
Homework (B0B17MTB)

Problem Set 2

October 21, 2019

1 Assignment

Problem 2-A Implement a function called problem2A, which evaluates Euclidean distances be-
tween two sets of points, finds a sphere with centre at the middle-point between two
most distant points and calculate its radius. Finally, verify if all points are inside
this sphere.

Imagine two sets of points, pm ∈ P, m ∈ {1, . . . ,M} and rn ∈ R, n ∈ {1, . . . , N}.
They are represented by two matrices, P ∈ RM×3 and R ∈ RN×3, serving as the
sole inputs into the function. The function calculates Euclidean distance between
each pair of points, taken one by one from the sets P and R, as

dmn = |pm − rn| , D = [dmn] ∈ RM×N . (1)

The distance matrix D is returned as the first output variable. Finally, the function
evaluates the center c of the sphere given as

c =
1

2

(
pmc

+ rnc

)
(2)

with boundary points pmc
and rnc found such that

mc, nc : a =
1

2
max
m,n
{D} , (3)

i.e., two points with the largest distance between them. Check at the end if all points
from both sets are within this sphere and return allPtsIn = true if the answer
is yes and allPtsIn = false if contrary is the case. To recap, the header of the
function Problem2 A reads

function [D, a, c, allPtsIn] = problem2A(P, R)

For the testing purposes, you may use equilateral tetrahedron with unitary sides

P = R =


−1/2 0 0
1/2 0 0

0
√

3/2 0

0
√

3/6
√

2/3

 (4)

with the results

D =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , (5)

a = 1/2, and c = [0 0 0]. Notice that the center point c is, in general, not uniquely
defined here, see Figure A. Any valid solution is therefore accepted.

A hint: Check out the function find(). You may use it with a syntax like

[iRow, iCol] = find(A, 1, 'first'); % the first non-zero entry of A is found

(2 points)

1

p1

p2 p3

p4

x
y

z

Figure A: An example of point set P = R forming a unitary tetrahedron. The distances between
all m 6= n points is dmn = 1. The radius of a sphere touching the most distant points is a = 1/2
and its center non-unique, position c = [0 0 0] shown here as red circle.

Problem 2-B Create a function called problem2B which can find all Pythagorean triplets up to the
number N and calculates how many these triplets are. The header of the function
reads

function [R, I] = problem2B(N)

where R is the matrix of Pythagorean triplets, described in details below, I is the
number of triplets found, and N is the input variable described below. The output
variable R is a matrix R ∈ ZI×4 with the following structure

R =



n1 a1 b1 c1
...

...
...

...
ni ai bi ci
...

...
...

...
nI aI bI cI

 , (6)

where
ni = ai + bi + ci. (7)

A Pythagorean triplet is a set of three natural numbers, ai < bi < ci, for which,

c2i = a2i + b2i . (8)

A well-known example of a Pythagorean triplet is a1 = 3, b1 = 4, and c1 = 5 with
n1 = 12. As a sanity check, see the first two correct lines of the output variable R

R =

 12 3 4 5
24 6 8 10
...

...
...

...

 . (9)

This problem is freely inspired by the Project Euler, Problem 9.

A hint: Check out the function find(). You may use it with a syntax like

[iRow, iCol] = find(A, 1, 'first'); % the first non-zero entry of A is found

(3 points)

2 Instructions

Complete all the assignments till

• October 27th, 23:59 (Monday’s group),

• October 29th, 23:59 (Wednesday’s group).

2

https://en.wikipedia.org/wiki/Pythagorean_triple
https://projecteuler.net/problem=9

Fill your solutions into m-files called Problem2 {A-B} in the Homework checker and start validation
via homework2.p. You can start the validator as many times as you want. Once all the solutions
are valid or you are satisfied with your result, choose option (“0: GENERATE SUBMISSION
CODE”), and attach the generated file HW2token.txt to the BRUTE system system. Optionally,
you can upload the m-files as well.

All the problems shall be solved by the students individually (notice the BRUTE system has a
duplicity checker). Contact matlab@elmag.org with any questions.

3

https://cw.felk.cvut.cz/brute
matlab@elmag.org

	Assignment
	Instructions

