrix Â might be the diagonal part of
the matrix A (which, presumably, has relatively small off-diagonal elements). Obviously computing
Â−1z is fast; it’s just scaling the entries of z. There are many, many other examples. A simple
iterative method, sometimes called relaxation, is to set x̂(0) equal to some approximation of x (e.g.,
x̂(0) = Â−1b) and repeat, for t = 0, 1, . . .

r(t) = Ax̂(t)− b; x̂(t+ 1) = x̂(t)− Â−1r(t);

(The hat reminds us that x̂(t) is an approximation, after t iterations, of the true solution x = A−1b.)
This iteration uses only ‘cheap’ calculations: multiplication by A and Â−1. Note that r(t) is the
residual after the tth iteration.

82

(a) Let β = ‖Â−1(A − Â)‖ (which is a measure of how close Â and A are). Show that if we choose
x̂(0) = Â−1b, then ‖x̂(t)− x‖ ≤ βt+1‖x‖. Thus if β < 1, the iterative method works, i.e., for any
b we have x̂(t)→ x as t→∞. (And if β < 0.8, say, then convergence is pretty fast.)

(b) Find the exact conditions on A and Â such that the method works for any starting approximation
x̂(0) and any b. Your condition can involve norms, singular values, condition number, and eigen-
values of A and Â, or some combination, etc. Your condition should be as explicit as possible; for
example, it should not include any limits. Try to avoid the following two errors:

• Your condition guarantees convergence but is too restrictive. (For example: β = ‖Â−1(A −
Â)‖ < 0.8)

• Your condition doesn’t guarantee convergence.

9.8 Periodic solution of periodic linear dynamical system. Consider the linear dynamical system ẋ = A(t)x
where

A(t) =

{
A1 2k ≤ t < 2k + 1, k = 0, 1, 2, . . .
A2 2k + 1 ≤ t < 2k + 2, k = 0, 1, 2, . . .

In other words, A(t) switches between the two values A1 ∈ Rn×n and A2 ∈ Rn×n every second. The
matrix A(t) is periodic with period 2, i.e., A(t+ 2) = A(t) for all t ≥ 0.

(a) Existence of a periodic trajectory. What are the conditions on A1 and A2 under which the system
has a nonzero periodic trajectory, with period 2? By this we mean: there exists x : R+ → Rn, x
not identically zero, with x(t+ 2) = x(t) and ẋ = A(t)x.

(b) All trajectories are asymptotically periodic. What are the conditions on A1 and A2 under which all
trajectories of the system are asymptotically 2-periodic? By this we mean: for every x : R+ → Rn

with ẋ = A(t)x, we have
lim
t→∞

‖x(t+ 2)− x(t)‖ = 0.

(Note that this holds when x converges to zero . . .)

Please note:

• Your conditions should be as explicit as possible. You can refer to the matrices A1 and A2, or any
matrices derived from them using standard matrix operations, their eigenvalues and eigenvectors
or Jordan forms, singular values and singular vectors, etc.

• We do not want you to give us a condition under which the property described holds. We want
you to give us the most general conditions under which the property holds.

9.9 Analysis of a power control algorithm. In this problem we consider again the power control method
described in homework problem 2.1 Please refer to this problem for the setup and background. In
that problem, you expressed the power control method as a discrete-time linear dynamical system, and
simulated it for a specific set of parameters, with several values of initial power levels, and two target
SINRs. You found that for the target SINR value γ = 3, the powers converged to values for which
each SINR exceeded γ, no matter what the initial power was, whereas for the larger target SINR value
γ = 5, the powers appeared to diverge, and the SINRs did not appear to converge. You are going to
analyze this, now that you know alot more about linear systems.

(a) Explain the simulations. Explain your simulation results from the problem 1(b) for the given
values of G, α, σ, and the two SINR threshold levels γ = 3 and γ = 5.

(b) Critical SINR threshold level. Let us consider fixed values of G, α, and σ. It turns out that the
power control algorithm works provided the SINR threshold γ is less than some critical value γcrit

(which might depend on G, α, σ), and doesn’t work for γ > γcrit. (‘Works’ means that no matter
what the initial powers are, they converge to values for which each SINR exceeds γ.) Find an
expression for γcrit in terms of G ∈ Rn×n, α, and σ. Give the simplest expression you can. Of
course you must explain how you came up with your expression.

83

9.10 Stability of a time-varying system. We consider a discrete-time linear dynamical system

x(t+ 1) = A(t)x(t),

where A(t) ∈ {A1, A2, A3, A4}. These 4 matrices, which are 4× 4, are given in tv_data.m.

Show that this system is stable, i.e., for any trajectory x, we have x(t) → 0 as t → ∞. (This means
that for any x(0), and for any sequence A(0), A(1), A(2), . . ., we have x(t)→ 0 as t→∞.)

You may use any methods or concepts used in the class, e.g., least-squares, eigenvalues, singular values,
controllability, and so on. Your proof will consist of two parts:

• An explanation of how you are going to show that any trajectory converges to zero. Your argument
of course will require certain conditions (that you will find) to hold for the given data A1, . . . , A4.

• The numerical calculations that verify the conditions hold for the given data. You must provide
the source code for these calculations, and show the results as well.

9.11 Linear dynamical system with constant input. We consider the system ẋ = Ax+ b, with x(t) ∈ Rn. A
vector xe is an equilibrium point if 0 = Axe + b. (This means that the constant trajectory x(t) = xe
is a solution of ẋ = Ax+ b.)

(a) When is there an equilibrium point?

(b) When are there multiple equilibrium points?

(c) When is there a unique equilibrium point?

(d) Now suppose that xe is an equilibrium point. Define z(t) = x(t)− xe. Show that ż = Az. From
this, give a general formula for x(t) (involving xe, exp(tA), x(0)).

(e) Show that if all eigenvalues of A have negative real part, then there is exactly one equilibrium
point xe, and for any trajectory x(t), we have x(t)→ xe as t→∞.

9.12 Optimal choice of initial temperature profile. We consider a thermal system described by an n-element
finite-element model. The elements are arranged in a line, with the temperature of element i at time t
denoted Ti(t). Temperature is measured in degrees Celsius above ambient; negative Ti(t) corresponds
to a temperature below ambient. The dynamics of the system are described by

c1Ṫ1 = −a1T1 − b1(T1 − T2),

ciṪi = −aiTi − bi(Ti − Ti+1)− bi−1(Ti − Ti−1), i = 2, . . . , n− 1,

and
cnṪn = −anTn − bn−1(Tn − Tn−1).

where c ∈ Rn, a ∈ Rn, and b ∈ Rn−1 are given and are all positive.

We can interpret this model as follows. The parameter ci is the heat capacity of element i, so ciṪi is
the net heat flow into element i. The parameter ai gives the thermal conductance between element i
and the environment, so aiTi is the heat flow from element i to the environment (i.e., the direct heat
loss from element i.) The parameter bi gives the thermal conductance between element i and element
i+ 1, so bi(Ti − Ti+1) is the heat flow from element i to element i+ 1. Finally, bi−1(Ti − Ti−1) is the
heat flow from element i to element i− 1.

The goal of this problem is to choose the initial temperature profile, T (0) ∈ Rn, so that T (tdes) ≈ T des.
Here, tdes ∈ R is a specific time when we want the temperature profile to closely match T des ∈ Rn.
We also wish to satisfy a constraint that ‖T (0)‖ should be not be too large.

To formalize these requirements, we use the objective (1/
√
n)‖T (tdes) − T des‖ and the constraint

(1/
√
n)‖T (0)‖ ≤ Tmax. The first expression is the RMS temperature deviation, at t = tdes, from the

desired value, and the second is the RMS temperature deviation from ambient at t = 0. Tmax is the
(given) maximum inital RMS temperature value.

84

(a) Explain how to find T (0) that minimizes the objective while satisfying the constraint.

(b) Solve the problem instance with the values of n, c, a, b, tdes, T
des and Tmax defined in the file

temp_prof_data.m.

Plot, on one graph, your T (0), T (tdes) and T des. Give the RMS temperature error (1/
√
n)‖T (tdes)−

T des‖, and the RMS value of initial temperature (1/
√
n)‖T (0)‖.

85

Lecture 10 – Solution via Laplace transform and matrix exponential

10.1 Suppose ẋ = Ax and ż = σz + Az = (A+ σI)z where σ ∈ R, and x(0) = z(0). How are z(t) and x(t)
related? Find the simplest possible expression for z(t) in terms of x(t). Justify your answer. When
σ < 0, some people refer to the system ż = σz + Az as a damped version of ẋ = Ax. Another way to
think of the damped system is in terms of leaky integrators. A leaky integrator satisfies ẏ− σy = u; to
get the damped system, you replace every integrator in the original system with a leaky integrator.

10.2 Harmonic oscillator. The system ẋ =

[
0 ω
−ω 0

]
x is called a harmonic oscillator.

(a) Find the eigenvalues, resolvent, and state transition matrix for the harmonic oscillator. Express
x(t) in terms of x(0).

(b) Sketch the vector field of the harmonic oscillator.

(c) The state trajectories describe circular orbits, i.e., ‖x(t)‖ is constant. Verify this fact using the
solution from part (a).

(d) You may remember that circular motion (in a plane) is characterized by the velocity vector
being orthogonal to the position vector. Verify that this holds for any trajectory of the harmonic
oscillator. Use only the differential equation; do not use the explicit solution you found in part (a).

10.3 Properties of the matrix exponential.

(a) Show that eA+B = eAeB if A and B commute, i.e., AB = BA.

(b) Carefully show that d
dte

At = AeAt = eAtA.

10.4 Two-point boundary value problem. Consider the system described by ẋ = Ax, where A =

[
−1 1
−1 1

]
.

(a) Find eA.

(b) Suppose x1(0) = 1 and x2(1) = 2. Find x(2). (This is called a two-point boundary value problem,
since we are given conditions on the state at two time points instead of the usual single initial
point.)

10.5 Determinant of matrix exponential.

(a) Suppose the eigenvalues of A ∈ Rn×n are λ1, . . . , λn. Show that the eigenvalues of eA are
eλ1 , . . . , eλn . You can assume that A is diagonalizable, although it is true in the general case.

(b) Show that det eA = eTrA. Hint: detX is the product of the eigenvalues of X, and TrY is the
sum of the eigenvalues of Y .

10.6 Linear system with a quadrant detector. In this problem we consider the specific system

ẋ = Ax =

[
0.5 1.4
−0.7 0.5

]
x.

We have a detector or sensor that gives us the sign of each component of the state x = [x1 x2]T each
second:

y1(t) = sgn(x1(t)), y2(t) = sgn(x2(t)), t = 0, 1, 2, . . .

where the function sgn : R→ R is defined by

sgn(a) =

 1 a > 0
0 a = 0
−1 a < 0

86

There are several ways to think of these sensor measurements. You can think of y(t) = [y1(t) y2(t)]T

as determining which quadrant the state is in at time t (thus the name quadrant detector). Or, you
can think of y(t) as a one-bit quantized measurement of the state at time t. Finally, the problem. You
observe the sensor measurements

y(0) =

[
1
−1

]
, y(1) =

[
1
−1

]
.

Based on these measurements, what values could y(2) possibly take on? In terms of the quadrants,
the problem can be stated as follows. x(0) is in quadrant IV, and x(1) is also in quadrant IV. The
question is: which quadrant(s) can x(2) possibly be in? You do not know the initial state x(0). Of
course, you must completely justify and explain your answer.

10.7 Linear system with one-bit quantized output. We consider the system

ẋ = Ax, y(t) = sign (cx(t))

where

A =

[
−0.1 1
−1 0.1

]
, c =

[
1 −1

]
,

and the sign function is defined as

sign(a) =

 +1 if a > 0
−1 if a < 0
0 if a = 0

Rougly speaking, the output of this autonomous linear system is quantized to one-bit precision. The
following outputs are observed:

y(0.4) = +1, y(1.2) = −1, y(2.3) = −1, y(3.8) = +1

What can you say (if anything) about the following:

y(0.7), y(1.8), and y(3.7)?

Your response might be, for example: “y(0.7) is definitely +1, and y(1.8) is definitely −1, but y(3.7) can
be anything (i.e., −1, 0, or 1)”. Of course you must fully explain how you arrive at your conclusions.
(What we mean by “y(0.7) is definitely +1” is: for any trajectory of the system for which y(0.4) = +1,
y(1.2) = −1, y(2.3) = −1, and y(3.8) = +1, we also have y(0.7) = +1.)

10.8 Some basic properties of eigenvalues. Show the following:

(a) The eigenvalues of A and AT are the same.

(b) A is invertible if and only if A does not have a zero eigenvalue.

(c) If the eigenvalues of A are λ1, . . . , λn and A is invertible, then the eigenvalues of A−1 are
1/λ1, . . . , 1/λn.

(d) The eigenvalues of A and T−1AT are the same.

Hint: you’ll need to use the facts that detA = det(AT), det(AB) = detAdetB, and, if A is invertible,
detA−1 = 1/ detA.

10.9 Characteristic polynomial. Consider the characteristic polynomial X (s) = det(sI − A) of the matrix
A ∈ Rn×n.

(a) Show that X is monic, which means that its leading coefficient is one: X (s) = sn + · · ·.

87

(b) Show that the sn−1 coefficient of X is given by −TrA. (TrX is the trace of a matrix: TrX =∑n
i=1Xii.)

(c) Show that the constant coefficient of X is given by det(−A).

(d) Let λ1, . . . , λn denote the eigenvalues of A, so that

X (s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 = (s− λ1)(s− λ2) · · · (s− λn).

By equating coefficients show that an−1 = −
∑n
i=1 λi and a0 =

∏n
i=1(−λi).

10.10 The adjoint system. The adjoint system associated with the linear dynamical system ẋ = Ax is
ż = AT z. Evidently the adjoint system and the system have the same eigenvalues.

(a) How are the state-transition matrices of the system and the adjoint system related?

(b) Show that z(0)Tx(t) = z(t)Tx(0).

10.11 Spectral resolution of the identity. Suppose A ∈ Rn×n has n linearly independent eigenvectors
p1, . . . , pn, pTi pi = 1, i = 1, . . . , n, with associated eigenvalues λi. Let P = [p1 · · · pn] and Q = P−1.
Let qTi be the ith row of Q.

(a) Let Rk = pkq
T
k . What is the range of Rk? What is the rank of Rk? Can you describe the null

space of Rk?

(b) Show that RiRj = 0 for i 6= j. What is R2
i ?

(c) Show that

(sI −A)−1 =

n∑
k=1

Rk
s− λk

.

Note that this is a partial fraction expansion of (sI − A)−1. For this reason the Ri’s are called
the residue matrices of A.

(d) Show that R1 + · · · + Rn = I. For this reason the residue matrices are said to constitute a
resolution of the identity.

(e) Find the residue matrices for

A =

[
1 0
1 −2

]
both ways described above (i.e., find P and Q and then calculate the R’s, and then do a partial
fraction expansion of (sI −A)−1 to find the R’s).

10.12 Using matlab to find an invariant plane. Consider the continuous-time system ẋ = Ax with A given
by

A =


−0.1005 1.0939 2.0428 4.4599
−1.0880 −0.1444 5.9859 −3.0481
−2.0510 −5.9709 −0.1387 1.9229
−4.4575 3.0753 −1.8847 −0.1164


You can verify that the eigenvalues of A are

λ1,2 = −0.10± j5, λ3,4 = −0.15± j7.

(a) Find an orthonormal basis (q1, q2) for the invariant plane associated with λ1 and λ2.

(b) Find q3, q4 ∈ R4 such that Q = [q1 q2 q3 q4] is orthogonal. You might find the matlab command
null useful; it computes an orthonormal basis of the null space of a matrix.

(c) Plot the individual states constituting the trajectory x(t) of the system starting from an initial
point in the invariant plane, say x(0) = q1, for 0 ≤ t ≤ 40.

88

(d) If x(t) is in the invariant plane what can you say about the components of the vector QTx(t)?

(e) Using the result of part (12d) verify that the trajectory you found in part (12c) is in the invariant
plane.

Note: The A matrix is available on the class web site in the file inv plane matrix.m.

10.13 Positive quadrant invariance. We consider a system ẋ = Ax with x(t) ∈ R2 (although the results
of this problem can be generalized to systems of higher dimension). We say the system is positive
quadrant invariant (PQI) if whenever x1(T) ≥ 0 and x2(T) ≥ 0, we have x1(t) ≥ 0 and x2(t) ≥ 0 for
all t ≥ T . In other words, if the state starts inside (or enters) the positive (i.e., first) quadrant, then
the state remains indefinitely in the positive quadrant.

(a) Find the precise conditions on A under which the system ẋ = Ax is PQI. Try to express the
conditions in the simplest form.

(b) True or False: if ẋ = Ax is PQI, then the eigenvalues of A are real.

10.14 Some matlab exercises. Consider the continuous-time system ẋ = Ax where A can be found in
sys_dynamics_matA.m and is equal to

A =


−0.1005 1.0939 2.0428 4.4599
−1.0880 −0.1444 5.9859 −3.0481
−2.0510 −5.9709 −0.1387 1.9229
−4.4575 3.0753 −1.8847 −0.1164

 .
(a) What are the eigenvalues of A? Is the system stable? You can use the command eig in matlab.

(b) Plot a few trajectories of x(t), i.e., x1(t), x2(t), x3(t) and x4(t), for a few initial conditions. To
do this you can use the matrix exponential command in matlab expm (not exp which gives the
element-by-element exponential of a matrix). Verify that the qualitative behavior of the system
is consistent with the eigenvalues you found in part (14a).

(c) Find the matrix Z such that Zx(t) gives x(t+ 15). Thus, Z is the ‘15 seconds forward predictor
matrix’.

(d) Find the matrix Y such that Y x(t) gives x(t − 20). Thus Y reconstructs what the state was 20
seconds ago.

(e) Briefly comment on the size of the elements of the matrices Y and Z.

(f) Find x(0) such that x(10) = [1 1 1 1]T .

10.15 Volume preserving flows. Suppose we have a set S ⊆ Rn and a linear dynamical system ẋ = Ax. We
can propagate S along the ‘flow’ induced by the linear dynamical system by considering

S(t) = eAtS = { eAts | s ∈ S }.

Thus, S(t) is the image of the set S under the linear transformation etA. What are the conditions on
A so that the flow preserves volume, i.e., volS(t) = volS for all t? Can the flow ẋ = Ax be stable?
Hint: if F ∈ Rn×n then vol(FS) = |detF |volS, where FS = { Fs | s ∈ S }.

10.16 Stability of a periodic system. Consider the linear dynamical system ẋ = A(t)x where

A(t) =

{
A1 2n ≤ t < 2n+ 1, n = 0, 1, 2, . . .
A2 2n+ 1 ≤ t < 2n+ 2, n = 0, 1, 2, . . .

In other words, A(t) switches between the two values A1 and A2 every second. We say that this (time-
varying) linear dynamical system is stable if every trajectory converges to zero, i.e., we have x(t)→ 0
as t →∞ for any x(0). Find the conditions on A1 and A2 under which the periodic system is stable.
Your conditions should be as explicit as possible.

89

10.17 Computing trajectories of a continuous-time LDS. We have seen in class that if x(t) is the solution to
the continuous-time, time-invariant, linear dynamical system

ẋ = Ax, x(0) = x0,

then the Laplace transform of x(t) is given by

X(s) = (sI −A)
−1
x0.

Hence, we can obtain x(t) from the inverse Laplace transform of the resolvent of A:

x(t) = L−1
(

(sI −A)
−1
)
x0.

(a) Assuming that A ∈ Rn×n has n independent eigenvectors, write x(t) in terms of the residue
matrices Ri and associated eigenvalues λi, i = 1, . . . , n. (The residue matrices are defined in the
previous problem.)

(b) Consider once again the matrix

A =

[
1 3
0 −1

]
.

Write the solution x(t) for this dynamics matrix, with the initial condition x0 = [2 − 1]
T

.
Compute x1(2), i.e., the value of the first entry of x(t) at t = 2.

(c) Forward Euler approximation. With this same A and x0, compute an approximation to the
trajectory x(t) by Euler approximation, with different step-sizes h. Run your simulation from
t = 0 to t = 2, with N steps. For the number of steps N , use the values 10, 100, 1000, and 10000
(with the corresponding step-size h = 2/N). For each run, you’ll obtain the sequence resulting
from the discrete-time LDS

y(k + 1) = (I + hA)y(k), k = 0, . . . , N − 1

with y(0) = x0. On the same graph, plot the first entry, y1(k), of each of the four sequences you
obtain (with hk on the horizontal axis).

(d) Error in Euler approximation. For each of the four runs, compute the final error in x1, given by
ε = y1(N)−x1(2). Plot ε as a function of N on a logarithmic scale (hint: use the matlab function
loglog). How many steps do you estimate you would you need to achieve a precision of 10−6?

(e) Matrix exponential. The matrix exponential is defined by the series

eA = I +

+∞∑
k=1

1

k!
Ak.

With A as above and h = 0.5, compute an approximation of the matrix exponential of hA by
adding the first ten term of the series:

B = I +

10∑
k=1

1

k!
(hA)k.

Compute 4 iterates of the discrete-time LDS

z(k + 1) = Bz(k), k = 0, . . . , 3,

with z(0) = x0. Add z1(k) to the plot of the y1(k). What is the final error ε = z1(4) − x1(2)?
Note: The matlab function expm uses a much more efficient algorithm to compute the matrix
exponential. For this example, expm requires about the same computational effort as is needed to
add the first ten terms of the series, but the result is much more accurate. (If you’re curious, go
ahead and compute the corresponding final error ε.)

90

10.18 Suppose ẋ = Ax withA ∈ Rn×n. Two one-second experiments are performed. In the first, x(0) = [1 1]T

and x(1) = [4 − 2]T . In the second, x(0) = [1 2]T and x(1) = [5 − 2]T .

(a) Find x(1) and x(2), given x(0) = [3 − 1]T .

(b) Find A, by first computing the matrix exponential.

(c) Either find x(1.5) or explain why you cannot (x(0) = [3 − 1]T).

(d) More generally, for ẋ = Ax with A ∈ Rn×n, describe a procedure for finding A using experiments
with different initial values. What conditions must be satisfied for your procedure to work?

10.19 Output response envelope for linear system with uncertain initial condition. We consider the au-
tonomous linear dynamical system ẋ = Ax, y(t) = Cx(t), where x(t) ∈ Rn and y(t) ∈ R. We do not
know the initial condition exactly; we only know that it lies in a ball of radius r centered at the point
x0:

‖x(0)− x0‖ ≤ r.

We call x0 the nominal initial condition, and the resulting output, ynom(t) = CetAx0, the nominal
output. We define the maximum output or upper output envelope as

y(t) = max{y(t) | ‖x(0)− x0‖ ≤ r},

i.e., the maximum possible value of the output at time t, over all possible initial conditions. (Here you
can choose a different initial condition for each t; you are not required to find a single initial condition.)
In a similar way, we define the minimum output or lower output envelope as

y(t) = min{y(t) | ‖x(0)− x0‖ ≤ r},

i.e., the minimum possible value of the output at time t, over all possible initial conditions.

(a) Explain how to find y(t) and y(t), given the problem data A, C, x0, and r.

(b) Carry out your method on the problem data in uie_data.m. On the same axes, plot ynom, y, and
y, versus t, over the range 0 ≤ t ≤ 10.

10.20 Alignment of a fleet of vehicles. We consider a fleet of vehicles, labeled 1, . . . , n, which move along
a line with (scalar) positions y1, . . . , yn. We let v1, . . . , vn denote the velocities of the vehicles, and
u1, . . . , un the net forces applied to the vehicles. The vehicle motions are governed by the equations

ẏi = vi, v̇i = ui − vi.

(Here we take each vehicle mass to be one, and include a damping term in the equations.) We assume
that y1(0) < · · · < yn(0), i.e., the vehicles start out with vehicle 1 in the leftmost position, followed by
vehicle 2 to its right, and so on, with vehicle n in the rightmost position. The goal is for the vehicles
to converge to the configuration

yi = i, vi = 0, i = 1, . . . , n,

i.e., first vehicle at position 1, with unit spacing between adjacent vehicles, and all stationary. We call
this configuration aligned, and the goal is to drive the vehicles to this configuration, i.e., to align the
vehicles. We define the spacing between vehicle i and i+1 as si(t) = yi+1(t)−yi(t), for i = 1, . . . , n−1.
(When the vehicles are aligned, these spacings are all one.) We will investigate three control schemes
for aligning the fleet of vehicles.

• Right looking control is based on the spacing to the vehicle to the right. We use the control law

ui(t) = si(t)− 1, i = 1, . . . , n− 1,

91

for vehicles i = 1, . . . , n − 1. In other words, we apply a force on vehicle i proportional to its
spacing error with respect to the vehicle to the right (i.e., vehicle i + 1). The rightmost vehicle
uses the control law

un(t) = −(yn(t)− n),

which applies a force proportional to its position error, in the opposite direction. This control
law has the advantage that only the rightmost vehicle needs an absolute measurement sensor; the
others only need a measurement of the distance to their righthand neighbor.

• Left and right looking control adjusts the input force based on the spacing errors to the vehicle to
the left and the vehicle to the right:

ui(t) =
si(t)− 1

2
− si−1(t)− 1

2
, i = 2, . . . , n− 1,

The rightmost vehicle uses the same absolute error method as in right looking control, i.e.,

un(t) = −(yn(t)− n),

and the first vehicle, which has no vehicle to its left, uses a right looking control scheme,

u1(t) = s1(t)− 1.

This scheme requires vehicle n to have an absolute position sensor, but the other vehicles only
need to measure the distance to their neighbors.

• Independent alignment is based on each vehicle independently adjusting its position with respect
to its required position:

ui(t) = −(yi(t)− i), i = 1, . . . , n.

This scheme requires all vehicles to have absolute position sensors.

In the questions below, we consider the specific case with n = 5 vehicles.

(a) Which of the three schemes work? By ‘work’ we mean that the vehicles converge to the alignment
configuration, no matter what the initial positions and velocities are. Among the schemes that do
work, which one gives the fastest asymptotic convergence to alignment? (If there is a tie between
two or three schemes, say so.) In this part of the problem you can ignore the issue of vehicle
collisions, i.e., spacings that pass through zero.

(b) Collisions. In this problem we analyze vehicle collisions, which occur when any spacing between
vehicles is equal to zero. (For example, s3(5.7) = 0 means that vehicles 3 and 4 collide at t = 5.7.)
We take the particular starting configuration

y = (0, 2, 3, 5, 7), v = (0, 0, 0, 0, 0),

which corresponds to the vehicles with zero initial velocity, but not in the aligned positions. For
each of the three schemes above (whether or not they work), determine if a collision occurs. If
a collision does occur, find the earliest collision, giving the time and the vehicles involved. (For
example, ‘Vehicles 3 and 4 collide at t = 7.7.’) If there is a tie, i.e., two pairs of vehicles collide
at the same time, say so. If the vehicles do not collide, find the point of closest approach, i.e.,
the minimum spacing that occurs, between any pair of vehicles, for t ≥ 0. (Give the time, the
vehicles involved, and the minimum spacing.) If there is a tie, i.e., two or more pairs of vehicles
have the same distance of closest approach, say so. Be sure to give us times of collisions or closest
approach with an absolute precision of at least 0.1.

92

10.21 Scalar time-varying linear dynamical system. Show that the solution of ẋ(t) = a(t)x(t), where x(t) ∈ R,
is given by

x(t) = exp

(∫ t

0

a(τ) dτ

)
x(0).

(You can just differentiate this expression, and show that it satisfies ẋ(t) = a(t)x(t).) Find a specific
example showing that the analogous formula does not hold when x(t) ∈ Rn, with n > 1.

10.22 Optimal initial conditions for a bioreactor. The dynamics of a bioreactor are given by ẋ(t) = Ax(t),
where x(t) ∈ Rn is the state, with xi(t) representing the total mass of species or component i at time
t. Component i has (positive) value (or cost) ci, so the total value (or cost) of the components at time
t is cTx(t). (We ignore any extra cost that would be incurred in separating the components.) Your
job is to choose the initial state, under a budget constraint, that maximizes the total value at time T .
More specifically, you are to choose x(0), with all entries nonnegative, that satisfies cTx(0) ≤ B, where
B is a given positive budget. The problem data (i.e., things you know) are A, c, T , and B.

You can assume that A is such that, for any x(0) with nonnegative components, x(t) will also have all
components nonnegative, for any t ≥ 0. (This occurs, by the way, if and only if the off-diagonal entries
of A are nonnegative.)

(a) Explain how to solve this problem.

(b) Carry out your method on the specific instance with data

A =


0.1 0.1 0.3 0
0 0.2 0.4 0.3

0.1 0.3 0.1 0
0 0 0.2 0.1

 , c =


3.5
0.6
1.1
2.0

 , T = 10, B = 1.

Give the optimal x(0), and the associated (optimal) terminal value cTx(T).

Give us the terminal value obtained when the initial state has equal mass in each component,
i.e., x(0) = α1, with α adjusted so that the total initial cost is B. Compare this with the optimal
terminal value.

Also give us the terminal value obtained when the same amount, B/n, is spent on each initial
state component (i.e., x(0)i = B/(nci)). Compare this with the optimal terminal value.

10.23 Optimal espresso cup pre-heating. At time t = 0 boiling water, at 100◦C, is poured into an espresso cup;
after P seconds (the ‘pre-heating time’), the water is poured out, and espresso, with initial temperature
95◦C, is poured in. (You can assume this operation occurs instantaneously.) The espresso is then
consumed exactly 15 seconds later (yes, instantaneously). The problem is to choose the pre-heating
time P so as to maximize the temperature of the espresso when it is consumed.

We now give the thermal model used. We take the temperature of the liquid in the cup (water or
espresso) as one state; for the cup we use an n-state finite element model. The vector x(t) ∈ Rn+1

gives the temperature distribution at time t: x1(t) is the liquid (water or espresso) temperature at time
t, and x2(t), . . . , xn+1(t) are the temperatures of the elements in the cup. All of these are in degrees
C, with t in seconds. The dynamics are

d

dt
(x(t)− 20 · 1) = A(x(t)− 20 · 1),

where A ∈ R(n+1)×(n+1). (The vector 20 · 1, with all components 20, represents the ambient tempera-
ture.) The initial temperature distribution is

x(0) =


100
20
...

20

 .

93

At t = P , the liquid temperature changes instantly from whatever value it has, to 95; the other states do
not change. Note that the dynamics of the system are the same before and after pre-heating (because
we assume that water and espresso behave in the same way, thermally speaking).

We have very generously derived the matrix A for you. You will find it in espressodata.m. In addition
to A, the file also defines n, and, respectively, the ambient, espresso and preheat water temperatures
Ta (which is 20), Te (95), and Tl (100).

Explain your method, submit your code, and give final answers, which must include the optimal value
of P and the resulting optimal espresso temperature when it is consumed. Give both to an accuracy
of one decimal place, as in

‘P = 23.5 s, which gives an espresso temperature at consumption of 62.3◦C.’

(This is not the correct answer, of course.)

10.24 Nuclear reactor dynamics. In this problem we consider the dynamics of a batch of nuclear reactor fuel.
We let N(t) ∈ Rn denote the amounts (in some scaled units of atoms/cm3) of n different isotopes that
participate in reactions in the fuel, at time t (measured in years). The initial fuel isotope amounts,
N(0) ∈ Rn, is given. These isotope amounts evolve according to a time-varying autonomous linear
dynamical system (called the Bateman equations),

Ṅ(t) = (A+ φ(t)B)N(t),

where A and B are known constant matrices in Rn×n that describe the reactions, and φ(t) ≥ 0 is the
neutron density (in some scaled units of neutrons/cm3), which can be changed by lowering or raising
graphite rods in the reactor.

The power output from the fuel (in GW) is given by

P (t) = φ(t)cTN(t),

where c ∈ Rn is given, and the total radiation level is given by

R(t) = dTN(t),

where d ∈ Rn is given.

The reactor is operated as follows. The neutron density φ is piecewise constant, with the initial value
chosen so that the power output is a given level Pmax at t = 0. The value of the power output is
checked once per week (i.e., every 1/52 year); if the power output at one of these times is below a
given threshold Pmin, the neutron density is increased (instantaneously) so the power output (after the
neutron density adjustment) equals Pmax. This process of occasionally resetting the neutron density
value continues until the time t reaches the fuel batch lifetime T life, at which point the fuel is removed
from the reactor and stored. For t > T life the neutron density is zero.

The remainder of this problem concerns the specific problem instance with data given in the file
nuc_react_dyn_data.m (which also gives the names of the isotopes in N_names).

Find the times 0 < T1 < · · · < Tk < T life when the neutron density is increased. (Be sure to give k,
the number of times the neutron density is increased.) Plot the power output versus t over [0, T life].
For times Ti when the neutron density is increased, you can plot the power output after the increase
(which should be Pmax). Over the same time scale, plot neutron density φ(t), and radiation R(t).

Finally, plot the radiation R(t) versus t over the interval [0, 100] (i.e., for 100 years). Find the time
T 5%, when the radiation drops to 5% of its maximum value. (T 5% should be reported to an accuracy
of 0.1 year.)

Of course, you must give a clear description of how you solve the problem, the code you use to solve
it, and the final numerical results and plots.

94

Lecture 11 – Eigenvectors and diagonalization

11.1 Left eigenvector properties. Suppose w is a left eigenvector of A ∈ Rn×n with real negative eigenvalue
λ.

(a) Find a simple expression for wT eAt.

(b) Let α < β. The set { z | α ≤ wT z ≤ β } is referred to as a slab. Briefly explain this terminology.
Draw a picture in R2.

(c) Show that the slab { z | 0 ≤ wT z ≤ β } is invariant for ẋ = Ax.

11.2 Consider the linear dynamical system ẋ = Ax where A ∈ Rn×n is diagonalizable with eigenvalues
λi, eigenvectors vi, and left eigenvectors wi for i = 1, . . . , n. Assume that λ1 > 0 and <λi < 0 for
i = 2, . . . , n. Describe the trajectories qualitatively. Specifically, what happens to x(t) as t→∞? Give
the answer geometrically, in terms of x(0).

11.3 Another formula for the matrix exponential. You might remember that for any complex number a ∈ C,
ea = limk→∞(1 + a/k)k. You will establish the matrix analog: for any A ∈ Rn×n,

eA = lim
k→∞

(I +A/k)k.

To simplify things, you can assume A is diagonalizable. Hint: diagonalize.

11.4 Synchronizing a communication network. The graph below shows a communication network, with
communication links shown as lines between the nodes, which are labeled 1, . . . , 6. We refer to one
node as a neighbor of another if they are connected by a link.

1 2

5

3

4

6

Each node has a clock. The clocks run at the same speed, but are not (initially) synchronized. The
shift or offset of clock i, with respect to some absolute clock (e.g., NIST’s atomic clocks or the clock
for the GPS system) will be denoted xi. Thus xi > 0 means the clock at node i is running in advance
of the standard clock, while xi < 0 means the ith clock is running behind the standard clock. The
nodes do not know their own clock offsets (or the offsets of any of the other clocks); we introduce the
numbers xi only so we can analyze the system. At discrete intervals, which we denote t = 0, 1, 2 . . .,
the nodes exchange communications messages. Through this exchange each node is able to find out
the relative time offset of its own clock compared to the clocks of its neighboring nodes. For example,
node 2 is able to find out the differences x1 − x2 and x5 − x2. (But remember, node 2 does not know
any of the absolute clock offsets x1, x2, or x5.) While node i does not know its absolute offset xi, it is
able to adjust it by adding a delay or advance to it. The new offset takes effect at the next interval.
Thus we have xi(t+ 1) = xi(t) + ai(t), where ai(t) is the adjustment made by the ith node to its clock
in the tth interval. An engineer suggests the following scheme of adjusting the clock offsets. At each
interval, each node determines its relative offset with each of its neighboring nodes. Then it computes

95

the average of these relative offsets. The node then adjusts its offset by this average. For example, for
node 2 we would have the adjustment

a2(t) =
(x1(t)− x2(t)) + (x5(t)− x2(t))

2
.

Finally, the question.

(a) What happens?

(b) Why?

We are interested in questions such as: do all the clocks become synchronized with the standard clock
(i.e., x(t)→ 0 as t→∞)? Do the clocks become synchronized with each other (i.e., do all xi(t)−xj(t)
converge to zero as t→∞)? Does the system become synchronized no matter what the initial offsets
are, or only for some initial offsets? You are welcome to use matlab to do some relevant numerical
computations, but you must explain what you are doing and why. We will not accept simulations
of the network as an explanation. Another engineer suggests a modification of the scheme described
above. She notes that if the scheme above were applied to a simple network consisting of two connected
nodes, then the two nodes would just trade their offsets each time interval, so synchronization does
not occur. To avoid this, she proposes to adjust each node’s clock by only half the average offset with
its neighbors. Thus, for node 2, this means:

a2(t) =
1

2

(x1(t)− x2(t)) + (x5(t)− x2(t))

2
.

(c) Would you say this scheme is better or worse than the original one described above? If one is
better than the other, how is it better? (For example, does it achieve synchronization from a
bigger set of initial offsets, does it achieve synchronization faster, etc.)

11.5 Population dynamics. In this problem we will study how some population distribution (say, of people)
evolves over time, using a discrete-time linear dynamical system model. Let t = 0, 1, . . . denote time in
years (since the beginning of the study). The vector x(t) ∈ Rn will give the population distribution at
year t (on some fixed census date, e.g., January 1). Specifically, xi(t) is the number of people at year
t, of age i−1. Thus x5(3) denotes the number of people of age 4, at year 3, and x1(t) (the number of 0
year-olds) denotes the number of people born since the last census. We assume n is large enough that
no one lives to age n. We’ll also ignore the fact that xi are integers, and treat them as real numbers.
(If x3(4) = 1.2 bothers you, you can imagine the units as millions, say.) The total population at year
t is given by 1Tx(t), where 1 ∈ Rn is the vector with all components 1.

• Death rate. The death rate depends only on age, and not on time t. The coefficient di is the
fraction of people of age i− 1 who will die during the year. Thus we have, for t = 0, 1, . . .,

xk+1(t+ 1) = (1− dk)xk(t), k = 1, . . . , n− 1.

(As mentioned above, we assume that dn = 1, i.e., all people who make it to age n− 1 die during
the year.) The death rate coefficients satisfy 0 < di < 1, i = 1, . . . , n− 1. We define the survival
rate coefficients as sk = 1− dk, so 0 < sk < 1, k = 1, . . . , n− 1.

• Birth rate. The birth rate depends only on age, and not on time t. The coefficient bi is the
fraction of people of age i− 1 who will have a child during the year (taking into account multiple
births). Thus the total births during a year is given by

x1(t+ 1) = b1x1(t) + · · ·+ bnxn(t).

The birth rate coefficients satisfy bi ≥ 0, i = 1, . . . , n. We’ll assume that at least one of the bk’s
is positive. (Of course you’d expect that bi would be zero for non-fertile ages, e.g., age below 11
and over 60, but we won’t make that explicit assumption.)

96

The assumptions imply the following important property of our model: if xi(0) > 0 for i = 1, . . . , n,
then xi(t) > 0 for i = 1, . . . , n. Therefore we don’t have to worry about negative xi(t), so long as our
initial population distribution x(0) has all positive components. (To use fancy language we’d say the
system is positive orthant invariant.)

(a) Express the population dynamics model described above as a discrete-time linear dynamical sys-
tem. That is, find a matrix A such that x(t+ 1) = Ax(t).

(b) Draw a block diagram of the system found in part (a).

(c) Find the characteristic polynomial of the system explicitly in terms of the birth and death rate
coefficients (or, if you prefer, the birth and survival rate coefficients).

(d) Survival normalized variables. For each person born, s1 make it to age 1, s1s2 make it to age 2,
and in general, s1 · · · sk make it to age k. We define

yk(t) =
xk(t)

s1 · · · sk−1

(with y1(t) = x1(t)) as new population variables that are normalized to the survival rate. Express
the population dynamics as a linear dynamical system using the variable y(t) ∈ Rn. That is, find
a matrix Ã such y(t+ 1) = Ãy(t).

Determine whether each of the next four statements is true or false. (Of course by ‘true’ we mean true
for any values of the coefficients consistent with our assumptions, and by ‘false’ we mean false for some
choice of coefficients consistent with our assumptions.)

(e) Let x and z both satisfy our population dynamics model, i.e., x(t + 1) = Ax(t) and z(t + 1) =
Az(t), and assume that all components of x(0) and z(0) are positive. If 1Tx(0) > 1T z(0), then
1Tx(t) > 1T z(t) for t = 1, 2, (In words: we consider two populations that satisfy the same
dynamics. Then the population that is initially larger will always be larger.)

(f) All the eigenvalues of A are real.

(g) If dk ≥ bk for k = 1, . . . , n, then 1Tx(t)→ 0 as t→∞, i.e., the population goes extinct.

(h) Suppose that (b1 + · · · + bn)/n ≤ (d1 + · · · dn)/n, i.e., the ‘average’ birth rate is less than the
‘average’ death rate. Then 1Tx(t)→ 0 as t→∞.

11.6 Rate of a Markov code. Consider the Markov language described in exercise 12, with five symbols
1, 2, 3, 4, 5, and the following symbol transition rules:

• 1 must be followed by 2 or 3

• 2 must be followed by 2 or 5

• 3 must be followed by 1

• 4 must be followed by 4 or 2 or 5

• 5 must be followed by 1 or 3

(a) The rate of the code. Let KN denote the number of allowed sequences of length N . The number

R = lim
N→∞

log2KN

N

(if it exists) is called the rate of the code, in bits per symbol. Find the rate of this code. Compare
it to the rate of the code which consists of all sequences from an alphabet of 5 symbols (i.e., with
no restrictions on which symbols can follow which symbols).

97

(b) Asymptotic fraction of sequences with a given starting or ending symbol. Let FN,i denote the
number of allowed sequences of length N that start with symbol i, and let GN,i denote the
number of allowed sequences of length N that end with symbol i. Thus, we have

FN,1 + · · ·+ FN,5 = GN,1 + · · ·+GN,5 = KN .

Find the asymptotic fractions

fi = lim
N→∞

FN,i/KN , gi = lim
N→∞

GN,i/KN .

Please don’t find your answers by simple simulation or relatively mindless computation; we want
to see (and understand) your method.

11.7 Companion matrices. A matrix A of the form

A =


−a1 −a2 · · · −an−1 −an

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


is said to be a (top) companion matrix. There can be four forms of companion matrices depending on
whether the ai’s occur in the first or last row, or first or last column. These are referred to as top-,
bottom-, left-, or right-companion matrices. Let ẋ = Ax where A is top-campanion.

(a) Draw a block diagram for the system ẋ = Ax.

(b) Find the characteristic polynomial of the system using the block diagram and show that A is
nonsingular if and only if an 6= 0.

(c) Show that ifA is nonsingular, thenA−1 is a bottom-companion matrix with last row−[1 a1 · · · an−1]/an.

(d) Find the eigenvector of A associated with the eigenvalue λ.

(e) Suppose that A has distinct eigenvalues λ1, . . . , λn. Find T such that T−1AT is diagonal.

11.8 Squareroot and logarithm of a (diagonalizable) matrix. Suppose that A ∈ Rn×n is diagonalizable.
Therefore, an invertible matrix T ∈ Cn×n and diagonal matrix Λ ∈ Cn×n exist such that A = TΛT−1.
Let Λ = diag(λ1, . . . , λn).

(a) We say B ∈ Rn×n is a squareroot of A if B2 = A. Let µi satisfy µ2
i = λi. Show that B =

T diag(µ1, . . . , µn)T−1 is a squareroot of A. A squareroot is sometimes denoted A1/2 (but note
that there are in general many squareroots of a matrix). When λi are real and nonnegative,
it is conventional to take µi =

√
λi (i.e., the nonnegative squareroot), so in this case A1/2 is

unambiguous.

(b) We say B is a logarithm of A if eB = A, and we write B = logA. Following the idea of part a,
find an expression for a logarithm of A (which you can assume is invertible). Is the logarithm
unique? What if we insist on B being real?

11.9 Separating hyperplane for a linear dynamical system. A hyperplane (passing through 0) in Rn is
described by the equation cTx = 0, where c ∈ Rn is nonzero. (Note that if β 6= 0, the vector c̃ = βc
defines the same hyperplane.) Now consider the autonomous linear dynamic system ẋ = Ax, where
A ∈ Rn×n and x(t) ∈ Rn. We say that the hyperplane defined by c is a separating hyperplane for this
system if no trajectory of the system ever crosses the hyperplane. This means it is impossible to have
cTx(t) > 0 for some t, and cTx(t̃) < 0 for some other t̃, for any trajectory x of the system. Explain how
to find all separating hyperplanes for the system ẋ = Ax. In particular, give the conditions on A under
which there is no separating hyperplane. (If you think there is always a separating hyperplane for a
linear system, say so.) You can assume that A has distinct eigenvalues (and therefore is diagonalizable).

98

11.10 Equi-angle sets. Let x1, . . . , xn ∈ Rn. We say that they form a (normalized) equi-angle set, with angle
θ, if ‖xi‖ = 1, i = 1, . . . , n, and

6 (xi, xj) = θ, i, j = 1, . . . , n, i 6= j.

In other words, each of the vectors has unit norm, and the angle between any pair of the vectors is θ.
We’ll take θ to be between 0 and π. An orthonormal set is a familiar example of an equi-angle set,
with θ = π/2. In R2, there are equi-angle sets for every value of θ. It’s easy to find such sets: just take

x1 =

[
1
0

]
, x2 =

[
cos θ
sin θ

]
.

In Rn, with n > 2, however, you can’t have an equi-angle set with angle θ = π. To see this, suppose
that x1, . . . , xn is an equi-angle set in Rn, with n > 2. Then we have x2 = −x1 (since 6 (x1, x2) = π),
but also x3 = −x1 (since 6 (x1, x3) = π), so 6 (x2, x3) = 0. The question then arises, for what values of
θ (between 0 and π) can you have an equi-angle set on Rn? The angle θ = 0 always has an equi-angle
set (just choose any unit vector u and set x1 = · · · = xn = u), and so does θ = π/2 (just choose
any orthonormal basis, e.g., e1, . . . , en. But what other angles are possible? For n = 2, we know the
answer: any value of θ between 0 and π is possible, i.e., for every value of θ there is an equi-angle set
with angle θ.

(a) For general n, describe the values of θ for which there is an equi-angle set with angle θ. In
particular, what is the maximum possible value θ can have?

(b) Construct a specific equi-angle set in R4 for angle θ = 100◦ = 5π/9. Attach matlab output to
verify that your four vectors are unit vectors, and that the angle between any two of them is 100◦.
(Since 6 (u, v) = 6 (v, u), you only have to check 6 angles. Also, you might find a clever way to
find all the angles at once.)

11.11 Optimal control for maximum asymptotic growth. We consider the controllable linear system

x(t+ 1) = Ax(t) +Bu(t), x(0) = 0,

where x(t) ∈ Rn, u(t) ∈ Rm. You can assume that A is diagonalizable, and that it has a single
dominant eigenvalue (which here, means that there is one eigenvalue with largest magnitude). An
input u(0), . . . , u(T − 1) is applied over time period 0, 1, . . . , T − 1; for t ≥ T , we have u(t) = 0. The
input is subject to a total energy constraint:

‖u(0)‖2 + · · ·+ ‖u(T − 1)‖2 ≤ 1.

The goal is to choose the inputs u(0), . . . , u(T − 1) that maximize the norm of the state for large t.
To be more precise, we’re searching for u(0), . . . , u(T − 1), that satisfies the total energy constraint,
and, for any other input sequence ũ(0), . . . , ũ(T − 1) that satisfies the total energy constraint, satisfies
‖x(t)‖ ≥ ‖x̃(t)‖ for t large enough. Explain how to do this. You can use any of the ideas from the class,
e.g., eigenvector decomposition, SVD, pseudo-inverse, etc. Be sure to summarize your final description
of how to solve the problem. Unless you have to, you should not use limits in your solution. For
example you cannot explain how to make ‖x(t)‖ as large as possible (for a specific value of t), and then
say, “Take the limit as t→∞” or “Now take t to be really large”.

11.12 Estimating a matrix with known eigenvectors. This problem is about estimating a matrix A ∈ Rn×n.
The matrix A is not known, but we do have a noisy measurement of it, Ameas = A + E. Here the
matrix E is measurement error, which is assumed to be small. While A is not known, we do know
real, independent eigenvectors v1, . . . , vn of A. (Its eigenvalues λ1, . . . , λn, however, are not known.)

99

We will combine our measurement of A with our prior knowledge to find an estimate Â of A. To do
this, we choose Â as the matrix that minimizes

J =
1

n2

n∑
i,j=1

(Ameas
ij − Âij)2

among all matrices which have eigenvectors v1, . . . , vn. (Thus, Â is the matrix closest to our measure-
ment, in the mean-square sense, that is consistent with the known eigenvectors.)

(a) Explain how you would find Â. If your method is iterative, say whether you can guarantee
convergence. Be sure to say whether your method finds the exact minimizer of J (except, of course,
for numerical error due to roundoff), or an approximate solution. You can use any of the methods
(least-squares, least-norm, Gauss-Newton, low rank approximation, etc.) or decompositions (QR,
SVD, eigenvalue decomposition, etc.) from the course.

(b) Carry out your method with the data

Ameas =

 2.0 1.2 −1.0
0.4 2.0 −0.5
−0.5 0.9 1.0

 , v1 =

 0.7
0

0.7

 , v2 =

 0.3
0.6
0.7

 , v3 =

 0.6
0.6
0.3

 .
Be sure to check that Â does indeed have v1, v2, v3 as eigenvectors, by (numerically) finding its
eigenvectors and eigenvalues. Also, give the value of J for Â. Hint. You might find the following
useful (but then again, you might not.) In matlab, if A is a matrix, then A(:) is a (column)
vector consisting of all the entries of A, written out column by column. Therefore norm(A(:))

gives the squareroot of the sum of the squares of entries of the matrix A, i.e., its Frobenius norm.
The inverse operation, i.e., writing a vector out as a matrix with some given dimensions, is done
using the function reshape. For example, if a is an mn vector, then reshape(a,m,n) is an m×n
matrix, with elements taken from a (column by column).

11.13 Real modal form. Generate a matrix A in R10×10 using A=randn(10). (The entries of A will be drawn
from a unit normal distribution.) Find the eigenvalues of A. If by chance they are all real, please
generate a new instance of A. Find the real modal form of A, i.e., a matrix S such that S−1AS has the
real modal form given in lecture 11. Your solution should include a clear explanation of how you will
find S, the source code that you use to find S, and some code that checks the results (i.e., computes
S−1AS to verify it has the required form).

11.14 Spectral mapping theorem. Suppose f : R→ R is analytic, i.e., given by a power series expansion

f(u) = a0 + a1u+ a2u
2 + · · ·

(where ai = f (i)(0)/(i!)). (You can assume that we only consider values of u for which this series
converges.) For A ∈ Rn×n, we define f(A) as

f(A) = a0I + a1A+ a2A
2 + · · ·

(again, we’ll just assume that this converges).

Suppose that Av = λv, where v 6= 0, and λ ∈ C. Show that f(A)v = f(λ)v (ignoring the issue of
convergence of series). We conclude that if λ is an eigenvalue of A, then f(λ) is an eigenvalue of f(A).
This is called the spectral mapping theorem.

To illustrate this with an example, generate a random 3 × 3 matrix, for example using A=randn(3).
Find the eigenvalues of (I + A)(I − A)−1 by first computing this matrix, then finding its eigenvalues,
and also by using the spectral mapping theorem. (You should get very close agreement; any difference
is due to numerical round-off errors in the various compuations.)

100

11.15 Eigenvalues of AB and BA. Suppose that A ∈ Rm×n and B ∈ Rn×m. Show that if λ ∈ C is a nonzero
eigenvalue of AB, then λ is also an eigenvalue of BA. Conclude that the nonzero eigenvalues of AB
and BA are the same. Hint: Suppose that ABv = λv, where v 6= 0, λ 6= 0. Construct a w 6= 0 for
which BAw = λw.

11.16 Tax policies. In this problem we explore a dynamic model of an economy, including the effects of
government taxes and spending, which we assume (for simplicity) takes place at the beginning of each
year. Let x(t) ∈ Rn represent the pre-tax economic activity at the beginning of year t, across n sectors,
with x(t)i being the pre-tax activity level in sector i. We let x̃(t) ∈ Rn denote the post-tax economic
activity, across n sectors, at the beginning of year t. We will assume that all entries of x(0) are positive,
which will imply that all entries of x(t) and x̃(t) are positive, for all t ≥ 0.

The pre- and post-tax activity levels are related as follows. The government taxes the sector activities
at rates given by r ∈ Rn, with ri the tax rate for sector i. These rates all satisfy 0 ≤ ri < 1.
The total government revenue is then R(t) = rTx(t). This total revenue is then spent in the sectors
proportionally, with s ∈ Rn giving the spending proportions in the sectors. These spending proportions
satisfy si ≥ 0 and

∑n
i=1 si = 1; the spending in sector i is siR(t). The post-tax economic activity in

sector i, which accounts for the government taxes and spending, is then given by

x̃(t)i = x(t)i − rix(t)i + siR(t), i = 1, . . . , n, t = 0, 1,

Economic activity propagates from year to year as x(t + 1) = Ex̃(t), where E ∈ Rn×n is the input-
output matrix of the economy. You can assume that all entries of E are positive.

We let S(t) =
∑n
i=1 x(t)i denote the total economic activity in year t, and we let

G = lim
t→∞

S(t+ 1)

S(t)

denote the (asymptotic) growth rate (assuming it exceeds one) of the economy.

(a) Explain why the growth rate does not depend on x(0) (unless it exactly satisfies a single linear
equation, which we rule out as essentially impossible). Express the growth rate G in terms of the
problem data r, s, and E, using ideas from the course. You may assume that a matrix that arises
in your analysis is diagonalizable and has a single dominant eigenvalue, i.e., an eigenvalue λ1 that
satisfies |λ1| > |λi| for i = 2, . . . , n. (These assumptions aren’t actually needed—they’re just to
simplify the problem for you.)

(b) Consider the problem instance with data

E =


0.3 0.4 0.1 0.6
0.2 0.3 0.7 0.2
0.1 0.2 0.2 0.1
0.4 0.2 0.3 0.2

 , r =


0.45
0.25
0.1
0.1

 , s =


0.15
0.3
0.4
0.15

 .
Find the growth rate. Now find the growth rate with the tax rate set to zero, i.e., r = 0 (in which
case s doesn’t matter). You are welcome (even, encouraged) to simulate the economic activity to
double-check your answer, but we want the value using the expression found in part (a).

11.17 Closed walks in a directed graph. Consider a directed graph with nodes 1, 2, . . . , n, and adjacency
matrix A ∈ Rn×n, defined as Aij = 1 if there is a directed edge from node j to node i, and Aij = 0
otherwise. A closed walk of length L is a sequence of (possibly repeated) nodes n1, n2, . . . , nL, nL+1

for which there is a directed edge from ni to ni+1 for i = 1, . . . , L and n1 = nL+1. Let NL(i) denote
the number of distinct closed walks of length L, that start and end at node i. The total number of
closed walks of length L is then

∑n
i=1NL(i).

You can assume that A has a real positive eigenvalue λ1 that is dominant, i.e., satisfies λ1 > |λi| for
i = 2, . . . , n, where λi are the eigenvalues of A. For simplicity you can assume that A is diagonalizable.

101

(a) Explain how to find a node i that maximizes NL(i), for a given value of L. If the node is not
unique, you may pick any maximizer.

(b) Explain how to find a node i that maximizes

G(i) = lim
L→∞

NL(i)∑n
j=1NL(j)

,

the fraction of closed walks of length L that start and end at node i. Your answer cannot have
the form ‘Pick a really big L and find i as in part (a).’

(c) For the matrix A given in walks_data.m, find a node i(5) that maximizes N5(i), and a node i(∞)

that maximizes G(i). (If there are multiple nodes that achieve the maximum, you can take any
one of them.)

Note: When matlab computes λ1 and the associated eigenvector, they might end up with a very
small complex component. Just take take the real part, so that subsequent operations don’t get
confused.

102

Lecture 12 – Jordan canonical form

12.1 Some true/false questions. Determine if the following statements are true or false. No justification or
discussion is needed for your answers. What we mean by “true” is that the statement is true for all
values of the matrices and vectors that appear in the statement. You can’t assume anything about the
dimensions of the matrices (unless it’s explicitly stated), but you can assume that the dimensions are
such that all expressions make sense. For example, the statement “A + B = B + A” is true, because
no matter what the dimensions of A and B are (they must, however, be the same), and no matter
what values A and B have, the statement holds. As another example, the statement A2 = A is false,
because there are (square) matrices for which this doesn’t hold. (There are also matrices for which
it does hold, e.g., an identity matrix. But that doesn’t make the statement true.) “False” means the
statement isn’t true, in other words, it can fail to hold for some values of the matrices and vectors that
appear in it.

(a) If A ∈ Rm×n and B ∈ Rn×p are both full rank, and AB = 0, then n ≥ m+ p.

(b) If A ∈ R3×3 satisfies A+AT = 0, then A is singular.

(c) If Ak = 0 for some integer k ≥ 1, then I −A is nonsingular.

(d) If A,B ∈ Rn×n are both diagonalizable, then AB is diagonalizable.

(e) If A,B ∈ Rn×n, then every eigenvalue of AB is an eigenvalue of BA.

(f) If A,B ∈ Rn×n, then every eigenvector of AB is an eigenvector of BA.

(g) If A is nonsingular and A2 is diagonalizable, then A is diagonalizable.

12.2 Consider the discrete-time system x(t+ 1) = Ax(t), where x(t) ∈ Rn.

(a) Find x(t) in terms of x(0).

(b) Suppose that det(zI −A) = zn. What are the eigenvalues of A? What (if anything) can you say
about x(k) for k < n and k ≥ n, without knowing x(0)?

12.3 Asymptotically periodic trajectories. We say that x : R+ → Rn is asymptotically T -periodic if ‖x(t +
T) − x(t)‖ converges to 0 as t → ∞. (We assume T > 0 is fixed.) Now consider the (time-invariant)
linear dynamical system ẋ = Ax, where A ∈ Rn×n. Describe the precise conditions on A under which
all trajectories of ẋ = Ax are asymptotically T -periodic. Give your answer in terms of the Jordan form
of A. (The period T can appear in your answer.) Make sure your answer works for ‘silly’ cases like
A = 0 (for which all trajectories are constant, hence asymptotically T -periodic), or stable systems (for
which all trajectories converge to 0, hence are asymptotically T -periodic). Mark your answer clearly,
to isolate it from any (brief) discussion or explanation. You do not need to formally prove your answer;
a brief explanation will suffice.

12.4 Jordan form of a block matrix. We consider the block 2× 2 matrix

C =

[
A I
0 A

]
.

Here A ∈ Rn×n, and is diagonalizable, with real, distinct eigenvalues λ1, . . . , λn. We’ll let v1, . . . , vn
denote (independent) eigenvectors of A associated with λ1, . . . , λn.

(a) Find the Jordan form J of C. Be sure to explicitly describe its block sizes.

(b) Find a matrix T such that J = T−1CT .

12.5 Properties of trajectories. For each of the following statements, give the exact (necessary and sufficient)
conditions on A ∈ Rn×n under which the statement holds.

103

(a) Every trajectory of ẋ = Ax converges as t → ∞. This means that, for any x(0), x(t) converges
to some value, which need not be zero (and can depend on x(0) and A).

(b) Every trajectory of ẋ = Ax is bounded. This means that, for any x(0), there is an M (that can
depend on x(0) and A) for which ‖x(t)‖ ≤M for all t ≥ 0.

Your answers can refer to any concepts used in the course (eigenvalues, singular values, Jordan form,
least-squares, range, nullspace, . . .). We will deduct points from answers that are technically correct,
but more complicated than they need to be. You may not make any assumptions about A (e.g., that
it is nonsingular, diagonalizable, etc.).

Please give only your final answer; we do not want any justification or discussion. Your answers should
have a form similar to “The property in part (a) occurs if and only if all singular values of A are less
than one, and A has no real eigenvalues”. (This is not the correct answer; it is only as an example of
what your answer should look like.)

104

Lecture 13 – Linear dynamical systems with inputs and outputs

13.1 Interconnection of linear systems. Often a linear system is described in terms of a block diagram
showing the interconnections between components or subsystems, which are themselves linear systems.
In this problem you consider the specific interconnection shown below:

s1 s2

u1

u2

yu v

Here, there are two subsystems S and T . Subsystem S is characterized by

ẋ = Ax+B1u+B2w1, w2 = Cx+D1u+D2w1,

and subsystem T is characterized by

ż = Fz +G1v +G2w2, w1 = H1z, y = H2z + Jw2.

We don’t specify the dimensions of the signals (which can be vectors) or matrices here. You can assume
all the matrices are the correct (i.e., compatible) dimensions. Note that the subscripts in the matrices
above, as in B1 and B2, refer to different matrices. Now the problem. Express the overall system as a
single linear dynamical system with input, state, and output given by[

u
v

]
,

[
x
z

]
, y,

respectively. Be sure to explicitly give the input, dynamics, output, and feedthrough matrices of the
overall system. If you need to make any assumptions about the rank or invertibility of any matrix you
encounter in your derivations, go ahead. But be sure to let us know what assumptions you are making.

13.2 Minimum energy control. Consider the discrete-time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, 2, . . .

where x(t) ∈ Rn, and the input u(t) is a scalar (hence, A ∈ Rn×n and B ∈ Rn×1). The initial state
is x(0) = 0.

(a) Find the matrix CT such that

x(T) = CT


u(T − 1)

...
u(1)
u(0)

 .
(b) For the remainder of this problem, we consider a specific system with n = 4. The dynamics and

input matrices are

A =


0.5 0.7 −0.9 −0.5
0.4 −0.7 0.1 0.3
0.7 0.0 −0.6 0.1
0.4 −0.1 0.8 −0.5

 , B =


1
1
0
0

 .
105

Suppose we want the state to be xdes at time T . Consider the desired state

xdes =


0.8
2.3
−0.7
−0.3

 .
What is the smallest T for which we can find inputs u(0), . . . , u(T − 1), such that x(T) = xdes?
What are the corresponding inputs that achieve xdes at this minimum time? What is the smallest
T for which we can find inputs u(0), . . . , u(T −1), such that x(T) = xdes for any xdes ∈ R4? We’ll
denote this T by Tmin.

(c) Suppose the energy expended in applying inputs u(0), . . . , u(T − 1) is

E(T) =

T−1∑
t=0

(u(t))
2
.

For a given T (greater than Tmin) and xdes, how can you compute the inputs which achieve
x(T) = xdes with the minimum expense of energy? Consider now the desired state

xdes =


−1

1
0
1

 .
For each T ranging from Tmin to 30, find the minimum energy inputs that achieve x(T) = xdes.
For each T , evaluate the corresponding input energy, which we denote by Emin(T). Plot Emin(T)
as a function of T . (You should include in your solution a description of how you computed the
minimum-energy inputs, and the plot of the minimum energy as a function of T . But you don’t
need to list the actual inputs you computed!)

(d) You should observe that Emin(T) is non-increasing in T . Show that this is the case in general
(i.e., for any A, B, and xdes).

Note: There is a direct way of computing the assymptotic limit of the minimum energy as T → ∞.
We’ll cover these ideas in more detail in ee363.

13.3 Output feedback for maximum damping. Consider the discrete-time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t),

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. In output feedback control we use an input which is a linear
function of the output, that is,

u(t) = Ky(t),

where K ∈ Rm×p is the feedback gain matrix. The resulting state trajectory is identical to that of an
autonomous system,

x(t+ 1) = Āx(t).

(a) Write Ā explicitly in terms of A, B, C, and K.

(b) Consider the single-input, single-output system with

A =

 0.5 1.0 0.1
−0.1 0.5 −0.1

0.2 0.0 0.9

 , B =

 1
0
0

 , C =
[

0 1 0
]
.

106

In this case, the feedback gain matrix K is a scalar (which we call simply the feedback gain.) The
question is: find the feedback gain Kopt such that the feedback system is maximally damped.
By maximally damped, we mean that the state goes to zero with the fastest asymptotic decay
rate (measured for an initial state x(0) with non-zero coefficient in the slowest mode.) Hint: You
are only required to give your answer Kopt up to a precision of ±0.01, and you can assume that
Kopt ∈ [−2, 2].

13.4 Affine dynamical systems. A function f : Rn → Rm is called affine if it is a linear function plus a
constant, i.e., of the form f(x) = Ax + b. Affine functions are more general than linear functions,
which result when b = 0. We can generalize linear dynamical systems to affine dynamical systems,
which have the form

ẋ = Ax+Bu+ f, y = Cx+Du+ g.

Fortunately we don’t need a whole new theory for (or course on) affine systems; a simple shift of
coordinates converts it to a linear dynamical system. Assuming A is invertible, define x̃ = x + A−1f
and ỹ = y − g +CA−1f . Show that x̃, u, and ỹ are the state, input, and output of a linear dynamical
system.

13.5 Two separate experiments are performed for t ≥ 0 on the single-input single-output (SISO) linear
system

ẋ = Ax+Bu, y = Cx+Du, x(0) = [1 2 − 1]T

(the initial condition is the same in each experiment). In the first experiment, u(t) = e−t and the
resulting output is y(t) = e−3t + e−2t. In the second, u(t) = e−3t and the resulting output is y(t) =
3e−3t − e−2t.

(a) Can you determine the transfer function C(sI − A)−1B + D from this information? If it is
possible, do so. If not, find two linear systems consistent with all the data given which have
different transfer functions.

(b) Can you determine A, B, C, or D?

13.6 Cascade connection of systems.

(a) Two linear systems (A1, B1, C1, D1) and (A2, B2, C2, D2) with states x1 and x2 (these are two
column vectors, not two scalar components of one vector), have transfer functions H1(s) and
H2(s), respectively. Find state equations for the cascade system:

H1 H2
U Y

Use the state x = [xT1 xT2]T .

(b) Use the state equations above to verify that the cascade system has transfer function H2(s)H1(s).
(To simplify, you can assume D1 = 0, D2 = 0.)

(c) Find the dual of the LDS found in (a). Draw a block diagram of the dual system as a cascade
connection of two systems. (To simplify, you can assume D1 = 0, D2 = 0.) Remark: quite
generally, the block diagram corresponding to the dual system is the original block diagram,
“turned around,” with all arrows reversed.

13.7 Inverse of a linear system. Suppose H(s) = C(sI−A)−1B+D, where D is square and invertible. You
will find a linear system with transfer function H(s)−1.

(a) Start with ẋ = Ax+Bu, y = Cx+Du, and solve for ẋ and u in terms of x and y. Your answer
will have the form: ẋ = Ex+Fy, u = Gx+Hy. Interpret the result as a linear system with state
x, input y, and output u.

107

(b) Verify that
(G(sI − E)−1F +H)(C(sI −A)−1B +D) = I.

Hint: use the following “resolvent identity:”

(sI −X)−1 − (sI − Y)−1 = (sI −X)−1(X − Y)(sI − Y)−1

which can be verified by multiplying by sI −X on the left and sI − Y on the right.

13.8 Offset or skewed discretization. In the lecture notes we considered sampling a continuous-time system
in which the input update and output sampling occur at the same time, i.e., are synchronized. In this
problem we consider what happens when there is a constant time offset or skew between them (which
often happens in practice). Consider the continuous-time LDS ẋ = Ax+Bu, y = Cx+Du. We define
the sequences xd and yd as

xd(k) = x(kh), yd(k) = y(kh), k = 0, 1, . . .

where h > 0 (i.e., the state and output are sampled every h seconds). The input u is given by

u(t) = ud(k) for kh+ δ ≤ t < (k + 1)h+ δ, k = 0, 1, . . .

where δ is a delay or offset in the input update, with 0 ≤ δ < h. Find a discrete-time LDS with ud as
input and yd as output. Give the matrices that describe this LDS.

13.9 Static decoupling. Consider the mechanical system shown below.

��

u1 u2
y1 y2

y3

k1 b1 b2 k2

m1 m2

m3

b3k3

Two masses with valuesm1 = 1 andm2 = 2 are attached via spring/damper suspensions with stiffnesses
k1 = 1, k2 = 2 and damping b1 = 1, b2 = 2 to a platform, which is another mass of value m3 = 3. The
platform is attached to the ground by a spring/damper suspension with stiffness k3 = 3 and damping
b3 = 3. The displacements of the masses (with respect to ground) are denoted y1, y2, and y3. Forces
u1 and u2 are applied to the first two masses.

108

(a) Find matrices A ∈ R6×6 and B ∈ R6×2 such that the dynamics of the mechanical system is given
by ẋ = Ax+Bu where

x = [y1 y2 y3 ẏ1 ẏ2 ẏ3]T , u = [u1 u2]T .

Ignore the effect of gravity (or you can assume the effect of gravity has already been taken into
account in the definition of y1, y2 and y3).

(b) Plot the step responses matrix, i.e., the step responses from inputs u1 and u2 to outputs y1, y2

and y3. Briefly interpret and explain your plots.

(c) Find the DC gain matrix H(0) from inputs u1 and u2 to outputs y1 and y2.

(d) Design of an asymptotic decoupler. In order to make the steady-state deflections of masses 1
and 2 independent of each other, we let u = H(0)−1ycmd, where ycmd : R+ → R2. Plot the step
responses from ycmd to y1 and y2, and compare with the original ones found in part b.

13.10 A method for rapidly driving the state to zero. We consider the discrete-time linear dynamical system

x(t+ 1) = Ax(t) +Bu(t),

where A ∈ Rn×n and B ∈ Rn×k, k < n, is full rank. The goal is to choose an input u that causes x(t)
to converge to zero as t → ∞. An engineer proposes the following simple method: at time t, choose
u(t) that minimizes ‖x(t+ 1)‖. The engineer argues that this scheme will work well, since the norm of
the state is made as small as possible at every step. In this problem you will analyze this scheme.

(a) Find an explicit expression for the proposed input u(t) in terms of x(t), A, and B.

(b) Now consider the linear dynamical system x(t+1) = Ax(t)+Bu(t) with u(t) given by the proposed
scheme (i.e., as found in (10a)). Show that x satisfies an autonomous linear dynamical system
equation x(t+ 1) = Fx(t). Express the matrix F explicitly in terms of A and B.

(c) Now consider a specific case:

A =

[
0 3
0 0

]
, B =

[
1
1

]
.

Compare the behavior of x(t+ 1) = Ax(t) (i.e., the orginal system with u(t) = 0) and x(t+ 1) =
Fx(t) (i.e., the original system with u(t) chosen by the scheme described above) for a few initial
conditions. Determine whether each of these systems is stable.

13.11 Analysis of investment allocation strategies. Each year or period (denoted t = 0, 1, . . .) an investor
buys certain amounts of one-, two-, and three-year certificates of deposit (CDs) with interest rates
5%, 6%, and 7%, respectively. (We ignore minimum purchase requirements, and assume they can be
bought in any amount.)

• B1(t) denotes the amount of one-year CDs bought at period t.

• B2(t) denotes the amount of two-year CDs bought at period t.

• B3(t) denotes the amount of three-year CDs bought at period t.

We assume that B1(0) +B2(0) +B3(0) = 1, i.e., a total of 1 is to be invested at t = 0. (You can take
Bj(t) to be zero for t < 0.) The total payout to the investor, p(t), at period t is a sum of six terms:

• 1.05B1(t−1), i.e., principle plus 5% interest on the amount of one-year CDs bought one year ago.

• 1.06B2(t − 2), i.e., principle plus 6% interest on the amount of two-year CDs bought two years
ago.

• 1.07B3(t−3), i.e., principle plus 7% interest on the amount of three-year CDs bought three years
ago.

• 0.06B2(t− 1), i.e., 6% interest on the amount of two-year CDs bought one year ago.

109

• 0.07B3(t− 1), i.e., 7% interest on the amount of three-year CDs bought one year ago.

• 0.07B3(t− 2), i.e., 7% interest on the amount of three-year CDs bought two years ago.

The total wealth held by the investor at period t is given by

w(t) = B1(t) +B2(t) +B2(t− 1) +B3(t) +B3(t− 1) +B3(t− 2).

Two re-investment allocation strategies are suggested.

• The 35-35-30 strategy. The total payout is re-invested 35% in one-year CDs, 35% in two-year
CDs, and 30% in three-year CDs. The initial investment allocation is the same: B1(0) = 0.35,
B2(0) = 0.35, and B3(0) = 0.30.

• The 60-20-20 strategy. The total payout is re-invested 60% in one-year CDs, 20% in two-year
CDs, and 20% in three-year CDs. The initial investment allocation is B1(0) = 0.60, B2(0) = 0.20,
and B3(0) = 0.20.

(a) Describe the investments over time as a linear dynamical system x(t + 1) = Ax(t), y(t) = Cx(t)
with y(t) equal to the total wealth at time t. Be very clear about what the state x(t) is, and what
the matrices A and C are. You will have two such linear systems: one for the 35-35-30 strategy
and one for the 60-20-20 strategy.

(b) Asymptotic wealth growth rate. For each of the two strategies described above, determine the
asymptotic growth rate, defined as limt→∞ w(t + 1)/w(t). (If this limit doesn’t exist, say so.)
Note: simple numerical simulation of the strategies (e.g., plotting w(t+ 1)/w(t) versus t to guess
its limit) is not acceptable. (You can, of course, simulate the strategies to check your answer.)

(c) Asymptotic liquidity. The total wealth at time t can be divided into three parts:

• B1(t) + B2(t − 1) + B3(t − 2) is the amount that matures in one year (i.e., the amount of
principle we could get back next year)

• B2(t) +B3(t− 1) is the amount that matures in two years

• B3(t) is the amount that matures in three years (i.e., is least liquid)

We define liquidity ratios as the ratio of these amounts to the total wealth:

L1(t) = (B1(t) +B2(t− 1) +B3(t− 2))/w(t),

L2(t) = (B2(t) +B3(t− 1))/w(t),

L3(t) = B3(t)/w(t).

For the two strategies above, do the liquidity ratios converge as t → ∞? If so, to what values?
Note: as above, simple numerical simulation alone is not acceptable.

(d) Suppose you could change the initial investment allocation for the 35-35-30 strategy, i.e., choose
some other nonnegative values for B1(0), B2(0), and B3(0) that satisfy B1(0)+B2(0)+B3(0) = 1.
What allocation would you pick, and how would it be better than the (0.35, 0.35, 0.30) initial
allocation? (For example, would the asymptotic growth rate be larger?) How much better is your
choice of initial investment allocations? Hint for part d: think very carefully about this one. Hint
for whole problem: watch out for nondiagonalizable, or nearly nondiagonalizable, matrices. Don’t
just blindly type in matlab commands; check to make sure you’re computing what you think
you’re computing.

13.12 Analysis of cross-coupling in interconnect wiring. In integrated circuits, wires which connect the output
of one gate to the inputs of one (or more) other gates are called nets. As feature sizes shrink to well
below a micron (i.e., ‘deep submicron’) the capacitance of a wire to the substrate (which in a simple
analysis can be approximated as ground), as well as to neighboring wires, must be taken into account.
A simple lumped model of three nets is shown below. The inputs are the voltage sources u1, u2, u3,

110

and the outputs are the three voltages labeled y1, y2, y3. The resistances R1, . . . , R6 represent the
resistance of the wire segments. The capacitances C1, . . . , C6 are capacitances from the interconnect
wires to the substrate; the capacitances C7 and C8 are capacitances between wires 1 and 2, and wires
2 and 3, respectively. (The different locations of the these cross-coupling capacitances models the wire
1 crossing over wire 2 near the driving gate, and wire 2 crossing over wire 3 near the end of the wire,
but you don’t need to know this to do the problem . . .) In static conditions, the circuit reduces to
three wires (with resistance R1 +R2, R3 +R4, and R5 +R6, respectively) connecting the inputs to the
outputs.

r1 r2

r3 r4

r5 r6

c1u1

u2

u3

v1

v2

v3

c7

c2

c3 c4

c8

c5 c6

To simplify the problem we’ll assume that all resistors have value 1 and all capacitors have value 1.
We recognize that some of you don’t know how to write the equations that govern this circuit, so we’ve
done it for you. (If you’re an EE student in this category, then shame on you.) The equations are

Cv̇ +Gv = Fu, y = Kv,

where

C =


2 0 −1 0 0 0
0 1 0 0 0 0
−1 0 2 0 0 0
0 0 0 2 0 −1
0 0 0 0 1 0
0 0 0 −1 0 2

 , G =


2 −1 0 0 0 0
−1 1 0 0 0 0
0 0 2 −1 0 0
0 0 −1 1 0 0
0 0 0 0 2 −1
0 0 0 0 −1 1

 ,

F =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

 , K =

 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1



and v ∈ R6 is the vector of voltages at capacitors C1, . . . , C6, respectively. To save you the trouble of
typing these in, we’ve put an mfile interconn.m on the course web page, which defines these matrices.
The inputs (which represent the gates that drive the three nets) are Boolean valued, i.e., ui(t) ∈ {0, 1}
for all t. In this problem we will only consider inputs that switch (change value from 0 to 1 or 1 to 0)
at most once.

111

(a) 50%-threshold delay. For t < 0, the system is in static condition, and the inputs have values
u(t) = f for t < 0, where fi ∈ {0, 1}. At t = 0, the input switches to the Boolean vector g,
i.e., for t ≥ 0, u(t) = g, where gi ∈ {0, 1}. Since the DC gain matrix of this system is I, and
the system is stable, the output converges to the input value: y(t) → g as t → ∞. We define
the 50%-threshold delay of the transition as smallest T such that |yi(t) − gi| ≤ 0.5 for t ≥ T ,
and for i = 1, 2, 3. (If the following gate thresholds were set at 0.5, then this would be first
time after which the outputs would be guaranteed correct.) Among the 64 possible transitions,
find the largest (i.e., worst) 50%-threshold delay. Give the largest delay, and also describe which
transition gives the largest delay (e.g., the transition with f = (0, 0, 1) to g = (1, 0, 0)).

(b) Maximum bounce due to cross-coupling. Now suppose that input 2 remains zero, but inputs 1
and 3 undergo transitions at times t = T1 and t = T3, respectively. (In part 1, in contrast, all
transitions occured at t = 0.) To be more precise (and also so nobody can say we weren’t clear),

u1(t) =

{
f1 for t < T1

g1 for t ≥ T1
, u3(t) =

{
f3 for t < T3

g3 for t ≥ T3
, u2(t) = 0 for all t,

where f1, f3, g1, g3 ∈ {0, 1}. The transitions in inputs 1 and 3 induce a nonzero response in output
2. (But y2 does converge back to zero, since u2 = 0.) This phenomenon of y2 deviating from zero
(which is what it would be if there were no cross-coupling capacitance) is called bounce (induced
by the cross-coupling between the nets). If for any t, y2(t) is large enough to trigger the following
gate, things can get very, very ugly. What is the maximum possible bounce? In other words, what
is the maximum possible value of y2(t), over all possible t, T1, T3, f1, f3, g1, g3? Be sure to give
not only the maximum value, but also the times t, T1, and T3, and the transitions f1, f3, g1, g3,
which maximize y(t).

Note: in this problem we don’t consider multiple transitions, but it’s not hard to do so.

13.13 Periodic solution with intermittent input. We consider the stable linear dynamical system ẋ = Ax+Bu,
where x(t) ∈ Rn, and u(t) ∈ R. The input has the specific form

u(t) =

{
1 kT ≤ t < (k + θ)T, k = 0, 1, 2, . . .
0 (k + θ)T ≤ t < (k + 1)T, k = 0, 1, 2, . . .

Here T > 0 is the period, and θ ∈ [0, 1] is called the duty cycle of the input. You can think of u as a
constant input value one, that is applied over a fraction θ of each cycle, which lasts T seconds. Note
that when θ = 0, the input is u(t) = 0 for all t, and when θ = 1, the input is u(t) = 1 for all t.

(a) Explain how to find an initial state x(0) for which the resulting state trajectory is T -periodic,
i.e., x(t + T) = x(t) for all t ≥ 0. Give a formula for x(0) in terms of the problem data, i.e., A,
B, T , and θ. Try to give the simplest possible formula.

(b) Explain why there is always exactly one value of x(0) that results in x(t) being T -periodic. In
addition, explain why the formula you found in part (a) always makes sense and is valid. (For
example, if your formula involves a matrix inverse, explain why the matrix to be inverted is
nonsingular.)

(c) We now consider the specific system with

A =

 0 1 0
0 0 1
−1 −2 −1

 , B =

 8
2

−14

 , T = 5.

Plot J , the mean-square norm of the state,

J =
1

T

∫ T

0

‖x(t)‖2 dt,

112

versus θ, for 0 ≤ θ ≤ 1, where x(0) is the periodic initial condition that you found in part (a).
You may approximate J as

J ≈ 1

N

N−1∑
i=0

‖x(iT/N)‖2,

for N large enough (say 1000). Estimate the value of θ that maximizes J .

13.14 System identification of a linear dynamical system. In system identification, we are given some time
series values for a discrete-time input vector signal,

u(1), u(2), . . . , u(N) ∈ Rm,

and also a discrete-time state vector signal,

x(1), x(2), . . . , x(N) ∈ Rn,

and we are asked to find matrices A ∈ Rn×n and B ∈ Rn×m such that we have

x(t+ 1) ≈ Ax(t) +Bu(t), t = 1, . . . , N − 1. (2)

We use the symbol ≈ since there may be small measurement errors in the given signal data, so we don’t
expect to find matrices A and B for which the linear dynamical system equations hold exactly. Let’s
give a quantitative measure of how well the linear dynamical system model (2) holds, for a particular
choice of matrices A and B. We define the RMS (root-mean-square) value of the residuals associated
with our signal data and a candidate pair of matrices A, B as

R =

(
1

N − 1

N−1∑
t=1

‖x(t+ 1)−Ax(t)−Bu(t)‖2
)1/2

.

We define the RMS value of x, over the same period, as

S =

(
1

N − 1

N−1∑
t=1

‖x(t+ 1)‖2
)1/2

.

We define the normalized residual, denoted ρ, as ρ = R/S. If we have ρ = 0.05, for example, it means
that the state equation (2) holds, roughly speaking, to within 5%. Given the signal data, we will choose
the matrices A and B to minimize the RMS residual R (or, equivalently, the normalized residual ρ).

(a) Explain how to do this. Does the method always work? If some conditions have to hold, specify
them.

(b) Carry out this procedure on the data in lds sysid.m on the course web site. Give the matrices
A and B, and give the associated value of the normalized residual. Of course you must show your
matlab source code and the output it produces.

13.15 System identification with selection of inputs & states. This problem continues, or rather extends, the
previous one on system identification, problem 14. Here too we need to fit a linear dynamical system
model to some given signal data. To complicate things, though, we are not told which of the scalar
signals are input components and which are state components. That’s part of what we have to decide.
We are given the time series data, i.e., a vector signal,

z(1), z(2), . . . , z(N) ∈ Rp.

113

We will assign each component of z as either an input component, or a state component. For example,
if z has four components we might assign its first and third to be the state, and its second and fourth
to be the input, i.e.,

x(t) =

[
z1(t)
z3(t)

]
, u(t) =

[
z2(t)
z4(t)

]
.

You can assume that we always assign at least one component to the state, so the dimension of the
state is always at least one. Once we assign components of z to either x or u, we then proceed as in
problem (14): we find matrices A and B that minimize the RMS residuals as defined in problem (14).
One measure of the complexity of the model is the number of components assigned to the input u; the
larger the dimension of u, the more complex the model. If the dimension of u is small, then we have a
compact model, in the sense that the data are explained by a linear dynamical system driven by only a
few inputs. As an extreme case, if all components of z are assigned to x, then we have an autonomous
linear dynamical system model for the data, i.e., one with no inputs at all. Finally, here is the problem.
Get the data given in lds sysid2.m on the class web server, which contains a vector z(t) ∈ R8 for
t = 1, . . . , 100. Assign the components of z to either state or input, and develop a linear dynamical
system model (i.e., find matrices A and B) for your choice of x and u. We seek the simplest model,
i.e., the one with the smallest dimension of u, for which the normalized RMS residuals is smaller than
around 5%. Your solution should consist of the following:

• Your approach. Explain how you solved the problem.

• Your assignments to state and input. Give a clear description of what x and u are. Please order
the components in x and u in the same order as in z.

• Your matrices A and B.

• The relative RMS residuals obtained by your matrices.

• The matlab code used to solve the problem, and its output.

13.16 A greedy control scheme. Our goal is to choose an input u : R+ → Rm, that is not too big, and drives
the state x : R+ → Rn of the system ẋ = Ax+Bu to zero quickly. To do this, we will choose u(t), for
each t, to minimize the quantity

d

dt
‖x(t)‖2 + ρ‖u(t)‖2,

where ρ > 0 is a given parameter. The first term gives the rate of decrease (if it is negative) of the
norm-squared of the state vector; the second term is a penalty for using a large input.

This scheme is greedy because at each instant t, u(t) is chosen to minimize the compositive objective
above, without regard for the effects such an input might have in the future.

(a) Show that u(t) can be expressed as u(t) = Kx(t), where K ∈ Rm×n. Give an explicit formula for
K. (In other words, the control scheme has the form of a constant linear state feedback.)

(b) What are the conditions on A, B, and ρ under which we have (d/dt)‖x(t)‖2 < 0 whenever x(t) 6= 0,
using the scheme described above? (In other words, when does this control scheme result in the
norm squared of the state always decreasing?)

(c) Find an example of a system (i.e., A and B), for which the open-loop system ẋ = Ax is stable,
but the closed-loop system ẋ = Ax+ Bu (with u as above) is unstable, when ρ = 1. Try to find
the simplest example you can, and be sure to show us verification that the open-loop system is
stable and that the closed-loop system is not. (We will not check this for you. You must explain
how to check this, and attach code and associated output.)

13.17 FIR filter with small feedback. Consider a cascade of 100 one-sample delays:

114

HHu y

(a) Express this as a linear dynamical system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t)

(b) What are the eigenvalues of A?

(c) Now we add simple feedback, with gain α = 10−5, to the system:

HHu y

a

Express this as a linear dynamical system

x(t+ 1) = Afx(t) +Bfu(t), y(t) = Cfx(t) +Dfu(t)

(d) What are the eigenvalues of Af?

(e) How different is the impulse response of the system with feedback (α = 10−5) and without
feedback (α = 0)?

13.18 Analysis of a switching power supply. Many electronic systems include DC-DC converters or power
supplies, which convert one voltage to another. Many of these are built from electronic switches,
inductors, and capacitors. In this problem we consider a standard boost converter, shown in schematic
diagram below. (It’s called a boost converter because the load voltage can be larger than the supply
voltage.) Don’t worry—you don’t need to know anything about schematic diagrams or circuits to solve
this problem!

vL

Vs

load

charge

deliver

i

iL

The switch alternately connects to ground, during which time the inductor is charged, and to the load,
when the inductor current is delivered to the load.

When the switch is in the charge position, the inductor current satisfies di/dt = Vs/L, where Vs > 0 is
the (constant) source voltage and L > 0 is the inductance, and the load current is iL = 0. When the
switch is in the deliver position, we have di/dt = (Vs − vL)/L, and iL = i. The load is described by
the linear dynamical system

ẋ = Ax+BiL, vL = Cx,

where x(t) ∈ Rn is the internal state of the load. Here A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n.

The switch is operated periodically as follows:

charge position: kT ≤ t < (k + 1/2)T,
deliver position: (k + 1/2)T ≤ t < (k + 1)T,

115

for k = 0, 1, 2, Here T > 0 is the period of the switching power supply.

We will consider the specific switching power supply with problem data defined in the file boost_data.m.

Show that, no matter what the initial inductor current i(0) and load initial state x(0) are, vL(kT)
converges to a constant value V̄ as k → ∞. Give the value of V̄ . We will not accept simulations for
some values of iL(0) and x(0) as an answer.

13.19 Dynamic decoupling. An industrial process is described by a 2-input 2-output discrete-time LDS
with finite impulse response of length 4, which means that its impulse response h is nonzero only for
t = 0, 1, 2, 3; h(t) = 0 for t ≥ 4. This means that its step response matrix, defined as s(t) =

∑t
τ=0 h(τ),

converges to its final value by t = 3. If you want to think of this system in concrete terms, you can
imagine it as a chemical process reactor, with u1 a heater input, u2 as a reactant flow rate, y1 as the
reactor temperature, and y2 as the reactor pressure. The step response matrix of the system is shown
below. The impulse response matrix of the system (for t = 0, 1, 2, 3) can be obtained from the class
web page in dynamic_dec_h.m, where you will find the 2× 2 impulse response matrices h0, h1, h2, h3.

0 2 4 6

−2

−1

0

1

2

t

s
1

1

0 2 4 6

−2

−1

0

1

2

t

s
1

2

0 2 4 6

−2

−1

0

1

2

t

s
2

1

0 2 4 6

−2

−1

0

1

2

t

s
2

2

The plots show that u1 has a substantial effect on y2, and that u2 has a substantial effect on y1,
neither of which we want. To eliminate them, you will explore the design of a dynamic decoupler for
this system, which is another 2-input, 2-output LDS with impulse matrix g. The decoupler is also FIR
of length 4: g(0), g(1), g(2), g(3) ∈ R2×2 can be nonzero, but g(t) = 0 for t ≥ 4. The decoupler is used
as a prefilter for the process: the input r (which is called the reference or command input) is applied
as the input to the decoupler, and the output of the decoupler is u, the input to the industrial process.
This is shown below.

r u yprocessdecoupler

compensated

116

We refer to this cascaded system as the compensated system. Let s̃ denote the step response matrix of
the compensated system, from input r to output y. The goal is to design the decoupler (i.e., choose
g(0), g(1), g(2), g(3) ∈ R2×2) so that the compensated system satisfies the following specifications.

• limt→∞ s̃(t) = I. This means if the reference input is constant, the process output converges to
the reference input.

• The off-diagonal entries of s̃(t) are all zero (for all t). This means the compensated system is
decoupled : r1 has no effect on y2, and r2 has no effect on y1.

Find such a decoupler, and plot the compensated system step response matrix. If there is no such
decoupler (i.e., the problem specifications are not feasible), say so, and explain why. If there are
many decouplers that satisfy the given specifications, say so, and do something sensible with any extra
degrees of freedom you may have.

117

Lecture 15 – Symmetric matrices, quadratic forms, matrix norm, and SVD

15.1 Simplified temperature control. A circular room consists of 10 identical cubicles around a circular
shaft. There are 6 temperature-control systems in the room. Of those, 5 have vents evenly distributed
around the perimeter of the room, and one is located in the center. Each vent j blows a stream of air at
temperature xj , measured relative to the surrounding air (ambient air temperature.) The temperatures
may be hotter (xj > 0) or colder (xj < 0) than the ambient air temperature. The temperature in each

R

v4

v5

v3

v2

v1
r

t1

t2
t3

t10

t9
t8

t7

t6

t5

t4

v6

cubicle (measured at its center as shown in the figure) is ti, and the effect of vent j on temperature ti
is given by

Aij =
1

r2
ij

where rij is the distance between vent j and measuring point i. So the system can be described by
t = Ax (where A is tall.) The temperature preferences differ among the inhabitants of the 10 cubicles.
More precisely, the inhabitant of cubicle i wants the temperature to be yi hotter than the surrounding
air (which is colder if yi < 0!) The objective is then to choose the xj to best match these preferences
(i.e., obtain exactly the least possible sum of squares error in temperature), with minimal cost. Here,
“cost” means the total power spent on the temperature-control systems, which is the sum of the power
consumed by each heater/cooler, which in turn is proportional to x2

j .

(a) How would you choose the xj to best match the given preferences yi, with minimal power con-
sumption?

(b) Temperature measurement points are at distance rt from the center, and vents are at distance
rv. Vent 1 lies exactly on the horizontal. The file temp_control.m on the course webpage defines
r_t, r_v, and a preferences vector y. It also provides code for computing the distances from each
vent to each desired temperature location. Using these data, find the optimal vent temperatures
x, and the corresponding RMS error in temperature, as well as the power usage.

Comment: In this problem we ignore the fact that, in general, cooling requires more power (per unit
of temperature difference) than heating . . . But this was not meant to be an entirely realistic problem
to start with!

15.2 Find a symmetric matrix A ∈ Rn×n that satisfies Aii ≥ 0, i = 1, . . . , n, and |Aij | ≤ (AiiAjj)
1/2,

i, j = 1, . . . , n, but is not positive semidefinite.

118

15.3 Norm expressions for quadratic forms. Let f(x) = xTAx (with A = AT ∈ Rn×n) be a quadratic form.

(a) Show that f is positive semidefinite (i.e., A ≥ 0) if and only if it can be expressed as f(x) = ‖Fx‖2
for some matrix F ∈ Rk×n. Explain how to find such an F (when A ≥ 0). What is the size of
the smallest such F (i.e., how small can k be)?

(b) Show that f can be expressed as a difference of squared norms, in the form f(x) = ‖Fx‖2−‖Gx‖2,
for some appropriate matrices F and G. How small can the sizes of F and G be?

15.4 Congruences and quadratic forms. Suppose A = AT ∈ Rn×n.

(a) Let Z ∈ Rn×p be any matrix. Show that ZTAZ ≥ 0 if A ≥ 0.

(b) Suppose that T ∈ Rn×n is invertible. Show that TTAT ≥ 0 if and only if A ≥ 0. When T is
invertible, TATT is called a congruence of A and TATT and A are said to be congruent. This
problem shows that congruences preserve positive semidefiniteness.

15.5 Positive semidefinite (PSD) matrices.

(a) Show that if A and B are PSD and α ∈ R, α ≥ 0, then so are αA and A+B.

(b) Show that any (symmetric) submatrix of a PSD matrix is PSD. (To form a symmetric submatrix,
choose any subset of {1, . . . , n} and then throw away all other columns and rows.)

(c) Show that if A ≥ 0, Aii ≥ 0.

(d) Show that if A is (symmetric) PSD, then |Aij | ≤
√
AiiAjj . In particular, if Aii = 0, then the

entire ith row and column of A are zero.

15.6 A Pythagorean inequality for the matrix norm. Suppose that A ∈ Rm×n and B ∈ Rp×n. Show that∥∥∥∥[A
B

]∥∥∥∥ ≤√‖A‖2 + ‖B‖2.

Under what conditions do we have equality?

15.7 Gram matrices. Given functions fi : [a, b] → R, i = 1, . . . , n, the Gram matrix G ∈ Rn×n associated
with them is defined by

Gij =

∫ b

a

fi(t)fj(t) dt.

(a) Show that G = GT ≥ 0.

(b) Show that G is singular if and only if the functions f1, . . . , fn are linearly dependent.

15.8 Properties of symmetric matrices. In this problem P and Q are symmetric matrices. For each statement
below, either give a proof or a specific counterexample.

(a) If P ≥ 0 then P +Q ≥ Q.

(b) If P ≥ Q then −P ≤ −Q.

(c) If P > 0 then P−1 > 0.

(d) If P ≥ Q > 0 then P−1 ≤ Q−1.

(e) If P ≥ Q then P 2 ≥ Q2.

Hint: you might find it useful for part (d) to prove Z ≥ I implies Z−1 ≤ I.

15.9 Express
∑n−1
i=1 (xi+1 − xi)2 in the form xTPx with P = PT . Is P ≥ 0? P > 0?

119

15.10 Suppose A and B are symmetric matrices that yield the same quadratic form, i.e., xTAx = xTBx for
all x. Show that A = B. Hint: first try x = ei (the ith unit vector) to conclude that the entries of A
and B on the diagonal are the same; then try x = ei + ej .

15.11 A power method for computing ‖A‖. The following method can be used to compute the largest singular
value (σ1), and also the corresponding left and right singular vectors (u1 and v1) of A ∈ Rm×n. You can
assume (to simplify) that the largest singular value of A is isolated, i.e., σ1 > σ2. Let z(0) = a ∈ Rn

be nonzero, and then repeat the iteration

w(t) = Az(t); z(t+ 1) = ATw(t);

for t = 1, 2, For large t, w(t)/‖w(t)‖ ≈ u1 and z(t)/‖z(t)‖ ≈ v1. Analyze this algorithm. Show
that it ‘usually’ works. Be very explicit about when it fails. (In practice it always works.)

15.12 An invertibility criterion. Suppose that A ∈ Rn×n. Show that ‖A‖ < 1 implies I − A is invertible.
Interpretation: every matrix whose distance to the identity is less than one is invertible.

15.13 A bound on maximum eigenvalue for a matrix with entries smaller than one. Suppose A = AT ∈
Rn×n, with |Aij | ≤ 1, i, j = 1, . . . , n. How large can λmax(A) be?

15.14 Some problems involving matrix inequalities. In the following problems you can assume that A = AT ∈
Rn×n and B = BT ∈ Rn×n. We do not, however, assume that A or B is positive semidefinite. For
X = XT ∈ Rn×n, λi(X) will denote its ith eigenvalue, sorted so λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).
As usual, the symbol ≤ between symmetric matrices denotes matrix inequality (e.g., A ≤ B means
B−A is positive semidefinite). Decide whether each of the following statements is true or false. (‘True’
means the statement holds for all A and B; ‘false’ means there is at least one pair A, B for which the
statement does not hold.)

(a) A ≥ B if λi(A) ≥ λi(B) for i = 1, . . . , n.

(b) If {x|xTAx ≤ 1} ⊆ {x|xTBx ≤ 1}, then A ≥ B.

(c) If A ≤ B, then {x|xTAx ≤ 1} ⊆ {x|xTBx ≤ 1}.
(d) If the eigenvalues of A and B are the same, i.e., λi(A) = λi(B) for i = 1, . . . , n, then there is an

orthogonal matrix Q such that A = QTBQ.

(e) If there is an orthogonal matrix Q such that A = QTBQ, then the eigenvalues of A and B are
the same, i.e., λi(A) = λi(B) for i = 1, . . . , n.

(f) If A ≥ B then for all t ≥ 0, eAt ≥ eBt.
(g) If A ≥ B then Aij ≥ Bij for i, j = 1, . . . , n.

(h) If Aij ≥ Bij for i, j = 1, . . . , n, then A ≥ B.

15.15 Eigenvalues and singular values of a symmetric matrix. Let λ1, . . . , λn be the eigenvalues, and let
σ1, . . . , σn be the singular values of a matrix A ∈ Rn×n, which satisfies A = AT . (The singular values
are based on the full SVD: If Rank(A) < n, then some of the singular values are zero.) You can assume
the eigenvalues (and of course singular values) are sorted, i.e., λ1 ≥ · · · ≥ λn and σ1 ≥ · · · ≥ σn. How
are the eigenvalues and singular values related?

15.16 More facts about singular values of matrices. For each of the following statements, prove it if it is true;
otherwise give a specific counterexample. Here X,Y, Z ∈ Rn×n.

(a) σmax(X) ≥ max1≤i≤n

√∑
1≤j≤n |Xij |2.

(b) σmin(X) ≥ min1≤i≤n

√∑
1≤j≤n |Xij |2.

(c) σmax(XY) ≤ σmax(X)σmax(Y).

120

(d) σmin(XY) ≥ σmin(X)σmin(Y).

(e) σmin(X + Y) ≥ σmin(X)− σmax(Y).

15.17 A matrix can have all entries large and yet have small gain in some directions, that is, it can have a
small σmin. For example,

A =

[
106 106

106 106

]
has “large” entries while ‖A[1 − 1]T ‖ = 0. Can a matrix have all entries small and yet have a large
gain in some direction, that is, a large σmax? Suppose, for example, that |Aij | ≤ ε for 1 ≤ i, j ≤ n.
What can you say about σmax(A)?

15.18 Frobenius norm of a matrix. The Frobenius norm of a matrix A ∈ Rn×n is defined as ‖A‖F =√
TrATA. (Recall Tr is the trace of a matrix, i.e., the sum of the diagonal entries.)

(a) Show that

‖A‖F =

∑
i,j

|Aij |2
1/2

.

Thus the Frobenius norm is simply the Euclidean norm of the matrix when it is considered as an

element of Rn2

. Note also that it is much easier to compute the Frobenius norm of a matrix than
the (spectral) norm (i.e., maximum singular value).

(b) Show that if U and V are orthogonal, then ‖UA‖F = ‖AV ‖F = ‖A‖F. Thus the Frobenius norm
is not changed by a pre- or post- orthogonal transformation.

(c) Show that ‖A‖F =
√
σ2

1 + · · ·+ σ2
r , where σ1, . . . , σr are the singular values of A. Then show that

σmax(A) ≤ ‖A‖F ≤
√
rσmax(A). In particular, ‖Ax‖ ≤ ‖A‖F‖x‖ for all x.

15.19 Drawing a graph. We consider the problem of drawing (in two dimensions) a graph with n vertices
(or nodes) and m undirected edges (or links). This just means assigning an x- and a y- coordinate to
each node. We let x ∈ Rn be the vector of x- coordinates of the nodes, and y ∈ Rn be the vector of
y- coordinates of the nodes. When we draw the graph, we draw node i at the location (xi, yi) ∈ R2.
The problem, of course, is to make the drawn graph look good. One goal is that neighboring nodes on
the graph (i.e., ones connected by an edge) should not be too far apart as drawn. To take this into
account, we will choose the x- and y-coordinates so as to minimize the objective

J =
∑

i<j, i∼j

(
(xi − xj)2 + (yi − yj)2

)
,

where i ∼ j means that nodes i and j are connected by an edge. The objective J is precisely the sum
of the squares of the lengths (in R2) of the drawn edges of the graph. We have to introduce some other
constraints into our problem to get a sensible solution. First of all, the objective J is not affected if
we shift all the coordinates by some fixed amount (since J only depends on differences of the x- and
y-coordinates). So we can assume that

n∑
i=1

xi = 0,

n∑
i=1

yi = 0,

i.e., the sum (or mean value) of the x- and y-coordinates is zero. These two equations ‘center’ our
drawn graph. Another problem is that we can minimize J by putting all the nodes at xi = 0, yi = 0,
which results in J = 0. To force the nodes to spread out, we impose the constraints

n∑
i=1

x2
i = 1,

n∑
i=1

y2
i = 1,

n∑
i=1

xiyi = 0.

121

The first two say that the variance of the x- and y- coordinates is one; the last says that the x- and y-
coordinates are uncorrelated. (You don’t have to know what variance or uncorrelated mean; these are
just names for the equations given above.) The three equations above enforce ‘spreading’ of the drawn
graph. Even with these constraints, the coordinates that minimize J are not unique. For example, if x
and y are any set of coordinates, and Q ∈ R2×2 is any orthogonal matrix, then the coordinates given
by [

x̃i
ỹi

]
= Q

[
xi
yi

]
, i = 1, . . . , n

satisfy the centering and spreading constraints, and have the same value of J . This means that if you
have a proposed set of coordinates for the nodes, then by rotating or reflecting them, you get another
set of coordinates that is just as good, according to our objective. We’ll just live with this ambiguity.
Here’s the question:

(a) Explain how to solve this problem, i.e., how to find x and y that minimize J subject to the
centering and spreading constraints, given the graph topology. You can use any method or ideas
we’ve encountered in the course. Be clear as to whether your approach solves the problem exactly
(i.e., finds a set of coordinates with J as small as it can possibly be), or whether it’s just a good
heuristic (i.e., a choice of coordinates that achieves a reasonably small value of J , but perhaps not
the absolute best). In describing your method, you may not refer to any programming commands
or operators; your description must be entirely in mathematical terms.

(b) Implement your method, and carry it out for the graph given in dg_data.json. This JSON file
contains the node adjacency matrix of the graph, denoted A, and defined as Aij = 1 if nodes i and
j are connected by an edge, and Aij = 0 otherwise. (The graph is undirected, so A is symmetric.
Also, we do not have self-loops, so Aii = 0, for i = 1, . . . , n.) Give the value of J achieved by your
choice of x and y, and verify that your x and y satisfy the centering and spreading conditions,
at least approximately. If your method is iterative, plot the value of J versus iteration. Draw
the corresponding graph by plotting nodes as small circles and edges as lines. For comparison,
the JSON file also contains the vectors x_circ and y_circ. These coordinates were obtained
using a standard technique for drawing a graph, by placing the nodes in order on a circle. The
radius of the circle has been chosen so that x_circ and y_circ satisfy the centering and spread
constraints. Draw this graph on a separate plot.

Hint. You are welcome to use the results described below, without proving them. Let A ∈ Rn×n

be symmetric, with eigenvalue decomposition A =
∑n
i=1 λiqiq

T
i , with λ1 ≥ · · · ≥ λn, and {q1, . . . , qn}

orthonormal. You know that a solution of the problem

minimize xTAx
subject to xTx = 1,

where the variable is x ∈ Rn, is x = qn. The related maximization problem is

maximize xTAx
subject to xTx = 1,

with variable x ∈ Rn. A solution to this problem is x = q1. Now consider the following generalization
of the first problem:

minimize Tr(XTAX)
subject to XTX = Ik,

where the variable is X ∈ Rn×k, and Ik denotes the k × k identity matrix, and we assume k ≤ n.
The constraint means that the columns of X, say, x1, . . . , xk, are orthonormal; the objective can be
written in terms of the columns of X as Tr(XTAX) =

∑k
i=1 x

T
i Axi. A solution of this problem is

122

X = [qn−k+1 · · · qn]. Note that when k = 1, this reduces to the first problem above. The related
maximization problem is

maximize Tr(XTAX)
subject to XTX = Ik,

with variable X ∈ Rn×k. A solution of this problem is X = [q1 · · · qk].

15.20 Approximate left inverse with norm constraints. Suppose A ∈ Rm×n is full rank with m ≥ n. We
seek a matrix F ∈ Rn×m that minimizes ‖I − FA‖ subject to the constraint ‖F‖ ≤ α, where α > 0
is given. Note that ‖I − FA‖ gives a measure of how much F fails to be a left inverse of A. Give
an explicit description of an optimal F . Your description can involve standard matrix operations and
decompositions (eigenvector/eigenvalue, QR, SVD, . . .).

15.21 Finding worst-case inputs. The single-input, single output system x(t + 1) = Ax(t) + Bu(t), y(t) =
Cx(t), x(0) = 0, where

A =

[
0.9 0.5
−0.5 0.7

]
, B =

[
1
−1

]
, C =

[
1 2

]
,

is a very simple (discretized and lumped) dynamical model of a building. The input u is ground
displacement (during an earthquake), and y gives the displacement of the top of the building. The

input u is known to satisfy

49∑
t=0

u(t)2 ≤ 1 and u(t) = 0 for t ≥ 50, i.e., the earthquake has energy less

than one, and only lasts 50 samples.

(a) How large can
∑99
t=0 y(t)2 be? Plot an input u that maximizes

∑99
t=0 y(t)2, along with the resulting

output y.

(b) How large can |y(100)| be? Plot an input u that maximizes |y(100)|, along with the resulting
output y.

As usual, you must explain how you solve the problem, as well as give explicit numerical answers and
plots.

15.22 Worst and best direction of excitation for a suspension system. A suspension system is connected at
one end to a base (that can move or vibrate) and at the other to the load (that it is supposed to isolate
from vibration of the base). Suitably discretized, the system is described by

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = 0,

where u(t) ∈ R3 represents the (x-, y-, and z- coordinates of the) displacement of base, and y(t) ∈ R3

represents the (x-, y-, and z- coordinates of the) displacement of the load. The input u has the form
u(t) = qv(t), where q ∈ R3 is a (constant) vector with ‖q‖ = 1, and v(t) ∈ R gives the displacement
amplitude versus time. In other words, the driving displacement u is always in the direction q, with
amplitude given by the (scalar) signal v. The response of the system is judged by the RMS deviation
of the load over a 100 sample interval, i.e.,

D =

(
1

100

100∑
t=1

‖y(t)‖2
)1/2

.

The data A, B, C, v(0), . . . , v(99) are known (and available in the JSON file worst susp data.json

on the course web site). The problem is to find the direction qmax ∈ R3 that maximizes D, and the
direction qmin ∈ R3 that minimizes D. Give the directions and the associated values of D (Dmax and
Dmin, respectively).

123

15.23 Two representations of an ellipsoid. In the lectures, we saw two different ways of representing an
ellipsoid, centered at 0, with non-zero volume. The first uses a quadratic form:

E1 =
{
x
∣∣xTSx ≤ 1

}
,

with ST = S > 0. The second is as the image of a unit ball under a linear mapping:

E2 = { y | y = Ax, ‖x‖ ≤ 1} ,

with det(A) 6= 0.

(a) Given S, explain how to find an A so that E1 = E2.

(b) Given A, explain how to find an S so that E1 = E2.

(c) What about uniqueness? Given S, explain how to find all A that yield E1 = E2. Given A, explain
how to find all S that yield E1 = E2.

15.24 Determining initial bacteria populations. We consider a population that consists of three strains of a
bacterium, called strain 1, strain 2, and strain 3. The vector x(t) ∈ R3 will denote the amount, or
biomass (in grams) of the strains present in the population at time t, measured in hours. For example,
x2(3.4) denotes the amount of strain 2 (in grams) in the sample at time t = 3.4 hours. Over time,
the biomass of each strain changes through several mechanisms including cell division, cell death, and
mutation. (But you don’t need to know any biology to answer this question!) The population dynamics
is given by ẋ = Ax, where

A =

 −0.1 0.3 0
0 −0.2 0.1

0.1 0 −0.1

 .
You can assume that we always have xi(t) > 0, i.e., the biomass of each strain is always positive. The
total biomass at time t is given by 1Tx(t) = x1(t) + x2(t) + x3(t), where 1 ∈ R3 denotes the vector
with all components one.

(a) Give a very brief interpretation of the entries of the matrix A. For example, what is the significance
of a13 = 0? What is the significance of the sign of a11? Limit yourself to 100 words. You may
use phrases such as ‘the presence of strain i enhances (or inhibits) growth of strain j’.

(b) As t → ∞, does the total biomass converge to ∞ (i.e., grow without bound), converge to zero,
or not converge at all (for example, oscillate)? Explain how you arrive at your conclusion and
show any calculations (by hand or matlab) that you need to do. You can assume that xi(0) > 0
for i = 1, 2, 3. Posterior intuitive explanation. In 100 words or less, give a plausible story that
explains, intuitively, the result you found.

(c) Selection of optimal assay time. A biologist wishes to estimate the original biomass of each of the
three strains, i.e., the vector x(0) ∈ R3, based on measurements of the total biomass taken at
t = 0, t = 10, and t = T , where T satisfies 0 < T < 10. The three measurements of total biomass
(which are called assays) will include a small additive error, denoted v1 (for the assay at t = 0), v2

(for the assay at t = T and v3 (for the assay at t = 10). You can assume that v2
1 +v2

2 +v2
3 ≤ 0.012,

i.e., the sum of the squares of the measurement errors is not more than 0.012. You can also
assume that a good method for computing the estimate of x(0), given the measurements, will
be used. (The estimation method won’t make any use of the information that xi(0) > 0.) The
problem here is to choose the time T of the intermediate assay in such a way that the estimate
of x(0), denoted x̂(0), is as accurate as possible. We’ll judge accuracy by the maximum value
that ‖x̂(0)− x(0)‖ can have, over all measurement errors that satisfy v2

1 + v2
2 + v2

3 ≤ 0.012. Find
the optimal value for T (of course, between 0 and 10), i.e., the value of T that minimizes the
maximum value ‖x̂(0)− x(0)‖ can have. We are looking for an answer that is accurate to within
±0.1. Of course you must explain exactly what you are doing, and submit your matlab code as
well the output it produces. Be sure to say what the optimal T is, and what the optimal accuracy
is (i.e., what the maximum value ‖x̂(0)− x(0)‖ is, for the T you choose).

124

15.25 A measure of connectedness in a graph. We consider an undirected graph with n nodes, described by
its adjacency matrix A ∈ Rn×n, defined by

Aij =

{
1 if there is a link connecting nodes i and j
0 otherwise.

We assume the graph has no self-loops, i.e., Aii = 0. Note that A = AT . We assume that the graph
has at least one link, so A 6= 0. A path from node i to node j, of length m > 0, is an m + 1-long
sequence of nodes, connected by links, that start at i and end at j. More precisely it is a sequence
i = k1, k2, . . . , km+1 = j, with the property that Ak1,k2 = · · · = Akm,km+1 = 1. Note that a path can
include loops; there is no requirement that each node be visited only once. For example, if node 3 and
node 5 are connected by a link (i.e., A35 = 1), then the sequence 3, 5, 3, 5 is a path between node 3 and
node 5 of length 3. We say that each node is connected to itself by a path of length zero. Let Pm(i, j)
denote the total number of paths of length m from node i to node j. We define

Cij = lim
m→∞

Pm(i, j)∑n
i,j=1 Pm(i, j)

,

when the limits exist. When the limits don’t, we say that Cij isn’t defined. In the fraction in this
equation, the numerator is the number of paths of length m between nodes i and j, and the denominator
is the total number of paths of length m, so the ratio gives the fraction of all paths of length m that
go between nodes i and j. When Cij exists, it gives the asymptotic fraction of all (long) paths that go
from node i to node j. The number Cij gives a good measure of how “connected” nodes i and j are in
the graph. You can make one of the following assumptions:

(a) A is full rank.

(b) A has distinct eigenvalues.

(c) A has distinct singular values.

(d) A is diagonalizable.

(e) A has a dominant eigenvalue, i.e., |λ1| > |λi| for i = 2, . . . , n, where λ1, . . . , λn are the eigenvalues
of A.

(Be very clear about which one you choose.) Using your assumption, explain why Cij exists, and
derive an expression for Cij . You can use any of the concepts from the class, such as singular values
and singular vectors, eigenvalues and eigenvectors, pseudo-inverse, etc., but you cannot leave a limit
in your expression. You must explain why your expression is, in fact, equal to Cij .

15.26 Recovering an ellipsoid from boundary points. You are given a set of vectors x(1), . . . , x(N) ∈ Rn that
are thought to lie on or near the surface of an ellipsoid centered at the origin, which we represent as

E = {x ∈ Rn | xTAx = 1},

where A = AT ∈ Rn×n ≥ 0. Your job is to recover, at least approximately, the matrix A, given the
observed data x(1), . . . , x(N). Explain your approach to this problem, and then carry it out on the
data given in the mfile ellip_bdry_data.m. Be sure to explain how you check that the ellipsoid you
find is reasonably consistent with the given data, and also that the matrix A you find does, in fact,
correspond to an ellipsoid. To simplify the explanation, you can give it for the case n = 4 (which is
the dimension of the given data). But it should be clear from your discussion how it works in general.

15.27 Predicting zero crossings. We consider a linear system of the form

ẋ = Ax, y = Cx,

125

where x(t) ∈ Rn and y(t) ∈ R. We know A and C, but we do not know x(0). We cannot directly
observe the output, but we do know the times at which the output is zero, i.e., we are given the
zero-crossing times t1, . . . , tp at which y(ti) = 0. You can assume these times are given in increasing
order, i.e., 0 ≤ t1 < · · · < tp, and that y(t) 6= 0 for 0 ≤ t < tp and t 6= t1, . . . , t 6= tp. (Note that
this definition of zero-crossing times doesn’t require the output signal to cross the value zero; it is
enough to just have the value zero.) We are interested in the following question: given A, C, and the
zero-crossing times t1, . . . , tp, can we predict the next zero-crossing time tp+1? (This means, of course,
that y(t) 6= 0 for tp < t < tp+1, and y(tp+1) = 0.) You will answer this question for the specific system

A =


0 1 0 0
0 0 1 0
0 0 0 1

−18 −11 −12 −2

 , C =
[

1 1 1 1
]
,

and zero-crossing times

t1 = 0.000, t2 = 1.000, t3 = 2.000, t4 = 3.143.

(So here we have p = 4.) Note that the zero-crossing times are given to three significant digits.
Specifically, you must do one of the following:

• If you think that you can determine the next zero-crossing time t5, explain in detail how to do it,
and find the next time t5 (to at least two significant figures).

• If you think that you cannot determine the next zero-crossing time t5, explain in detail why, and
find two trajectories of the system which have t1, . . . , t4 as the first 4 zero-crossings, but have
different 5th zero-crossings. (The zero-crossings should differ substantially, and not just in the
last significant digit.)

Be sure to make it clear which one of these options you choose. Hint: Be careful estimating rank or
determining singularity, if that’s part of your procedure; remember that the zero-crossing times are
only given to three significant figures.

15.28 Optimal time compression equalizer. We are given the (finite) impulse response of a communications
channel, i.e., the real numbers

c1, c2, . . . , cn.

Our goal is to design the (finite) impulse response of an equalizer, i.e., the real numbers

w1, w2, . . . , wn.

(To make things simple, the equalizer has the same length as the channel.) The equalized channel
response h is given by the convolution of w and c, i.e.,

hi =

i−1∑
j=1

wjci−j , i = 2, . . . , 2n,

where we take wi and ci to be zero for i ≤ 0 or i > n. This is shown below.

u c

y

zw

126

The goal is to choose w so that most of the energy of the equalized impulse response h is concentrated
within k samples of t = n + 1, where k < n − 1 is given. To define this formally, we first define the
total energy of the equalized response as

Etot =

2n∑
i=2

h2
i ,

and the energy in the desired time interval as

Edes =

n+1+k∑
i=n+1−k

h2
i .

For any w for which Etot > 0, we define the desired to total energy ratio, or DTE, as DTE = Edes/Etot.
Thus number is clearly between 0 and 1; it tells us what fraction of the energy in h is contained in the
time interval t = n+ 1− k, . . . , t = n+ 1 + k. You can assume that h is such that for any w 6= 0, we
have Etot > 0.

(a) How do you find a w 6= 0 that maximizes DTE? You must give a very clear description of your
method, and explain why it works. Your description and justification must be very clear. You
can appeal to any concepts used in the class, e.g., least-squares, least-norm, eigenvalues and
eigenvectors, singular values and singular vectors, matrix exponential, and so on.

(b) Carry out your method for time compression length k = 1 on the data found in time_comp_data.m.
Plot your solution w, the equalized response h, and give the DTE for your w.

Please note: You do not need to know anything about equalizers, communications channels, or even
convolution; everything you need to solve this problem is clearly defined in the problem statement.

15.29 Minimum energy required to leave safe operating region. We consider the stable controllable system
ẋ = Ax+ Bu, x(0) = 0, where x(t) ∈ Rn and u(t) ∈ Rm. The input u is beyond our control, but we
have some idea of how large its total energy∫ ∞

0

‖u(τ)‖2 dτ

is likely to be. The safe operating region for the state is the unit ball

B = { x | ‖x‖ ≤ 1 }.

The hope is that input u will not drive the state outside the safe operating region. One measure of
system security that is used is the minimum energy Emin that is required to drive the state outside the
safe operating region:

Emin = min

{ ∫ t

0

‖u(τ)‖2 dτ
∣∣∣∣ x(t) 6∈ B

}
.

(Note that we do not specify t, the time at which the state is outside the safe operating region.) If
Emin is much larger than the energy of the u’s we can expect, we can be fairly confident that the state
will not leave the safe operating region. (Emin can also be justified as a system security measure on
statistical grounds, but we won’t go into that here.)

(a) Find Emin explicitly. Your solution should be in terms of the matrices A, B, or other matrices
derived from them such as the controllability matrix C, the controllability Gramian Wc, and its
inverse P = W−1

c . Make sure you give the simplest possible expression for Emin.

(b) Suppose the safe operating region is the unit cube C = { x | |xi| ≤ 1, i = 1, . . . , n } instead of the
unit ball B. Let Ecube

min denote the minimum energy required to drive the state outside the unit
cube C. Repeat part (a) for Ecube

min .

127

15.30 Energy storage efficiency in a linear dynamical system. We consider the discrete-time linear dynamic
system

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t),

where x(t) ∈ Rn, and u(t), y(t) ∈ R. The initial state is zero, i.e., x(0) = 0. We apply an in-
put sequence u(0), . . . , u(N − 1), and are interested in the output over the next N samples, i.e.,
y(N), . . . , y(2N − 1). (We take u(t) = 0 for t ≥ N .) We define the input energy as

Ein =

N−1∑
t=0

u(t)2,

and similarly, the output energy is defined as

Eout =

2N−1∑
t=N

y(t)2.

How would you choose the (nonzero) input sequence u(0), . . . , u(N−1) to maximize the ratio of output
energy to input energy, i.e., to maximize Eout/Ein? What is the maximum value the ratio Eout/Ein can
have?

15.31 Energy-optimal evasion. A vehicle is governed by the following discrete-time linear dynamical system
equations:

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), x(0) = 0.

Here x(t) ∈ Rn is the vehicle state, y(t) ∈ R3 is the vehicle position, and u(t) ∈ Rm is the input signal.
(The vehicle dynamics are really continuous; the equation above is the result of a suitable sampling.)
The system is controllable.

(a) Minimum energy to reach a position. Find the input u(0), . . . , u(T − 1) that reaches position
f ∈ R3 at time T (where T ≥ n), i.e., y(T) = f , and minimizes the input ‘energy’

‖u(0)‖2 + · · ·+ ‖u(T − 1)‖2.

The input u is the (energy) optimal input for the vehicle to arrive at the position f at time T .
Give an expression for E, the energy of the minimum energy input. (Of course E will depend on
the data A, B, C, and f .)

(b) Energy-optimal evasion. Now consider a second vehicle governed by

z(t+ 1) = Fz(t) +Gv(t), w(t) = Hz(t), z(0) = 0

where z(t) ∈ Rn is the state of the vehicle, w(t) ∈ R3 is the vehicle position, and v(t) ∈ Rm is
the input signal. This vehicle is to be overtaken (intercepted) by the first vehicle at time T , where
T ≥ n. This means that w(T) = y(T). How would you find v(0), . . . , v(T −1) that maximizes the
minimum energy the first vehicle must expend to intercept the second vehicle at time T , subject
to a limit on input energy,

‖v(0)‖2 + · · ·+ ‖v(T − 1)‖2 ≤ 1?

The input v is maximally evasive, in the sense that is requires the first vehicle to expend the
largest amount of input energy to overtake it, given the limit on input energy the second vehicle
is allowed to use. Express your answer in terms of the data A, B, C, F , G, H, and standard
matrix functions (inverse, transpose, SVD, . . .). Remark: This problem is obviously not a very
realistic model of a real pursuit-evasion situation, for several reasons: both vehicles start from
the zero initial state, the time of intercept (T) is known to the second vehicle, and the place of
intercept (w(T)) is known ahead of time to the first vehicle. Still, it’s possible to extend the
results of this problem to handle a realistic model of a pursuit/evasion.

128

15.32 Worst-case analysis of impact. We consider a (time-invariant) linear dynamical system

ẋ = Ax+Bu, x(0) = xinit,

with state x(t) ∈ Rn, and input u(t) ∈ Rm. We are interested in the state trajectory over the time
interval [0, T]. In this problem the input u represents an impact on the system, so it has the form

u(t) = gδ(t− Timp),

where g ∈ Rm is a vector that gives the direction and magnitude of the impact, and Timp is the time
of the impact. We assume that 0 ≤ Timp ≤ T−. (Timp = T− means that the impact occurs right at the
end of the period of interest, and does affect x(T).) We let xnom(T) denote the state, at time t = T ,
of the linear system ẋnom = Axnom, xnom(0) = xinit. The vector xnom(T) is what the final state x(T)
of the system above would have been at time t = T , had the impact not occurred (i.e., with u = 0).
We are interested in the deviation D between x(T) and xnom(T), as measured by the norm:

D = ‖x(T)− xnom(T)‖.

D measures how far the impact has shifted the state at time T . We would like to know how large D can
be, over all possible impact directions and magnitudes no more than one (i.e., ‖g‖ ≤ 1), and over all
possible impact times between 0 and T−. In other words, we would like to know the maximum possible
state deviation, at time T , due to an impact of magnitude no more than one. We’ll call the choices of
Timp and g that maximize D the worst-case impact time and worst-case impact vector, respectively.

(a) Explain how to find the worst-case impact time, and the worst-case impact vector, given the
problem data A, B, xinit, and T . Your explanation should be as short and clear as possible. You
can use any of the concepts we have encountered in the class. Your approach can include a simple
numerical search (such as plotting a function of one variable to find its maximum), if needed. If
either the worst-case impact time or the worst-case impact vector do not depend on some of the
problem data (i.e., A, B, xinit, and T) say so.

(b) Get the data from worst_case_impact_data.m, which defines A, B, xinit, and T , and carry out
the procedure described in part (a). Be sure to give us the worst-case impact time (with absolute
precision of 0.01), the worst-case impact vector, and the corresponding value of D.

15.33 Worst time for control system failure. In this problem we consider a system that under normal cir-
cumstances is governed by the equations

ẋ(t) = Ax(t) +Bu(t), u(t) = Kx(t). (3)

(This is called state feedback, and is very commonly used in automatic control systems.) Here the
application is a regulator, which means that input u is meant to drive the state to zero as t → ∞,
no matter what x(0) is. At time t = Tf , however, a fault occurs, and the input signal becomes zero.
The fault is cleared (i.e., corrected) Tc seconds after it occurs. Thus, for Tf ≤ t ≤ Tf + Tc, we have
ẋ(t) = Ax(t); for t < Tf and t > Tf + Tc, the system is governed by the equations (3). You’ll find
the specific matrices A, B, and K, in the mfile fault_ctrl_sys.m on the class web site. Here’s the
problem: suppose the system fails for one second, some time in the time interval [0, 9]. In other words,
we have 0 ≤ Tf ≤ 9, and Tc = 1. We don’t know what x(0) is, but you can assume that ‖x(0)‖ ≤ 1.
We also don’t know the time of failure Tf . The problem is to find the time of failure Tf (in [0, 9]) and
the initial condition x(0) (with ‖x(0)‖ ≤ 1) that maximizes ‖x(10)‖. In essence, you are carrying out
a worst-case analysis of the effects of a one second control system failure. As usual, you must explain
your approach clearly and completely. You must also give your source code, and the results, i.e., the
worse possible x(0), the worst failure time Tf , and the resulting value of ‖x(10)‖. An accuracy of 0.01
for Tf is fine.

129

15.34 Some proof or counterexample questions. Determine if the following statements are true or false. If the
statement is true, prove it; if you think it is false, provide a specific (numerical) counterexample. You
get five points for the correct solution (i.e., the right answer and a valid proof or counterexample), two
points for the right answer (i.e., true or false), and zero points otherwise. What we mean by “true”
is that the statement is true for all values of the matrices and vectors given. (You can assume the
entries of the matrices and vectors are all real.) You can’t assume anything about the dimensions of
the matrices (unless it’s explicitly stated), but you can assume that the dimensions are such that all
expressions make sense. For example, the statement “A+B = B+A” is true, because no matter what
the dimensions of A and B (which must, however, be the same), and no matter what values A and
B have, the statement holds. As another example, the statement A2 = A is false, because there are
(square) matrices for which this doesn’t hold. In such a case, provide a specific counterexample, for
example, A = 2 (which is a matrix in R1×1).

(a) Suppose A = AT ∈ Rn×n satisfies A ≥ 0, and Akk = 0 for some k (between 1 and n). Then A is
singular.

(b) Suppose A, B ∈ Rn×n, with ‖A‖ > ‖B‖. Then, for all k ≥ 1, ‖Ak‖ ≥ ‖Bk‖.
(c) Suppose Ã is a submatrix of a matrix A ∈ Rm×n. (This means Ã is obtained from A by removing

some rows and columns from A; as an extreme case, any element of A is a (1 × 1) submatrix of
A.) Then ‖Ã‖ ≤ ‖A‖.

(d) For any A, B, C, D with compatible dimensions (see below),∥∥∥∥[A B
C D

]∥∥∥∥ ≤ ∥∥∥∥[‖A‖ ‖B‖
‖C‖ ‖D‖

]∥∥∥∥ .
Compatible dimensions means: A and B have the same number of rows, C and D have the same
number of rows, A and C have the same number of columns, and B and D have the same number
of columns.

(e) For any A and B with the same number of columns, we have

max{‖A‖, ‖B‖} ≤
∥∥∥∥[A

B

]∥∥∥∥ ≤√‖A‖2 + ‖B‖2.

(f) Suppose the fat (including, possibly, square) and full rank matrices A and B have the same
number of rows. Then we have κ(A) ≤ κ([A B]), where κ(Z) denotes, as usual, the condition
number of the matrix Z, i.e., the ratio of the largest to the smallest singular value.

15.35 Uncovering a hidden linear explanation. Consider a set of vectors y1, . . . , yN ∈ Rn, which might
represent a collection of measurements or other data. Suppose we have

yi ≈ Axi + b, i = 1, . . . , N,

where A ∈ Rn×m, xi ∈ Rm, and b ∈ Rn, with m < n. (Our main interest is in the case when N is
much larger than n, and m is smaller than n.) Then we say that y = Ax + b is a linear explanation
of the data y. We refer to x as the vector of factors or underlying causes of the data y. For example,
suppose N = 500, n = 30, and m = 5. In this case we have 500 vectors; each vector yi consists
of 30 scalar measurements or data points. But these 30-dimensional data points can be ‘explained’
by a much smaller set of 5 ‘factors’ (the components of xi). This problem is about uncovering, or
discovering, a linear explanation of a set of data, given only the data. In other words, we are given
y1, . . . , yN , and the goal is to find m, A, b, and x1, . . . , xN so that yi ≈ Axi + b. To judge the accuracy
of a proposed explanation, we’ll use the RMS explanation error, i.e.,

J =

(
1

N

N∑
i=1

‖yi −Axi − b‖2
)1/2

.

130

One rather simple linear explanation of the data is obtained with xi = yi, A = I, and b = 0. In
other words, the data explains itself! In this case, of course, we have yi = Axi + b, so the RMS
explanation error is zero. But this is not what we’re after. To be a useful explanation, we want to have
m substantially smaller than n, i.e., substantially fewer factors than the dimension of the original data
(and for this smaller dimension, we’ll accept a nonzero, but hopefully small, value of J .) Generally, we
want m, the number of factors in the explanation, to be as small as possible, subject to the constraint
that J is not too large. Even if we fix the number of factors as m, a linear explanation of a set of data
is not unique. Suppose A, b, and x1, . . . , xN is a linear explanation of our data, with xi ∈ Rm. Then
we can multiply the matrix A by two (say), and divide each vector xi by two, and we have another
linear explanation of the original data. More generally, let F ∈ Rm×m be invertible, and g ∈ Rm.
Then we have

yi ≈ Axi + b = (AF−1)(Fxi + g) + (b−AF−1g).

Thus,
Ã = AF−1, b̃ = b−AF−1g, x̃1 = Fx1 + g, . . . , x̃N = FxN + g

is another equally good linear explanation of the data. In other words, we can apply any affine
(i.e., linear plus constant) mapping to the underlying factors xi, and generate another equally good
explanation of the original data by appropriately adjusting A and b. To standardize or normalize the
linear explanation, it is usually assumed that

1

N

N∑
i=1

xi = 0,
1

N

N∑
i=1

xix
T
i = I.

In other words, the underlying factors have an average value zero, and unit sample covariance. (You
don’t need to know what covariance is — it’s just a definition here.) Finally, the problem.

(a) Explain clearly how you would find a hidden linear explanation for a set of data y1, . . . , yN . Be
sure to say how you find m, the dimension of the underlying causes, the matrix A, the vector b, and
the vectors x1, . . . , xN . Explain clearly why the vectors x1, . . . , xN have the required properties.

(b) Carry out your method on the data in the file linexp_data.m available on the course web site.
The file gives the matrix Y = [y1 · · · yN]. Give your final A, b, and x1, . . . , xN , and verify that
yi ≈ Axi + b by calculating the norm of the error vector, ‖yi − Axi − b‖, for i = 1, . . . , N . Sort
these norms in descending order and plot them. (This gives a good picture of the distribution
of explanation errors.) By explicit computation verify that the vectors x1, . . . , xN obtained, have
the required properties.

15.36 Some bounds on singular values. Suppose A ∈ R6×3, with singular values 7, 5, 3, and B ∈ R6×3, with
singular values 2, 2, 1. Let C = [A B] ∈ R6×6, with full SVD C = UΣV T , with Σ = diag(σ1, . . . , σ6).
(We allow the possibility that some of these singular values are zero.)

(a) How large can σ1 be?

(b) How small can σ1 be?

(c) How large can σ6 be?

(d) How small can σ6 be?

What we mean is, how large (or small) can the specified quantity be, for any A and B with the given
sizes and given singular values.

Give your answers with 3 digits after the decimal place, as in

(a) 12.420, (b) 10.000, (c) 0.552, (d) 0.000.

(This is just an example.) Briefly justify your answers. find A and B that achieve the values you give.

131

15.37 Some simple matrix inequality counter-examples.

(a) Find a (square) matrix A, which has all eigenvalues real and positive, but there is a vector x for
which xTAx < 0. (Give A and x, and the eigenvalues of A.)

Moral: You cannot use positivity of the eigenvalues of A as a test for whether xTAx ≥ 0 holds
for all x.

What is the correct way to check whether xTAx ≥ 0 holds for all x? (You are allowed to find
eigenvalues in this process.)

(b) Find symmetric matrices A and B for which neither A ≥ B nor B ≥ A holds.

Of course, we’d like the simplest examples in each case.

15.38 Some true-false questions. In the following statements, A ∈ Rn×n, σmin refers to σn (the nth largest
singular value), and κ refers to the condition number. Tell us whether each statement is true or false.
‘True’ means that the statement holds for any matrix A ∈ Rn×n, for any n. ‘False’ means that the
statement is not true. The only answers we will read are ‘True’, ‘False’, and ‘My attorney has advised
me to not answer this question at this time’. (This last choice will receive partial credit.) If you write
anything else, you will receive no credit for that statement. In particular, do not write justification for
any answer, or provide any counter-examples.

(a) ‖eA‖ ≤ e‖A‖.
(b) σmin(eA) ≥ eσmin(A).

(c) κ(eA) ≤ eκ(A).

(d) κ(eA) ≤ e2‖A‖.

(e) Rank(eA) ≥ Rank(A).

(f) Rank(eA − I) ≤ Rank(A).

15.39 Possible values for correlation coefficients. A correlation matrix C ∈ Rn×n is one that has unit diagonal
entries, i.e., Cii = 1, for i = 1, . . . , n, and is symmetric and positive semidefinite. Correlation matrices
come up in probability and statistics, but you don’t need to know anything from these fields to solve
this problem.

Suppose that a correlation matrix has the form below:

C =


1 0.4 −0.2 0.3

0.4 1 C23 −0.1
−0.2 C23 1 0.8
0.3 −0.1 0.8 1


What are all possible values of C23?

Justify your answer.

If you can give an analytical solution in terms of any concepts from the class (eigenvalues, pseudo-
inverse, singular values, matrix exponential, etc.) do so. You may use the fact that C > 0 when
C23 = 0. (In particular, C23 = 0 is a possible value.)

Whether or not you give an analytical description, give a numerical description (and explain your
method, if it differs from the analytical method you gave). Of course, you must explain how you find
the possible values that C23 can take on.

15.40 Suppose that A ∈ Rm×n. How would you find vectors y and x, that maximize yTAx, subject to
‖y‖ = 1, ‖x‖ = 1? What is the resulting value of yTAx?

132

15.41 Least-squares stereo-vision rig calibration. A stereo-vision rig consists of two cameras that view a 3D
scene from slightly different positions. A (small) object located at a position in R3 is projected onto
each camera’s (2D) image plane. The position of the object image on the first camera image plane is
given by a vector p ∈ R2, and the position of the same object on the second camera image plane is
given by q ∈ R2. An analysis of the geometry of (ideal) camera imaging reveals that p, q are related
by [

p
1

]T
F

[
q
1

]
= 0,

where F ∈ R3×3 (F 6= 0) is called the fundamental matrix associated with the stereo-vision rig. We can
multiply F by any nonzero constant, and the equation above still holds. We can therefore normalize
F , and assume that

∑3
i,j=1 F

2
ij = 1. The fundamental matrix F can be found by careful analysis of

the camera positions, orientations, and their optical properties, or, as we will do here, by calibration.

During rig calibration both cameras view K labeled objects. For each object i we record its position in
both image planes p(i), q(i), i = 1, . . . ,K. We then estimate F from the calibration data by choosing
F to minimize the mean-square residual

J =
1

K

K∑
i=1

([
p(i)

1

]T
F

[
q(i)

1

])2

,

subject to the normalization constraint
∑3
i,j=1 F

2
ij = 1. (If the image plane locations were exact, and

the camera optics had no distortion or imperfections, we would get J = 0 for the true fundamental
matrix.)

(a) Explain how to find the matrix F ls that minimizes J given the calibration data p(i), q(i) for
i = 1, . . . ,K. If you need to make an assumption about the rank of any matrix arising in your
analysis, do so (but state it clearly).

(b) Carry out the method from part (a) on the data given in stereo_calibration_data.json. The
image plane points for the first and second cameras are given in 2×K matrices P and Q, respectively.
Report F ls and the associated value of J .

(c) Correspondence. Now suppose we have a set of image plane positions p(i), q(i), i = 1, . . . , N for
N objects, but we do not know which ones correspond; that is, p(i) is the first camera image
plane position of the object labeled q(ki) on the second camera image plane. The correspondence
problem is to guess the permutation k1, . . . , kN . Give a simple method for (approximately) solving
the correspondence problem, given the fundamental matrix. (The method you give will not be
infallible, but tends to work well if N is not too big and you are not unlucky.) Carry out your
method on the data given in the data file in the 2 × N matrices Pcor and Qcor, using the
fundamental matrix F ls found in part (b). Report the correspondences you find in the form
(k1, . . . , kN). (This means that p(1) corresponds to q(k1), p(2) corresponds to q(k2), and so on.)

15.42 2D projection with minimum distance distortion. We wish to visualize a set of data points a1, . . . , aN ∈
Rn, where n is more than two (and typically, much larger). To do this we form the coordinates
ci = QTai ∈ R2, i = 1, . . . , N , where Q ∈ Rn×2 has orthonormal columns, and view the coordinates
on a screen. This might allow us to see or recognize some structure in the points that would be hard
to recognize directly from the original data. This problem concerns the choice of the matrix Q.

Let Dij = ‖ai − aj‖ be the distances between the original points (in Rn) and D̃ij = ‖ci − cj‖ be the

distances between the coordinates (in R2), for i, j = 1, . . . , N . Ideally, we would like to have D̃ij = Dij

for all i, j, which would mean the mapping from data points to coordinates is isometric, i.e., preserves
distances. This isn’t possible in general, so we will choose Q so that this holds approximately, in the
sense described below.

133

Since the columns of Q are orthonormal, we have D̃ij ≤ Dij for all i, j. Thus, it seems reasonable to

choose Q to maximize J =
∑N
i,j=1 D̃

2
ij . Intuitively, this will drive D̃ij towards Dij , which is what we

want.

Note that the solution is never unique; if Q is one solution, so is QZ, for any orthogonal matrix
Z ∈ R2×2. (Using QZ applies a rotation or reflection to the coordinates that would be obtained using
Q, and so does not affect D̃ij .)

(a) Explain how to find Q, using concepts and methods from the course (QR factorization, Jordan
form, pseudo-inverse, etc.). You can assume that the data points span Rn. Give your method
first, and then the justification that it is correct.

(b) Carry out your method on the data given in twoD_proj_data.m, and plot the coordinates with
an optimal choice of Q. This data file gives the data points as a n × N matrix A, and plots the
coordinates for a non-optimal choice of Q (You can use the plotting code as a template for your
plot with an optimal Q; specifically, be sure to use the command axis equal so the plotting axes
use the same scale.)

Hint: You can add any constant vector to all the data vectors ai without changing the solution, since
only differences between pairs of data points matter. So you might look for a vector to add to the data
points that simplifies the expression for J (but of course, does not change its value).

15.43 Strictly growing trajectories. Give the exact (necessary and sufficient) conditions on A ∈ Rn×n under
which every nonzero trajectory of ẋ = Ax is always growing in norm, i.e., ‖x(t)‖ is increasing for all t.

Your answer can refer to any concepts used in the course (eigenvalues, singular values, Jordan form,
least-squares, range, nullspace, . . .). Try to give the simplest answer possible. You may not make any
assumptions about A (e.g., that it is nonsingular, diagonalizable, etc.).

Please give only your final answer; we do not want any justification or discussion. Your answer should
have a form similar to “The property occurs if and only if all singular values of A are larger than one,
and A has no real eigenvalues”. (This is not the correct answer; it is only as an example of what your
answer should look like.)

134

Lecture 16 – SVD applications

16.1 Blind signal detection. A binary signal s1, . . . , sT , with st ∈ {−1, 1} is transmitted to a receiver, which
receives the (vector) signal yt = ast + vt ∈ Rn, t = 1, . . . , T , where a ∈ Rn and vt ∈ Rn is a noise
signal. We’ll assume that a 6= 0, and that the noise signal is centered around zero, but is otherwise
unknown. (This last statement is vague, but it will not matter.)

The receiver will form an approximation of the transmitted signal as

ŝt = wT yt, t = 1, . . . , T,

where w ∈ Rn is a weight vector. Your job is to choose the weight vector w so that ŝt ≈ st. If you
knew the vector a, then a reasonable choice for w would be w = a† = a/‖a‖2. This choice is the
smallest (in norm) vector w for which wTa = 1.

Here’s the catch: You don’t know the vector a. Estimating the transmitted signal, given the received
signal, when you don’t know the mapping from transmitted to received signal (in this case, the vector
a) is called blind signal estimation or blind signal detection.

Here is one approach. Ignoring the noise signal, and assuming that we have chosen w so that wT yt ≈ st,
we would have

(1/T)

T∑
t=1

(wT yt)
2 ≈ 1.

Since wT vt gives the noise contribution to ŝt, we want w to be as small as possible. This leads us to
choose w to minimize ‖w‖ subject to (1/T)

∑T
t=1(wT yt)

2 = 1. This doesn’t determine w uniquely; we

can multiply it by −1 and it still minimizes ‖w‖ subject to (1/T)
∑T
t=1(wT yt)

2 = 1. So we can only
hope to recover either an approximation of st or of −st; if we don’t know a we really can’t do any
better. (In practice we’d use other methods to determine whether we have recovered st or −st.)

(a) Explain how to find w, given the received vector signal y1, . . . , yT , using concepts from the class.

(b) Apply the method to the signal in the file bs_det_data.m, which contains a matrix Y, whose
columns are yt. Give the weight vector w that you find. Plot a histogram of the values of wT yt
using hist(w’*Y,50). You’ll know you’re doing well if the result has two peaks, one negative
and one positive. Once you’ve chosen w, a reasonable guess of st (or, possibly, its negative −st)
is given by

s̃t = sign(wT yt), t = 1, . . . , T,

where sign(u) is +1 for u ≥ 0 and −1 for u < 0. The file bs_det_data.m contains the original
signal, as a row vector s. Give your error rate, i.e., the fraction of times for which s̃t 6= st. (If
this is more than 50%, you are welcome to flip the sign on w.)

16.2 Alternating projections for low rank matrix completion. In the low rank matrix completion problem,
you are given some of the entries of a matrix, along with an upper bound on its rank; you are to guess
or estimate the remaining entries. This arises in several applications, one of which is described at the
end of this problem. This question investigates a heuristic method for the low rank matrix completion
problem.

You are told that A ∈ Rm×n has rank ≤ r, and that Aij = Aknown
ij for (i, j) ∈ K, where K ⊆

{1, . . . ,m}×{1, . . . , n} is the set of indices of the known entries. (You are given Aknown
ij for (i, j) ∈ K.)

We let p = |K| denote the number of known entries. You are to estimate or guess the entries Aij , for
(i, j) 6∈ K.

You will use an alternating projection method to find an estimate Â of A. After choosing an initial

point Â(0), that has the known correct entries (i.e., Â
(0)
ij = Aknown

ij for ((i, j) ∈ K), you will alternate
between two projections. For k = 0, 1, . . . you carry out the following steps:

135

• Project to the closest matrix satisfying the rank constraint. Set Ã(k) to be the matrix of rank ≤ r
that is closest to Â(k) in Frobenius norm, i.e., that minimizes

‖Ã(k) − Â(k)‖F =

 m∑
i=1

n∑
j=1

(Ã
(k)
ij − Â

(k)
ij)2

1/2

subject to Rank(Ã(k)) ≤ r.
• Project to the closest matrix with the known entries. Set Â(k+1) to be the matrix with the given

known entries that is closest to Ã(k) in Frobenius norm, i.e., that minimizes

‖Â(k+1) − Ã(k)‖F =

 m∑
i=1

n∑
j=1

(Â
(k+1)
ij − Ã(k)

ij)2

1/2

subject to Â
(k+1)
ij = Aknown

ij for (i, j) ∈ K.

This is a heuristic method: It can fail to converge at all, or it can converge to different limit points,
depending on the starting point. But it often works well.

(a) Clearly explain how to perform each of these projections. We will subtract points for technically
correct, but overly complicated methods. Do not use any matlab notation in your answer.

(b) Use 300 steps of the alternating projections algorithm to find a low rank matrix completion esti-
mate for the problem defined in lrmc.m. This file defines the rank upper bound r, the dimensions
m and n, and the known matrix entries. The known matrix indices are given as a p × 2 matrix
K, with each row giving (i, j) for one known entry. The p-vector Aknown gives the corresponding
known values.

Initialize your method as follows. Let µ denote the mean of all the known entries. Set Â
(0)
ij =

Aknown
ij for (i, j) ∈ K, and Â

(0)
ij = µ for (i, j) 6∈ K.

To judge the performance of the algorithm, the mfile also gives the actual matrix A. (Of course in
applications, you would not have access to the matrix A!) Plot ‖Â(k) −A‖F , for k = 1, . . . , 300.

Make a very brief comment about how well the algorithm worked on this data set. You can allude
to the fact that you are given only around one sixth of the entries of A.

Remark. None of this is needed to solve the problem; it is only for your amusement and interest.
Algorithms like this can be used for problems like the Netflix challenge. Here Aij represents the
rating user i gives (or would give) to movie j. We have access to some of the ratings, and want
to predict other ratings before they are given. (This would allow us to make recommendations, for
example.) It is reasonable to assume (and is confirmed with real data) that ratings matrices like A
have (approximately) low rank. This can be interpreted as meaning that a user’s rating is (mostly)
determined by a relatively small number of factors. The entries in the kth left singular vector tell us
how much the user ratings are influenced (positively or negatively) by factor k; the entries in the kth
right singular vector tell us how much of factor k (positive or negative) is in each movie.

16.3 Least-squares matching of supply and demand on a network. A network consists of a directed graph
with n nodes connected by m directed links. The graph is specified by its node incidence matrix
A ∈ Rn×m, where

Aij =

 +1 edge j enters node i
−1 edge j leaves node i
0 otherwise

.

136

We assume the graph is connected: For any pair of distinct nodes i and ĩ, with i 6= ĩ, there is a sequence
of nodes i = i1, . . . , ik = ĩ, with an edge between ip and ip+1, for p = 1, . . . , k − 1. (This means that
between any nodes there is a path, ignoring edge orientation.)

Each node i has a quantity qi of some commodity, as well as a demand di for the commodity. (These
are typically nonnegative, but this won’t matter here.) We assume that

∑n
i=1 qi =

∑n
i=1 di, i.e., the

total quantity available equals the total demand.

We will ship an amount sj along each edge j. This can be positive or negative: sj > 0 means that we
ship the amount |sj | in the direction of the edge orientation; sj < 0 just means that we ship the amount
|sj | in the direction opposite to the edge orientation. After shipment, the quantity of commodity at
node i is equal to the original amount there (i.e., qi) plus any amount shipped in from neighboring
nodes, minus any amount shipped out from node i. We denote the post-shipment quantity at node i
as q̃i.

(a) Ability to match supply and demand. Explain why there always exists a shipment vector s ∈ Rm

which results in q̃ = d, i.e., perfect matching of supply and demand at each node. You can refer
to any concepts and results from the class, and you must limit your argument to one page.

Hint: First characterize N (AT).

(b) Least-squares matching of supply and demand. Explain how to find a shipment vector s that
achieves q̃ = d, and minimizes

∑m
j=1 s

2
j . You can use any concepts from the class. If your method

involves matrix inversion (and we’re not saying it must), you’ll need to justify that the inverses
exist.

16.4 Smallest matrix with given row and column sums. Explain how to find the matrix A ∈ Rm×n that
minimizes

J =

m∑
i=1

n∑
j=1

A2
ij ,

subject to the constraints

n∑
j=1

Aij = ri, i = 1, . . . ,m,

m∑
i=1

Aij = cj , j = 1, . . . , n.

Here, ri (which give the rows sums) are given, as are cj (which give the column sums). You can assume
that

∑m
i=1 ri =

∑n
j=1 cj ; if this doesn’t hold, there is no A that can satisfy the constraints. Using

matrix notation, the objective can be written as J = Tr(ATA), and the constraints are

A1 = r, AT1 = c,

where 1 denotes a vector (of appropriate size in each case) with all components one. The data r ∈ Rm

and c ∈ Rn must satisfy 1T r = 1T c. Explain your method in the general case. If you can give a nice
formula for the optimal A, do so. In addition, carry out your method for the specific data

r =


30
18
26
22
14
34

 , c =



24
20
16
8

28
32
4

12


,

with m = 6 and n = 8. (Entries in A do not have to be integers.)

137

16.5 Condition number. Show that κ(A) = 1 if and only if A is a multiple of an orthogonal matrix. Thus
the best conditioned matrices are precisely (scaled) orthogonal matrices.

16.6 Tightness of the condition number sensitivity bound. Suppose A is invertible, Ax = y, and A(x+δx) =
y + δy. In the lecture notes we showed that ‖δx‖/‖x‖ ≤ κ(A)‖δy‖/‖y‖. Show that this bound is
not conservative, i.e., there are x, y, δx, and δy such that equality holds. Conclusion: the bound on
relative error can be taken on, if the data x is in a particularly unlucky direction and the data error
δx is in (another) unlucky direction.

16.7 Sensitivity to errors in A. This problem concerns the relative error incurred in solving a set of linear
equations when there are errors in the matrix A (as opposed to error in the data vector b). Suppose
A is invertible, Ax = b, and (A+ δA)(x+ δx) = b. Show that ‖δx‖/‖x+ δx‖ ≤ κ(A)‖δA‖/‖A‖.

16.8 Minimum and maximum RMS gain of an FIR filter. Consider an FIR filter with impulse response

h1 = 1, h2 = 0.6, h3 = 0.2, h4 = −0.2, h5 = −0.1.

We’ll consider inputs of length 50 (i.e., input signal that are zero for t > 50), so the output will have
length (up to) 54, since the FIR filter has length 5. Let u ∈ R50 denote the input signal, and y ∈ R54

denote the resulting output signal. The RMS gain of the filter for a signal u is defined as

g =

1√
54
‖y‖

1√
50
‖u‖

,

which is the ratio of the RMS value of the output to the RMS value of the input. Obviously, the gain
g depends on the input signal.

(a) Find the maximum RMS gain gmax of the FIR filter, i.e., the largest value g can have. Plot the
corresponding input signal whose RMS gain is gmax.

(b) Find the minimum RMS gain gmin of the FIR filter, i.e., the smallest value g can have. Plot the
corresponding input signal whose RMS gain is gmin.

(c) Plot the magnitude of the transfer function of the FIR filter, i.e., |H(ejΩ)|, where

H(ejΩ) =

5∑
k=1

hke
−jkΩ.

Find the maximum and minimum absolute values of the transfer function, and the frequencies
at which they are attained. Compare to the results from parts a and b. Hint: To plot the
magnitude of the transfer function, you may want to use the freqz matlab command. Make sure
you understand what freqz does (using help freqz, for example).

(d) (This part is for fun.) Make a conjecture about the maximum and minimum singular values of a
Toeplitz matrix, and the associated left and right singular vectors.

16.9 Detecting linear relations. Suppose we have N measurements y1, . . . , yN of a vector signal x1, . . . , xN ∈
Rn:

yi = xi + di, i = 1, . . . , N.

Here di is some small measurement or sensor noise. We hypothesize that there is a linear relation
among the components of the vector signal x, i.e., there is a nonzero vector q such that qTxi = 0,
i = 1, . . . , N . The geometric interpretation is that all of the vectors xi lie in the hyperplane qTx = 0.
We will assume that ‖q‖ = 1, which does not affect the linear relation. Even if the xi’s do lie in a
hyperplane qTx = 0, our measurements yi will not; we will have qT yi = qT di. These numbers are
small, assuming the measurement noise is small. So the problem of determing whether or not there is

138

a linear relation among the components of the vectors xi comes down to finding out whether or not
there is a unit-norm vector q such that qT yi, i = 1, . . . , N , are all small. We can view this problem
geometrically as well. Assuming that the xi’s all lie in the hyperplane qTx = 0, and the di’s are small,
the yi’s will all lie close to the hyperplane. Thus a scatter plot of the yi’s will reveal a sort of flat cloud,
concentrated near the hyperplane qTx = 0. Indeed, for any z and ‖q‖ = 1, |qT z| is the distance from
the vector z to the hyperplane qTx = 0. So we seek a vector q, ‖q‖ = 1, such that all the measurements
y1, . . . , yN lie close to the hyperplane qTx = 0 (that is, qT yi are all small). How can we determine if
there is such a vector, and what is its value? We define the following normalized measure:

ρ =

√√√√ 1

N

N∑
i=1

(qT yi)2

/√√√√ 1

N

N∑
i=1

‖yi‖2.

This measure is simply the ratio between the root mean square distance of the vectors to the hyperplane
qTx = 0 and the root mean square length of the vectors. If ρ is small, it means that the measurements
lie close to the hyperplane qTx = 0. Obviously, ρ depends on q. Here is the problem: explain how to
find the minimum value of ρ over all unit-norm vectors q, and the unit-norm vector q that achieves
this minimum, given the data set y1, . . . , yN .

16.10 Stability conditions for the distributed congestion control scheme. We consider the congestion con-
trol scheme in problem 3, and will use the notation from that problem. In this problem, we study
the dynamics and convergence properties of the rate adjustment scheme. To simplify things, we’ll
assume that the route matrix R is skinny and full rank. You can also assume that α > 0. Let
x̄ls = (RTR)−1RTT target denote the least-squares approximate solution of the (over-determined) equa-
tions Rx ≈ T target. (The source rates given by x̄ls minimize the sum of the squares of the congestion
measures on all paths.)

(a) Find the conditions on the update parameter α under which the rate adjustment scheme converges
to x̄ls, no matter what the initial source rate is.

(b) Find the value of α that results in the fastest possible asymptotic convergence of the rate adjust-
ment algorithm. Find the associated asymptotic convergence rate. We define the convergence
rate as the smallest number c for which ‖x(t)− x̄ls‖ ≤ act holds for all trajectories and all t (the
constant a can depend on the trajectory).

You can give your solutions in terms of any of the concepts we have studied, e.g., matrix exponential,
eigenvalues, singular values, condition number, and so on. Your answers can, of course, depend on R,
T target, and x̄ls. If your answer doesn’t depend on some of these (or even all of them) be sure to point
this out. We’ll take points off if you give a solution that is correct, but not as simple as it can be.

16.11 Consider the system ẋ = Ax with

A =


0.3132 0.3566 0.2545 0.2579 0.2063
−0.0897 0.2913 0.1888 0.4392 0.1470

0.0845 0.2433 −0.5888 −0.0407 0.1744
0.2478 −0.1875 0.2233 0.3126 −0.6711
0.1744 0.2315 −0.1004 −0.2111 0.0428

 .

(a) Find the initial state x(0) ∈ R5 satisfying ‖x(0)‖ = 1 such that ‖x(3)‖ is maximum. In other
words, find an initial condition of unit norm that produces the largest state at t = 3.

(b) Find the initial state x(0) ∈ R5 satisfying ‖x(0)‖ = 1 such that ‖x(3)‖ is minimum.

To save you the trouble of typing in the matrix A, you can find it on the web page in the file
max min init state.m.

139

16.12 Regularization and SVD. Let A ∈ Rn×n be full rank, with SVD

A =

n∑
i=1

σiuiv
T
i .

(We consider the square, full rank case just for simplicity; it’s not too hard to consider the general
nonsquare, non-full rank case.) Recall that the regularized approximate solution of Ax = y is defined
as the vector xreg ∈ Rn that minimizes the function

‖Ax− y‖2 + µ‖x‖2,

where µ > 0 is the regularization parameter. The regularized solution is a linear function of y, so it
can be expressed as xreg = By where B ∈ Rn×n.

(a) Express the SVD of B in terms of the SVD of A. To be more specific, let

B =

n∑
i=1

σ̃iũiṽ
T
i

denote the SVD of B. Express σ̃i, ũi, ṽi, for i = 1, . . . , n, in terms of σi, ui, vi, i = 1, . . . , n (and,
possibly, µ). Recall the convention that σ̃1 ≥ · · · ≥ σ̃n.

(b) Find the norm of B. Give your answer in terms of the SVD of A (and µ).

(c) Find the worst-case relative inversion error, defined as

max
y 6=0

‖ABy − y‖
‖y‖

.

Give your answer in terms of the SVD of A (and µ).

16.13 Optimal binary signalling. We consider a communication system given by

y(t) = Au(t) + v(t), t = 0, 1,

Here

• u(t) ∈ Rn is the transmitted (vector) signal at time t

• y(t) ∈ Rm is the received (vector) signal at time t

• v(t) ∈ Rm is noise at time t

• t = 0, 1, . . . is the (discrete) time

Note that the system has no memory: y(t) depends only on u(t). For the noise, we assume that
‖v(t)‖ < Vmax. Other than this maximum value for the norm, we know nothing about the noise (for
example, we do not assume it is random). We consider binary signalling, which means that at each
time t, the transmitter sends one of two signals, i.e., we have either u(t) = s1 ∈ Rn or u(t) = s2 ∈ Rn.
The receiver then guesses which of the two signals was sent, based on y(t). The process of guessing
which signal was sent, based on the received signal y(t), is called decoding. In this problem we are only
interested in the case when the communication is completely reliable, which means that the receiver’s
estimate of which signal was sent is always correct, no matter what v(t) is (provided ‖v(t)‖ < Vmax, of
course). Intuition suggests that this is possible when Vmax is small enough.

(a) Your job is to design the signal constellation, i.e., the vectors s1 ∈ Rn and s2 ∈ Rn, and the
associated (reliable) decoding algorithm used by the receiver. Your signal constellation should
minimize the maximum transmitter power, i.e.,

Pmax = max{‖s1‖, ‖s2‖}.

You must describe:

140

• your analysis of this problem,

• how you come up with s1 and s2,

• the exact decoding algorithm used,

• how you know that the decoding algorithm is reliable, i.e., the receiver’s guess of which signal
was sent is always correct.

(b) The file opt_bin_data.m contains the matrix A and the scalar Vmax. Using your findings from
part 1, determine the optimal signal constellation.

16.14 Some input optimization problems. In this problem we consider the system x(t+ 1) = Ax(t) +Bu(t),
with

A =


1 0 0 0
1 1 0 0
0 1 1 0
1 0 0 0

 , B =


0 1
0 1
1 0
0 0

 , x(0) =


1
0
−1

1

 .
(a) Least-norm input to steer state to zero in minimum time. Find the minimum T , Tmin, such that

x(T) = 0 is possible. Among all (u(0), u(1), . . . u(Tmin − 1)) that steer x(0) to x(Tmin) = 0, find
the one of minimum norm, i.e., the one that minimizes

JTmin
= ‖u(0)‖2 + · · ·+ ‖u(Tmin − 1)‖2.

Give the minimum value of JTmin
achieved.

(b) Least-norm input to achieve ‖x(10)‖ ≤ 0.1. In lecture we worked out the least-norm input that
drives the state exactly to zero at t = 10. Suppose instead we only require the state to be small
at t = 10, for example, ‖x(10)‖ ≤ 0.1. Find u(0), u(1), . . . , u(9) that minimize

J9 = ‖u(0)‖2 + · · ·+ ‖u(9)‖2

subject to the condition ‖x(10)‖ ≤ 0.1. Give the value of J9 achieved by your input.

16.15 Determining the number of signal sources. The signal transmitted by n sources is measured at m
receivers. The signal transmitted by each of the sources at sampling period k, for k = 1, . . . , p, is
denoted by an n-vector x(k) ∈ Rn. The gain from the j-th source to the i-th receiver is denoted by
aij ∈ R. The signal measured at the receivers is then

y(k) = Ax(k) + v(k), k = 1, . . . , p,

where v(k) ∈ Rm is a vector of sensor noises, and A ∈ Rm×n is the matrix of source to receiver gains.
However, we do not know the gains aij , nor the transmitted signal x(k), nor even the number of sources
present n. We only have the following additional a priori information:

• We expect the number of sources to be less than the number of receivers (i.e., n < m, so that A
is skinny);

• A is full-rank and well-conditioned;

• All sources have roughly the same average power, the signal x(k) is unpredictable, and the source
signals are unrelated to each other; Hence, given enough samples (i.e., p large) the vectors x(k)
will ‘point in all directions’;

• The sensor noise v(k) is small relative to the received signal Ax(k).

Here’s the question:

(a) You are given a large number of vectors of sensor measurements y(k) ∈ Rm, k = 1, . . . , p. How
would you estimate the number of sources, n? Be sure to clearly describe your proposed method
for determining n, and to explain when and why it works.

141

(b) Try your method on the signals given in the file num_sources.json. Running this script will
define the variables:

• m, the number of receivers;

• p, the number of signal samples;

• Y, the receiver sensor measurements, an array of size m by p (the k-th column of Y is y(k).)

What can you say about the number of signal sources present?

Note: Our problem description and assumptions are not precise. An important part of this problem
is to explain your method, and clarify the assumptions.

16.16 The EE263 search engine. In this problem we examine how linear algebra and low-rank approxima-
tions can be used to find matches to a search query in a set of documents. Let’s assume we have
four documents: A, B, C, and D. We want to search these documents for three terms: piano, violin,
and drum. We know that:
in A, the word piano appears 4 times, violin 3 times, and drum 1 time;
in B, the word piano appears 6 times, violin 1 time, and drum 0 times;
in C, the word piano appears 7 time, violin 4 times, and drum 39 times; and
in D, the word piano appears 0 times, violin 0 times, and drum 5 times.
We can tabulate this as follows:

A B C D
piano 4 6 7 0
violin 3 1 4 0
drum 1 0 39 5

This information is used to form a term-by-document matrix A, where Aij specifies the frequency of
the ith term in the jth document, i.e.,

A =

 4 6 7 0
3 1 4 0
1 0 39 5

 .
Now let q be a query vector, with a non-zero entry for each term. The query vector expresses a criterion
by which to select a document. Typically, q will have 1 in the entries corresponding to the words we
want to search for, and 0 in all other entries (but other weighting schemes are possible.) A simple
measure of how relevant document j is to the query is given by the inner product of the jth column of
A with q:

aTj q.

However, this criterion is biased towards large documents. For instance, a query for piano (q = [1 0 0]T)
by this criterion would return document C as most relevant, even though document B (and even A)
is probably much more relevant. For this reason, we use the inner product normalized by the norm of
the vectors,

aTj q

‖aj‖ ‖q‖
.

Note that our criterion for measuring how well a document matches the query is now the cosine of the
angle between the document and query vectors. Since all entries are non-negative, the cosine is in [0, 1]
(and the angle is in [−π/2, π/2].) Define Ã and q̃ as normalized versions of A and q (A is normalized
column-wise, i.e., each column is divided by its norm.) Then,

c = ÃT q̃

is a column vector that gives a measure of the relevance of each document to the query. And now,
the question. In the file term_by_doc.m you are given m search terms, n documents, and the cor-
responding term-by-document matrix A ∈ Rm×n. (They were obtained randomly from Stanford’s

142

Portfolio collection of internal documents.) The variables term and document are lists of strings. The
string term{i} contains the ith word. Each document is specified by its URL, i.e., if you point your
web browser to the URL specified by the string document{j} you can inspect the contents of the jth
document. The matrix entry A(i,j) specifies how many times term i appears in document j.

(a) Compute Ã, the normalized term-by-document matrix. Compute and plot the singular values of
Ã.

(b) Perform a query for the word students (i = 53) on Ã. What are the 5 top results?

(c) We will now consider low-rank approximations of Ã, that is

Âr = min
Â, rank(Â)≤r

‖Ã− Â‖.

Compute Â32, Â16, Â8, and Â4. Perform a query for the word students on these matrices.
Comment on the results.

(d) Are there advantages of using low-rank approximations over using the full-rank matrix? (You
can assume that a very large number of searches will be performed before the term-by-document
matrix is updated.)

Note: Variations and extensions of this idea are actually used in commercial search engines (although
the details are closely guarded secrets . . .) Issues in real search engines include the fact that m and
n are enormous and change with time. These methods are very interesting because they can recover
documents that don’t include the term searched for. For example, a search for automobile could retrieve
a document with no mention of automobile, but many references to cars (can you give a justification
for this?) For this reason, this approach is sometimes called latent semantic indexing. Matlab hints:
You may find the command sort useful. It sorts a vector in ascending order, and can also return a
vector with the original indexes of the sorted elements. Here’s a sample code that sorts the vector c in
descending order, and prints the URL of the top document and its corresponding cj .

[c,j]=sort(-c);

c=-c;

disp(document{j(1)})

disp(c(1))

16.17 Condition number and angles between columns. Suppose A ∈ Rn×n has columns a1, . . . , an ∈ Rn, each
of which has unit norm:

A = [a1 a2 · · · an], ‖ai‖ = 1, i = 1, . . . , n.

Suppose that two of the columns have an angle less than 10◦ between them, i.e., aTk al ≥ cos 10◦. Show
that κ(A) ≥ 10, where κ denotes the condition number. (If A is singular, we take κ(A) = ∞, and
so κ(A) ≥ 10 holds.) Interpretation: If the columns were orthogonal, i.e., 6 (ai, aj) = 90◦ for i 6= j,
i, j = 1, . . . , n, then A would be an orthogonal matrix, and therefore its condition number would be
one (which is the smallest a condition number can be). At the other extreme, if two columns are the
same (i.e., have zero angle between them), the matrix is singular, and the condition number is infinite.
Intuition suggests that if some pair of columns has a small angle, such as 10◦, then the condition
number must be large. (Although in many applications, a condition number of 10 is not considered
large.)

16.18 Analysis and optimization of a communication network. A communication network is modeled as a set
of m directed links connecting nodes. There are n routes in the network. A route is a path, along one

143

or more links in the network, from a source node to a destination node. In this problem, the routes are
fixed, and are described by an m× n route-link matrix A, defined as

Aij =

{
1 route j passes through link i
0 otherwise.

Over each route we have a nonnegative flow, measured in (say) bits per second. We denote the flow
along route j as fj , and we call f ∈ Rn the flow vector. The traffic on a link i, denoted ti, is the sum
of the flows on all routes passing through link i. The vector t ∈ Rm is called the traffic vector. handle.
We’re

Each link has an associated nonnegative delay, measured in (say) seconds. We denote the delay for
link i as di, and refer to d ∈ Rm as the link delay vector. The latency on a route j, denoted lj , is the
sum of the delays along each link constituting the route, i.e., the time it takes for bits entering the
source to emerge at the destination. The vector l ∈ Rn is the route latency vector.

The total number of bits in the network at an instant in time is given by B = fT l = tT d.

(a) Worst-case flows and delays. Suppose the flows and link delays satisfy

(1/n)

n∑
j=1

f2
j ≤ F 2, (1/m)

m∑
i=1

d2
i ≤ D2,

where F and D are given. What is the maximum possible number of bits in the network? What
values of f and d achieve this maximum value? (For this problem you can ignore the constraint
that the flows and delays must be nonnegative. It turns out, however, that the worst-case flows
and delays can always be chosen to be nonnegative.)

(b) Utility maximization. For a flow fj , the network operator derives income at a rate pjfj , where
pj is the price per unit flow on route j. The network operator’s total rate of income is thus∑n
j=1 pjfj . (The route prices are known and positive.)

The network operator is charged at a rate citi for having traffic ti on link i, where ci is the cost
per unit of traffic on link i. The total charge rate for link traffic is

∑m
i=1 tici. (The link costs are

known and positive.) The net income rate (or utility) to the network operator is therefore

Unet =

n∑
j=1

pjfj −
m∑
i=1

citi.

Find the flow vector f that maximizes the operator’s net income rate, subject to the constraint
that each fj is between 0 and Fmax, where Fmax is a given positive maximum flow value.

16.19 A heuristic for MAXCUT. Consider a graph with n nodes and m edges, with the nodes labeled 1, . . . , n
and the edges labeled 1, . . . ,m. We partition the nodes into two groups, B and C, i.e., B ∩ C = ∅,
B∪C = {1, . . . , n}. We define the number of cuts associated with this partition as the number of edges
between pairs of nodes when one of the nodes is in B and the other is in C. A famous problem, called
the MAXCUT problem, involves choosing a partition (i.e., B and C) that maximizes the number of
cuts for a given graph. For any partition, the number of cuts can be no more than m. If the number
of cuts is m, nodes in group B connect only to nodes in group C and the graph is bipartite.

The MAXCUT problem has many applications. We describe one here, although you do not need it to
solve this problem. Suppose we have a communication system that operates with a two-phase clock.
During periods t = 0, 2, 4, . . ., each node in group B transmits data to nodes in group C that it is
connected to; during periods t = 1, 3, 5, . . ., each node in group C transmits to the nodes in group B
that it is connected to. The number of cuts, then, is exactly the number of successful transmissions

144

that can occur in a two-period cycle. The MAXCUT problem is to assign nodes to the two groups so
as to maximize the overall efficiency of communication.

It turns out that the MAXCUT problem is hard to solve exactly, at least if we don’t want to resort
to an exhaustive search over all, or most of, the 2n−1 possible partitions. In this problem we explore
a sophisticated heuristic method for finding a good (if not the best) partition in a way that scales to
large graphs.

We will encode the partition as a vector x ∈ Rn, with xi ∈ {−1, 1}. The associated partition has xi = 1
for i ∈ B and xi = −1 for i ∈ C. We describe the graph by its node adjacency matrix A ∈ Rn×n C),
with

Aij =

{
1 there is an edge between node i and node j
0 otherwise

Note that A is symmetric and Aii = 0 (since we do not have self-loops in our graph).

(a) Find a symmetric matrix P , with Pii = 0 for i = 1, . . . , n, and a constant d, for which xTPx+ d
is the number of cuts encoded by any partitioning vector x. Explain how to calculate P and d
from A. Of course, P and d cannot depend on x.

The MAXCUT problem can now be stated as the optimization problem

maximize xTPx+ d
subject to x2

i = 1, i = 1, . . . , n,

with variable x ∈ Rn.

(b) A famous heuristic for approximately solving MAXCUT is to replace the n constraints x2
i = 1,

i = 1, . . . , n, with a single constraint
∑n
i=1 x

2
i = n, creating the so-called relaxed problem

maximize xTPx+ d
subject to

∑n
i=1 x

2
i = n.

Explain how to solve this relaxed problem (even if you could not solve part (a)).

Let x? be a solution to the relaxed problem. We generate our candidate partition with xi =
sign(x?i). (This means that xi = 1 if x?i ≥ 0, and xi = −1 if x?i < 0.) really

Remark: We can give a geometric interpretation of the relaxed problem, which will also explain
why it’s called relaxed. The constraints in the problem in part (a), that x2

i = 1, require x to lie
on the vertices of the unit hypercube. In the relaxed problem, the constraint set is the unit ball of
unit radius. Because this constraint set is larger than the original constraint set (i.e., it includes
it), we say the constraints have been relaxed.

(c) Run the MAXCUT heuristic described in part (b) on the data given in max_cut_data.json. How
many cuts does your partition yield?

A simple alternative to MAXCUT is to generate a large number of random partitions, using the
random partition that maximizes the number of cuts as an approximate solution. Carry out
this method with 1000 random partitions generated by x = sign(rand(n,1)-0.5). What is the
largest number of cuts obtained by these random partitions?

Note: There are many other heuristics for approximately solving the MAXCUT problem. However,
we are not interested in them. In particular, please do not submit any other method for approximately
solving MAXCUT.

16.20 Simultaneously estimating student ability and exercise difficulty. Each of n students takes an exam that
contains m questions. Student j receives (nonnegative) grade Gij on question i. One simple model

for predicting the grades is to estimate Gij ≈ Ĝij = aj/di, where aj is a (nonnegative) number that
gives the ability of student j, and di is a (positive) number that gives the difficulty of exam question i.

145

Given a particular model, we could simultaneously scale the student abilities and the exam difficulties
by any positive number, without affecting Ĝij . Thus, to ensure a unique model, we will normalize the
exam question difficulties di, so that the mean exam question difficulty across the m questions is 1.

In this problem, you are given a complete set of grades (i.e., the matrix G ∈ Rm×n). Your task is
to find a set of nonnegative student abilities, and a set of positive, normalized question difficulties, so
that Gij ≈ Ĝij . In particular, choose your model to minimize the RMS error, J ,

J =

 1

mn

m∑
i=1

n∑
j=1

(
Gij − Ĝij

)2

1/2

.

This can be compared to the RMS value of the grades, 1

mn

m∑
i=1

n∑
j=1

G2
ij

1/2

.

(a) Explain how to solve this problem, using any concepts from EE263. If your method is approximate,
or not guaranteed to find the global minimum value of J , say so. If carrying out your method
requires some rank or other conditions to hold, say so.

Note: You do not have to concern yourself with the requirement that aj are nonnegative and di
are positive. You can just assume this works out, or is easily corrected.

(b) Carry out your method on the data found in grade_data.json. Give the optimal value of J , and
also express it as a fraction of the RMS value of the grades. Give the difficulties of the 7 problems
on the exam.

16.21 Angle between two subspaces. The angle between two nonzero vectors v and w in Rn is defined as

6 (v, w) = cos−1

(
vTw

‖v‖‖w‖

)
,

where we take cos−1(a) as being between 0 and π. We define the angle between a nonzero vector
v ∈ Rn and a (nonzero) subspace W ⊆ Rn as

6 (v,W) = min
w∈W, w 6=0

6 (v, w).

Thus, 6 (v,W) = 10◦ means that the smallest angle between v and any vector in W is 10◦. If v ∈ W,
we have 6 (v,W) = 0.

Finally, we define the angle between two nonzero subspaces V and W as

6 (V,W) = max

{
max

v∈V, v 6=0
6 (v,W), max

w∈W, w 6=0
6 (w,V)

}
.

This angle is zero if and only if the two subspaces are equal. If 6 (V,W) = 10◦, say, it means that
either there is a vector in V whose minimum angle to any vector of W is 10◦, or there is a vector in W
whose minimum angle to any vector of V is 10◦.

(a) Suppose you are given two matrices A ∈ Rn×r, B ∈ Rn×r, each of rank r. Let V = range(A)
and W = range(B). Explain how you could find or compute 6 (V,W). You can use any of the
concepts in the class, e.g., least-squares, QR factorization, pseudo-inverse, norm, SVD, Jordan
form, etc.

(b) Carry out your method for the matrices found in angsubdata.m. Give the numerical value for
6 (range(A), range(B)).

146

16.22 Extracting the faintest signal. An n-vector valued signal, x(t) ∈ Rn, is defined for t = 1, . . . , T .
We’ll refer to its ith component, xi(t), for t = 1, . . . , T , as the ith scalar signal. The scalar signals
x1, . . . , xn−1 have an RMS value substantially larger than xn. In other words, xn is the faintest scalar
signal. It is also the signal of interest for this problem. We will assume that the scalar signals x1, . . . , xn
are unrelated to each other, and so are nearly uncorrelated (i.e., nearly orthogonal).

We aren’t given the vector signal x(t), but we are given a linear transformation of it,

y(t) = Ax(t), t = 1, . . . , T,

where A ∈ Rn×n is invertible. If we knew A, we could easily recover the original signal (and therefore
also the faintest scalar signal xn(t)), using x(t) = A−1y(t), t = 1, . . . , T . But, sadly, we don’t know A.

Here is a heuristic method for guessing xn(t). We will form our estimate as

x̂n(t) = wT y(t), t = 1, . . . , T,

where w ∈ Rn is a vector of weights. Note that if w were chosen so that wTA = αeTn , with α 6= 0 a
constant, then we would have x̂n(t) = αxn(t), i.e., a perfect reconstruction except for the scale factor
α.

Now, the important part of our heuristic: we choose w to minimize the RMS value of x̂n, subject to
‖w‖ = 1. Very roughly, one idea behind the heuristic is that, in general, wT y is a linear combination
of the scalar signals x1, . . . , xn. If the linear combination has a small norm, that’s because the linear
combination is ‘rich in xn’, and has only a small amount of energy contributed by x1, . . . , xn−1. That,
in fact, is exactly what we want. In any case, you don’t need to worry about why the heuristic works
(or doesn’t work)—it’s the method you are going to use in this problem.

(a) Explain how to find a w that minimizes the RMS value of x̂n, using concepts from the class (e.g.,
range, rank, least-squares, QR factorization, eigenvalues, singular values, and so on).

(b) Carry out your method on the problem instance with n = 4, T = 26000, described in the matlab
file faintestdata.m. This file will define an n × T matrix Y , where the tth column of Y is the
vector y(t). The file will also define n and T . Submit your code, and give us the optimal weight
vector w ∈ R4 you find, along with the associated RMS value of x̂n.

The following is not needed to solve the problem. The signals are actually audio tracks, each 3.25
seconds long and sampled at 8 kHz. The matlab file faintestaudio.m contains commands to
generate wave files of the linear combinations y1, . . . , y4, and a wave file of your estimate x̂n. You
are welcome to generate and listen to these files.

16.23 One of these vectors doesn’t fit. The file one_of_these_data.m contains an n ×m matrix X, whose
columns we denote as x(1), . . . , x(m) ∈ Rn. The columns are (vector) data collected in some application.
The ordering of the vectors isn’t relevant; in other words, permuting the columns would make no
difference.

One of the vectors doesn’t fit with the others.

Find the index of the vector that doesn’t fit. Carefully explain your method, and especially, in what way
the vector you’ve chosen doesn’t fit with the others. Your explanation can be algebraic, or geometric
(or both), but it should be simple to state, and involve ideas and methods from this course.

Since the question is vague, clarity in your explanation of your method and approach is very important.
In particular, we want a nice, short explanation. We will not read a long, complicated, or rambling
explanation.

16.24 Extracting RC values from delay data. We consider a CMOS digital gate that drives a load consisting
of interconnect wires that connect to the inputs of other gates. To find the delay of the gate plus
its load, we have to solve a complex, nonlinear ordinary differential equation that takes into account

147

circuit nonlinearities, parasitic capacitances, and so on. This can be done using a circuit simulator
such as SPICE. A very simple approximation of the delay can be obtained by modeling the gate as
a simple resistor with resistance R, and the load as a simple capacitor with capacitance C. In this
simple model, the delay of the gate has the form ηRC, where η is a constant that depends on the
precise definition of delay used. (One common choice is η = 0.69, which is based on the time it takes
the voltage of a simple RC circuit to decay to 1/2 its original value.) This simple RC delay model can
be used for design, or approximate (but very fast) analysis. We address the question of determining a
value of R for each of a set of gates, and a value of C for each of a set of loads, given accurate delay
data (obtained by simulation) for each combination of a gate driving a load. We have n digital gates
labeled 1, . . . , n, and m loads labeled 1, . . . ,m. By simulation, we obtain the (accurate) delay Dij for
gate j driving load i. (D is given as an m×n matrix.) The goal is to find positive numbers R1, . . . , Rn
and C1, . . . , Cm so that Dij ≈ RjCi. (For simplicity we’ll take η = 1 in our delay model.) Finding good
values of parameters for a simple model, given accurate data, is sometimes called parameter extraction.
In this problem, we are extracting the gate resistances Rj and the load capacitances Ci, given accurate
delay data Dij (obtained by simulation). If we scale all resistances by a constant α > 0, and scale all
capacitances by 1/α, the approximate delays RjCi don’t change. To remove this ambiguity, we will fix
C1 = 1, i.e., we will take the first load as our ‘unit load’. Finally we get to the problem.

(a) Minimum mean-square absolute error. Explain how to find Rmsa
1 , . . . , Rmsa

n and Cmsa
1 , . . . , Cmsa

m

(positive, with Cmsa
1 = 1) that minimize the mean-square absolute error,

Emsa =
1

mn

m∑
i=1

n∑
j=1

(Dij −RjCi)2
.

(b) Minimum mean-square logarithmic error. Explain how to find Rmsl
1 , . . . , Rmsl

n and Cmsl
1 , . . . , Cmsl

m

(positive, with Cmsl
1 = 1) that minimize the mean-square logarithmic error,

Emsl =
1

mn

m∑
i=1

n∑
j=1

(logDij − log(RjCi))
2
.

(The logarithm here is base e, but it doesn’t really matter.)

(c) Find Rmsa
1 , . . . , Rmsa

n and Cmsa
1 , . . . , Cmsa

m , as well as Rmsl
1 , . . . , Rmsl

n and Cmsl
1 , . . . , Cmsl

m , for the
particular delay data given in rc_values_data.m from the course web site. Also write down your
minimum Emsa and Emsl values.

Please note the following:

• You do not need to know anything about digital circuits to solve this problem.

• The two criteria (absolute and logarithmic) are clearly close, so we expect the extracted Rs and
Cs to be similar in the two cases. But they are not the same.

• In this problem we are more interested in your approach and method than the final numerical
results. We will take points off if your method is not the best possible one, even if your answer is
numerically close to the correct one.

16.25 Some attributes of a stable system. This problem concerns the autonomous linear dynamical system
ẋ = Ax, with x(t) ∈ Rn, which we assume is stable (i.e., all trajectories x(t) converge to zero as
t→∞).

• Peaking factor. We define the peaking factor of the system as the largest possible value of
‖x(t+ τ)‖/‖x(t)‖, for any nonzero trajectory x, any t, and any τ ≥ 0.

• Halving time. We define the halving time of the system as the smallest τ ≥ 0 for which ‖x(t+τ)‖ ≤
‖x(t)‖/2 always holds, for all trajectories.

148

• Minimum decorrelation time. We define the minimum decorrelation time as the smallest possible
τ ≥ 0 for which x(t + τ) ⊥ x(t) can hold for some (nonzero) trajectory x. This is the smallest
possible time the state can rotate 90◦. (If x(t + τ) ⊥ x(t) never occurs for τ ≥ 0, then the
minimum decorrelation time is +∞.)

(a) Explain how to find each of these quantities. Your method can involve some numerical simulation,
such as a search over a (fine) grid of values of τ . You can assume that you do not need to search
over τ greater than τmax, where τmax is known.

(b) Carry out your method for the specific case with

A =


−1 −5 0 0

5 0 0 0
0.4 −1 −0.6 −6

1 0 6 0

 ,
with τmax = 10. We’d like all quantities to an accuracy of around 0.01.

16.26 System with level alarms. A linear dynamical system evolves according to

ẋ(t) = Ax(t), y(t) = Cx(t),

where x(t) ∈ Rn is the state and y(t) ∈ Rp is the output at time t. You know A and C, but not x(t)
or y(t), except as described below.

The output is monitored using level alarms with thresholds. These tell us when yi(t) ≥ li, where li is
the threshold level for output component i. (The threshold levels li are known.)

You have alarm data over the time interval [0, T], of the following format. For each output component
i = 1, . . . , p, you are given the (possibly empty) set of the intervals in [0, T] over which yi(t) ≥ li.
We now consider the specific problem with

A =

 −0.9 −4.2 −2
1 0 0
0 1 0

 , C =

[
1 0 −1
0 1 1

]
,

T = 10, l1 = l2 = 1, and alarm intervals given below:

y1 : [0, 1.0195], [3.0288, 4.0863], [6.4176, 6.9723]

y2 : [0.9210, 1.9402].

The problem is to find an upper bound on how large ‖x(T)‖ can be, while being consistent with
the given alarm data. We allow +∞ as an answer here; this means that there are trajectories with
arbitrarily large values of ‖x(T)‖ that are consistent with the given alarm data. (We will deduct points
for solutions that give bounds that are correct, but higher than they need to be.)

Give your bound on ‖x(T)‖. If it is +∞, explain. Of course, you must explain your method.

149

Lecture 18 – Controllability and state transfer

18.1 This problem has two parts that are mostly independent.

(a) Actuator placement (10 masses).

y10

m

y1 y2 y3

d

m m m

k

d d

k k

u2

Ten masses are connected in series by springs and light dampers, as shown in the figure above.
The mass positions (deviation from rest) are denoted by y1, . . . , y10. The masses, spring constants,
and damping constants are all identical and given by

m = 1, k = 1, d = 0.01.

An actuator is used to apply a force u(t) to one of the masses. In the figure, the actuator is shown
located on the second mass from the left, but it could also have been placed in any of the other
nine masses. Use state x = [yT ẏT]T .

i. For which of the ten possible actuator placements is the system controllable?

ii. You are given the following design specification: any state should be reachable without the
need for very large actuation forces. Where would you place the actuator? (Since the design
specification is somewhat vague, you should clearly explain and justify your decision.)

Note: To avoid error propagation in solutions, use the matlab script spring_series.m, available
at the course web site, which constructs the dynamics and input matrices A and B.

(b) Optimal control (4 masses). Consider now a system with the same characteristics, but with only
four masses. Four unit masses are connected in series by springs and light dampers (with k = 1,
and d = 0.01.) A force actuator is placed on the third mass from the left. As before, use state
x = [yT ẏT]T .

i. Is the system controllable?

ii. You are given the initial state of the system, x(0) = e8 = [0 · · · 0 1]T , and asked to drive the
state to as close to zero as possible at time tf = 20 (i.e., a velocity disturbance in the fourth
mass is to be attenuated as much as possible in 20 seconds.) In other words, you are to choose
an input u(t), t ∈ [0, tf], that minimizes ‖x(tf)‖2. Furthermore, from among all inputs that
achieve the minimum ‖x(tf)‖2, we want the smallest one, i.e., the one for which the energy

Eu =

∫ tf

0

u(t)2 dt

is minimized. Your answer should include (i) a plot of the minimizing input uopt(t); (ii) the
corresponding energy Eu,min; and (iii) the resulting ‖x(tf)‖2. You must explain and justify
how you obtained your solution. Notes:

• We will be happy with an approximate solution (by using, say, an input that is piece-wise
constant in small intervals.) You may want to discretize the system, in which case we
suggest you use 100 discretization intervals (or more.)

• You may (or may not) want to use the result

A

∫ h

0

eAtB dt =
(
eAh − I

)
B.

150

18.2 Horizon selection. Consider the (scalar input) system

x(t+ 1) =

 0 0 0.8
1 0 0
0 1 0

x(t) +

 1
0
0

u(t), x(0) = 0.

For N ≥ 3 let EN (z) denote the minimum input energy, i.e., the minimum value of

u(0)2 + · · ·+ u(N − 1)2,

required to reach x(N) = z. Let E∞(z) denote the minimum energy required to reach the state
x(N) = z, without fixing the final time N , i.e., E∞(z) = limN→∞EN (z). Find the minimum value
of N such that EN (z) ≤ 1.1E∞(z) for all z. (This is the shortest horizon that requires no more than
10% more control energy than infinite horizon control, for any final state). Hint: the matlab command
P=dlyap(A,W) computes the solution of the Lyapunov equation APAT +W = P .

18.3 Minimum energy required to steer the state to zero. Consider a controllable discrete-time system
x(t+1) = Ax(t)+Bu(t), x(0) = x0. Let E(x0) denote the minimum energy required to drive the state
to zero, i.e.

E(x0) = min

{
t−1∑
τ=0

‖u(τ)‖2 | x(t) = 0

}
.

An engineer argues as follows:

This problem is like the minimum energy reachability problem, but ‘turned backwards in
time’ since here we steer the state from a given state to zero, and in the reachability problem
we steer the state from zero to a given state. The system z(t+ 1) = A−1z(t)−A−1Bv(t) is
the same as the given one, except time is running backwards. Therefore E(x0) is the same
as the minimum energy required for z to reach x0 (a formula for which can be found in the
lecture notes).

Either justify or refute the engineer’s statement. You can assume that A is invertible.

18.4 Minimum energy inputs with coasting. We consider the controllable system ẋ = Ax + Bu, x(0) = 0,
where A ∈ Rn×n and B ∈ Rn×m. You are to determine an input u that results in x(tf) = xdes, where
tf and xdes are given. You are also given ta, where 0 < ta ≤ tf , and have the constraint that u(t) = 0
for t > ta. Roughly speaking, you are allowed to apply a (nonzero) input u during the ‘controlled
portion’ of the trajectory, i.e., from t = 0 until t = ta; from t = ta until the final time tf , the system
‘coasts’ or ‘drifts’ with u(t) = 0. Among all u that satisfy these specifications, uln will denote the one
that minimizes the ‘energy’ ∫ ta

0

‖u(t)‖2 dt.

(a) Give an explicit formula for uln(t).

(b) Now suppose that ta is increased (but still less than tf). An engineer asserts that the minimum
energy required will decrease. Another engineer disagrees, pointing out that the final time has
not changed. Who is right? Justify your answer. (It is possible that neither is right.)

(c) Matlab exercise. Consider the mechanical system on page 11-9 of the notes. Let xdes = [1 0 −
1 0 0 0]T and tf = 6. Plot the minimum energy required as a function of ta, for 0 < ta < tf .
You can use a simple method to numerically approximate any integrals you encounter. You must
explain what you are doing; just submitting some code and a plot is not enough.

18.5 Some True/False questions. By ‘True’, of course, we mean that the statement holds for all values of
the matrices, vectors, dimensions, etc., mentioned in the statement. ‘False’ means that the statement
fails to hold in at least one case.

151

(a) Suppose A ∈ Rn×n and p(s) = sn + a1s
n−1 + · · · + an is polynomial of degree n, with leading

coefficient one, that satisfies p(A) = 0. Then p is the characteristic polynomial of A.

(b) Suppose x : R+ → Rn is a trajectory of the linear dynamical system ẋ = Ax, which is stable.
Then for any t ≥ 0, we have ‖x(t)‖ ≤ ‖x(0)‖.

(c) Let A ∈ Rp×q and let ai ∈ Rp denote the ith column of A. Then we have

‖A‖ ≥ max
i=1,...,q

‖ai‖.

(d) Suppose the two linear dynamical systems ẋ = Fx and ż = Gz, where F, G ∈ Rn×n, are both
stable. Then the linear dynamical system ẇ = (F +G)w is stable.

(e) Suppose P and Q are symmetric n× n matrices, and let {v1, v2, . . . , vn} be a basis for Rn. Then
if we have vTi Pvi ≥ vTi Qvi for i = 1, . . . , n, we must have P ≥ Q.

(f) Let A ∈ Rn×n, and suppose v ∈ Rn, v 6= 0, satisfies vTA = λvT , where λ ∈ R. Let x : R+ → Rn

be any trajectory of the linear dynamical system ẋ = Ax. Then at least one of the following
statements hold:

• vTx(t) ≥ vTx(0) for all t ≥ 0

• vTx(t) ≤ vTx(0) for all t ≥ 0

(g) Suppose A ∈ Rp×q is fat (i.e., p ≤ q) and full rank, and B ∈ Rq×r is skinny (i.e., q ≥ r) and full
rank. Then AB is full rank.

(h) Suppose A ∈ Rn×n has all eigenvalues equal to zero, and the nullspace of A is the same as the
nullspace of A2. Then A = 0.

(i) Consider the discrete-time linear dynamical system x(t + 1) = Ax(t) + Bu(t), where A ∈ Rn×n.
Suppose there is an input that steers the state from a particular initial state xinit at time t = 0
to a particular final state xfinal at time t = T , where T > n. Then there is an input that steers
the state from xinit at time t = 0 to xfinal at time t = n.

18.6 Alternating input reachability. We consider a linear dynamical system with n states and 2 inputs,

x(t+ 1) = Ax(t) +Bu(t), t = 0, 1, . . . ,

where A ∈ Rn×n, B = [b1 b2] ∈ Rn×2, x(t) ∈ Rn is the state, and u(t) = (u1(t), u2(t)) ∈ R2 is the
input, at time t. We assume that x(0) = 0.

We say that an input sequence u(0), u(1), . . . is an alternating input sequence if u1(t) = 0 for t =
1, 3, 5, . . . and u2(t) = 0 for t = 0, 2, 4, . . ., i.e.,

u(0) =

[
u1(0)

0

]
, u(1) =

[
0

u2(1)

]
, u(2) =

[
u1(2)

0

]
, u(3) =

[
0

u2(3)

]
,

In contrast, we’ll refer to an input sequence as a standard input sequence if both inputs can be nonzero
at each time t.

We are given a target state xdes ∈ Rn, and a time horizon N ≥ n.

(a) Suppose we can find an alternating input sequence so that x(2N) = xdes. Can we always find a
standard input sequence so that x(N) = xdes? In other words, if we can drive the state to xdes

in 2N steps with an alternating input sequence, can we always find an input sequence that uses
both inputs at each time step, and drives the state to xdes in N steps?

(b) Is the converse true? Suppose we can find a standard input sequence so that x(N) = xdes. Can
we always find an alternating input sequence so that x(2N) = xdes?

152

By always, we mean for any A, b1, b2, xdes, and N ≥ n. So, for example, if your answer is ‘Yes’ for
part (a), you are saying that for any A, b1, b2, xdes and N ≥ n, if we can find an alternating input
sequence so that x(2N) = xdes, then we can also find a standard input sequence so that x(N) = xdes.

In your solution for parts (a) and (b) you should first state your answer, which must be either ‘Yes’
or ‘No’. If your answer is ‘Yes’, you must provide a justification, and if your answer is ‘No’, you must
provide a counterexample (and you must explain clearly why it is a counterexample). Your solution
must be short; we won’t read more than one page. You may use any of the concepts from the class
(e.g., eigenvalues, pseudo-inverse, singular values, controllability, etc.).

153

Lecture 19 – Observability and state estimation

19.1 Sensor selection and observer design. Consider the system ẋ = Ax, y = Cx, with

A =


1 0 0 0
1 1 0 0
0 1 1 0
1 0 0 0

 , C =

 1 1 0 0
0 1 1 0
0 0 0 1

 .
(This problem concerns observer design so we’ve simplified things by not even including an input.) (The
matrix A is the same as in problem 14, just to save you typing; there is no other connection between
the problems.) We consider observers that (exactly and instantaneously) reconstruct the state from
the output and its derivatives. Such observers have the form

x(t) = F0y(t) + F1
dy

dt
(t) + · · ·+ Fk

dky

dtk
(t),

where F0, . . . , Fk are matrices that specify the observer. (Of course we require this formula to hold for
any trajectory of the system and any t, i.e., the observer has to work!) Consider an observer defined
by F0, . . . , Fk. We say the degree of the observer is the largest j such that Fj 6= 0. The degree gives
the highest derivative of y used to reconstruct the state. If the ith columns of F0, . . . , Fk are all zero,
then the observer doesn’t use the ith sensor signal yi(t) to reconstruct the state. We say the observer
uses or requires the sensor i if at least one of the ith columns of F0, . . . , Fk is nonzero.

(a) What is the minimum number of sensors required for such an observer? List all combinations
(i.e., sets) of sensors, of this minimum number, for which there is an observer using only these
sensors.

(b) What is the minimum degree observer? List all combinations of sensors for which an observer of
this minimum degree can be found.

154

