B0B17MTB – Matlab

Part #12

Miloslav Čapek

miloslav.capek@fel.cvut.cz

Viktor Adler, Pavel Valtr, Filip Kozák

Department of Electromagnetic Field B2-634, Prague

Data types struct

Import / export in Matlab

Time functions

warning, error, try-catch

categorical, table

13.05.2019 16:31

B0B17MTB: Part #12

2

Structured variable, struct

- data are stored in variables that are grouped in one structure
- concept is similar to OOP (without features of OOP)
- Ex. inventory:

```
>> stock(1).id = 1;
>> stock(1).thing = 'fridge';
>> stock(1).price = 750;
>> stock(1).units = 'USD';
>> stock(2).id = 2;
>> stock(2).thing = 'Bowmore_12yr';
>> stock(2).price = 1100;
>> stock(2).units = 'CZK';
>> stock
```

• or:

```
>> stock = struct('id', {1, 2}, 'thing', ...
        {'fridge', 'Bowmore_12yr'}, ...
        'price', {'750', '1100'}, 'units', {'USD', 'CZK'})
```


- new field creation
 - direct command

>> stock(1).newField = 'test';

• field name as a string

>> setfield(stock(1), 'newField', 'test')

>> stock(1).('newField2') = 'test2'

- setting field value
 - direct command

>> stock(1).id = 3;

• field name and value

>> stock(1).('id') = 3;

13.05.2019 16:31

B0B17MTB: Part #12

4

13.05.2019 16:31

5

Functions for work with structures

list of all fields of structure – fi

value of given field

- does given field exist?
- >: >:
- is given variable a structure?

>> isstruct(stock)

B0B17MTB: Part #12 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

% = 1

>> fieldnames(stock)

>> id2 = stock(2).id >> id2 = stock(2).('id') >> id2 = getfield(stock(2), 'id')

'thing'

'price' 'units' 'test'

• delete field

```
>> rmfield(stock, 'id')
```

- more complex indexing of structures
 - structure may have more levels

>> stock(1).subsection(1).order = 1
>> stock(1).subsection(2).order = 2

• it is possible to combine cells with structures

```
>> stock(1).subsection(3).check = [1; 2]
>> K{1} = stock;
```

• certain fields can be indexed using name stored as a string

>> K{1}(1).subsection(3).('check')(2)

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #12

13.05.2019 16:31

- getting data from fields of structure array
 - comma-separated list (doc Comma-Separated Lists)

>> stock.id

• concatenate values to vector

```
>> allIDs = [stock.id] % row vector
>> allIDs = horzcat(stock.id) % row vector
>> allIDs = vertcat(stock.id) % column vector
```

• concatenate strings to cell array

```
>> allThings = [stock.thing] % useless
>> allThings = vertcat(stock.thing) % error
>> allThings = {stock.thing} % cell array
```

• create multiple variables

```
>> allThings = {stock.thing} % cell array
>> [th1, th2] = allThings{:}
```


Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #12

13.05.2019 16:31

- set data to fields of structure array
 - for cycle

```
IDs = [2 3];
for iStruct = 1:length(stock)
    stock(iStruct).id = IDs(iStruct);
end
```

• utilizing comma-separated list

IDs = {2 3};
[stock.id] = IDs{:};

• creating multidimensional structure

>> stock(2, 2).thing = 'multi dim.'

>> allThings = reshape({stock.thing}, size(stock)).'

13.05.2019 16:31

B0B17MTB: Part #12

Typical application of structure

- export of data to Matlab
- all complex internal variables (exceptions, errors, ...)
- callbackdata (event) wit GUI (up to R2014a)

Data Import and export

- Matlab supports wide range of file formats
 - mat, txt, xls, jpeg, bmp, png, wav, avi and others, see
 - Matlab → Data Import and Analysis→ Data Import and Export → Supported File Formats for Import and Export
 - packages exist for work with, for instance, dwg and similar formats
 - it is possible to read a general file containing ASCII characters as well

- in this course we shall see how to
 - read data from file, read image, read files line by line
 - store in file, write in file
 - import from Excel
 - export to Excel

Data Import and export

- following can be applied to whole group of formats
 - old Matlab: use File \rightarrow Import Data
 - new Matlab: Home \rightarrow Import Data
 - command uiimport + following interface
 - file drag and drop to Workspace window

- for storing in various formats see following functions
 - save, dlmwrite, xlswrite, imwrite, audiowrite, ...

Import Data

Import from Excel

- use function xlsread to import
 - alternativelly, use aforementioned function uiimport

B0B17MTB: Part #12

Import from Excel

420 s

- read all numerical data from Excel file on course's webpage
 - thereafter plot dependence of values in column values on values in column experiment
 - verify the size of data read

Export to Excel

- function xlswrite is used to export data from Matlab to Excel
 - example: write data fx in file file.xlsx in sheet Sheet1 in line 1 starting with column A

```
>> fx = 1:10;
>> xlswrite('file.xlsx', fx, 1, 'A1');
```

• example: write data fx in file file2.xlsx in sheet NewSheet in column B starting with line 1

```
>> fx = 1:10;
>> xlswrite('file2.xlsx', fx', 'NewSheet', 'B1');
```


Export to Excel

- 420 s
- evaluate function $f(x) = \cos(x) + \frac{\cosh(x)}{10}$ on the interval $x \in \langle -\pi, \pi \rangle$ with step 0.01
 - resulting variables *x* and *f*(*x*) write to file Excel_file.xlsx in 1st sheet, variable *x* is in column A, variable *f*(*x*) is in column B
 - verify whether data written in the sheet are correct

Reading binary data from file #1

- we will be using what we learned earlier (while, str2double, ...)
 - on top of that the file has to be opened (fopen) and closed afterwards (fclose)

	mesh_ESA_MM1.mphtxt – Poznamkovy blok	그비즈
	Soubor Úpravy Formát Zobrazení Nápověda	
	# Created by COMSOL Multiphysics Fri Mar 02 11:01:50 7	2012 🔺
	# Major & minor version	
	01	
<pre>l>> fid = fopen('mesh ESA MM1.mphtxt');</pre>	1 # number of tags # Tags	
	5 mesh1	
	1 # number of types	
	3 obj	
	# Object 0	
allocation	001	
	4 Mesh # class 1 # version	
While ~ ieoi (iid)	2 # sdim	
	582 # number of mesh points	
reading	o # Towest mesh porne maex	
	# Mesh point coordinates	
ena	-29.026952084054649 -59.944178719018062	
	-29.646316956312276 -60.771791637998383	
	-30.683/43602002195 -57.676249325079674	
	-27.2029 -62.079900000000002	
$\sum falaaa (f; d)$	-33.896359289708265 -54.176695485383718	
	-25.383404358653227 -63.919926225404311	
	-33.458385114852234 -52.796711381085423	
	-34.999153324157433 -51.80071460414333	
	-23.445600304781188 -65.623485347122269 -23.953504271829065 -66.499689982652143	
	-34.560243940778037 -50.213222794271751	
	-35.9356385991709 -49.354414512942171	
	-21.792585584283096 -68.13013389417813	
		_

B0B17MTB: Part #12

Program flow

Reading binary data from file #2

📕 mesh_ESA_MN	11.mphtxt – Pozr	námkový blok					×
<u>S</u> oubor Úpr <u>a</u> vy <u>F</u>	<u>F</u> ormát <u>Z</u> obrazení	Nápo <u>v</u> ěda					
⊭ Created by	COMSOL Mult	iphysics F	ri Mar	02 11	:01:50	2012	
# Major & min 0 1 1 # number of # Tags 5 mesh1 1 # number of # Types 3 obj	nor version f tags f types						
# (Object O						
0 0 1 4 Mesh # clas 1 # version 2 # sdim 582 # number 0 # lowest me	ss of mesh poi esh point in	nts dex					
<pre># Mesh point -31.213568250 -29.026952084 -20.6463169516 -30.683743600 -32.632495910 -27.2029 -62. -27.938200000 -32.163731351 -33.896359283 -25.383404350 -26.011752099 -33.458385114 -34.999153324 -23.445600300 -23.953504271 -34.560243940 -35.935638599 -21.403152541</pre>	coordinates 094773 -58. 4054649 -59. 6512276 -60. 2002195 -57. 07990000000 -62. 07990000000 -62. 1590201 -55. 9708265 -54. 8653227 -63. 973866 -64. 4852234 -52. 4157433 -51. 1829065 -66. 0778037 -50. 91709 -49.35 162013 -67.1	6729173987 9441787190 7717916379 6762493250 4710645038 0002 7577000000 2891745814 1766954853 9199262254 7018205934 7018205934 7967113810 8007146041 4996899826 2132227942 414512942 8121167527	49505 18062 98383 79674 27378 00007 60287 83718 04311 38754 85423 4333 22269 52143 71751 171 7069				

>> size(Data)

ans =

582 2

B0B17MTB: Part #12

13.05.2019 16:31

17

Writing to a file #1

• we try to write variable Data from a file data.mat where the first line contains a header

>> fid = fopen('newMesh.txt');

```
for k = 1:size(Data,1)
    fprintf(fid, '%3.8f %3.8f\r\n', Data(k, :));
end
```

>> fclose(fid);

13.05.2019 16:31

18

B0B17MTB: Part #12 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Program flow

Writing to a file #2

B0B17MTB: Part #12

13.05.2019 16:31

Warning message in Matlab – warning

• warning message in Matlab is displayed using function warning

```
a = 1e3;
if a > 1e2
    warning('Input coefficient has to be smaller than 10!');
end
```

- the function is used by Matlab, therefore it is possible to temporarily deactivate selected internal warnings
- function lastwarn returns last warning activated
- it is advantageous to use function warndlg with GUI
 - but it is just a statement really, see last lecture

```
f = warndlg('This is a notice...', ...
'Trial warning', 'modal');
```


Error message in Matlab – error

• error message (in red color) is displayed using function error

```
a = 100;
if a > 10
    error('Input has to be equal of smaller than 10!');
end
```

- terminates program execution
- identifier can be attached

error('Input has to be equal of smaller than 10!');

- it is advantageous to use function errordlg with GUI
 - but it is just a statement really, see last lecture

```
f = errordlg('An error occurred there and
there...', 'Error message', 'modal');
```


13.05.2019 16:31

21

B0B17MTB: Part #12 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Catching errors #1

- used particularly in the cases where unexpected event can occur
 - in general operations with files (reading, saving)
 - evaluation of encapsulated code (function eval, assignin)
 - working with variables, properties of which (e.g. size) is not yet known
 - evaluation of code related to an object that may not exist anymore (GUI)
 - ...

```
try
   % regular piece of code
catch
   % code that is evaluated if the regular code failed
end
```

• it is possible (and is recommended) to use an identifier of the error

Catching errors #2

- error identifier can be used to decide what to do with the error
 - example: in the case of multiplication error caused by different size of vectors, it is possible to display a warning
 - also, the error can be later raised again either by evoking the last error occurred or as a new error with its own identifier

```
try
    A = [1 1 1];
    B = [1 1];
    c = A.*B;
catch exc
    if strcmp(exc.identifier, 'MATLAB:dimagree')
        disp('Mind the vector size!');
    end
    % throw(exc); % local stack shown
    % rethrow(exc); % complete stack shown
end
```


Time functions in Matlab

• there is a whole variety of time functions but just one of them is enough to measure time duration of a function

Function	Description
tic - toc	measure length of time interval between expressions tic and toc
clock	return six element vector [year month day hour minute seconds]
date	return date in format dd-mmm-yyyy, variable is of type char (text)
etime	return time interval between t1 and t2, etime (t2, t1)
cputime	return total CPU time in seconds used by Matlab application
now	return current date and time as an integer
timeit	measure time required to run function (new from R2013b, originally from fileexchange)

B0B17MTB: Part #12

Time functions in Matlab – an example

- what is the way to measure how long it takes for a program to be executed?
 - more time consuming code × very fast code

- other options which one is the best?
- Mathworks recommends functions tic-toc mainly for \geq P4@hyperthreading

t0a = tic;	t0b = clock;	t0c = cputime;
<pre>fft(x);</pre>	<pre>fft(x);</pre>	<pre>fft(x);</pre>
toc(t0a)	etime(clock, t0b)	e = cputime - t0c

13.05.2019 16:31

B0B17MTB: Part #12

25

13.05.2019 16:31

Time functions in Matlab – specialties

Program flow

- conversions between individual ways of displaying date in Matlab
 - datavec, datanum, datastr
 - this is how to transform date into standard form

>> datevec(now)

• day of week:

>> weekday(date)

- caution, US way of counting days (Saturday ~ last day of the week)
- last day of month:

>> eomday(2014, 1:12)

• calendar

>> calendar

• caution, last day of month is Saturday again!

Time functions in Matlab

420 s

Try to implement selected time functions into your project \bullet

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

B0B17MTB: Part #12

13.05.2019 16:31

Program flow

Time series data

having data as a function of time, it is possible to display the data as a time series
 >> d = datetime(2015, 9, 25, 0:23, 0, 0);

• for more details see:

Matlab \rightarrow Language Fundamentals \rightarrow Data Types \rightarrow Dates and Time

B0B17MTB: Part #12

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

13.05.2019 16:31

Time data

- time entries created using datetime are not of class double, but of class datetime
 - it is possible to specify time zones/difference
 - all functions support vectorizing

```
>> t = datetime
>> t.Format
>> % nonsense but possible:
>> t.Format = 'd-h'
```

```
>> t1 = datetime('22/09/15 17:00:00');
>> t2 = datetime('24/12/15 19:00:00');
>> t = t1:days(7):t2
```

• it is possible to create and work with time intervals as well (class duration)

```
>> tInt = days(5) + hours(10)
>> 2*tInt - days(4) + 4*minutes(3)
```

'yyyy-MM-dd'	2014-04-19
'dd/MM/yyyy'	19/04/2014
'dd.MM.yyyy'	19.04.2014
'MMMM d, yyyy'	April 19, 2014
and other	

13.05.2019 16:31

B0B17MTB: Part #12

Elapsed time is 0.005992 seconds.

Elapsed time is 1.007364 seconds.

Elapsed time is 2.006762 seconds. 28-Sep-2015 08:54:20

Elapsed time is 3.006012 seconds.

28-Sep-2015 08:54:18

28-Sep-2015 08:54:19

Class timer

- if it is desired to cyclically repeat an action, it is possible to use class timer
 - better possibilities compared to infinite loop
- great advantage is the fact that timer creates its own thread
 - it is possible to keep on working with Matlab on launching, or alternatively launch another timer
- example: time display + data in 1 sec interval:

```
>> tm = timer; tic; % create an instance of timer
>> tm.ExecutionMode = 'fixedRate';
>> tm.TimerFcn = 'disp(datetime); toc;';
>> start(tm); % start the timer
```

- it is possible to keep on Working with Matlab even as timer is still running
- it is not possible to terminate the thread using CTRL+C, use:

>> stop(tm); % stop the timer

28-Sep-2015 08:54:21 Elapsed time is 4.006452 seconds. 28-Sep-2015 08:54:22 Elapsed time is 5.007007 seconds. 28-Sep-2015 08:54:23 Elapsed time is 6.006462 seconds. 28-Sep-2015 08:54:24 Elapsed time is 7.006668 seconds. 28-Sep-2015 08:54:25

for more information see >> doc timer

13.05.2019 16:31

30

B0B17MTB: Part #12 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Class timer - Example

```
myLine = line([0 0], [0 0]); view(45, 45); box on;
xlim([-1 1]); ylim([-1 1]); zlim([-1 1]);
thisTimer = timer; % create timer
thisTimer.StartDelay = 1; % wait 1 second
thisTimer.Period = 0.1; % repeat action after 0.1s
thisTimer.ExecutionMode = 'fixedSpacing'; % spacing
thisTimer.UserData = 0; % data which we need...
thisTimer.TimerFcn = {@timer_update, myLine, pi/16};
start(thisTimer); % start the timer...
fghndl = gcf; % stop timer if the figure is closed
fghndl.CloseRequestFcn = 'stop(thisTimer); closereq;';
```

function timer update(myTimer, ~, myLine, dPhi)

```
myLine.XData = [1 -1]*sin(myTimer.UserData);
myLine.YData = [1 -1]*cos(myTimer.UserData);
drawnow('update'); % update graphics
```

```
myTimer.UserData = myTimer.UserData + dPhi;
```


Layout of your own instance of timer

420 s

• Create a timer that displays, with 0.5 sec interval, "*XX / Hello world*.", where *XX* is the order of the message being displayed. Timer will be terminated after reaching 15 displays.

Summary of is* functions

- asterisk stands for whole range of functions
 - return value is logical (true / false)
- selection of the interesting ones (some even have multiple parameters)

Function	Description
ischar	determine whether item is character array
isempty	determine whether array is empty
isfinite	determine whether elements are of finite size
isnan	determine whether elements are NaN
isletter	determine whether elements are alphabetical letters (a-z, A-Z)
islogical	determine whether input is logical array
isnumeric	determine whether elements are numeric values (real, complex scalars, matrices, vectors, integers)
isreal	determine whether input is real array
isstudent	determine whether Matlabu version is Student Version?
and others	see >> doc is*

B0B17MTB: Part #12 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Function is*

420 s

- try following examples
 - consider in what situation they could prove useful...

```
>> A = 'pi5 7';
>> B = pi;
>> C = [Inf NaN 5.31 true false pi];
>> D = [[] []];
>> ischar(A), ischar(B),
>> isstudent, isunix, computer,
>> isnan(A)
>> isnan(C)
>> ischar(A), ischar(B),
>> isempty(C), isempty(D),
>> isfinite(A), isfinite(C),
>> isletter(A),
>> islogical(C), islogical([true false]),
>> isnumeric(A), isnumeric(C)
```


Data type, categorical arrays

- array of qualitative data with values from finite set of discrete nonnumerical data
 - array of non-numerical values corresponding to a category (e.g. to the category 'mean of transport' correspond following values: scooter, wheelbarrow ...)
 - values can be specified by name (e.g. values 'r', 'g', 'b', they can be an attribute for name 'red', 'green', 'blue')
 - categorical arrays has its own icon in Workspace

Workspace 💿			
Name 🛆	Value	Class	By
{} A	3x3 cell	cell	
🔒 В	3x3 categorical	categorical	

Creation of categorical arrays

• creation of categorical array from an arbitrary array of values (e.g. cell array of strings)

```
>> A = {'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g'} % cell array of strings
>> B = categorical(A) % categorical arrays
>> categories(B) % listing of individual categories
```

• wide range of tools for combining, adding, removing, renaming, arranging,...

>> doc categorical arrays

Advantages of categorical arrays

- more natural arranging of data by names
 - note: as in numerical arrays, logical operator eq (==) is used to compare strings in categorical arrays instead of function strcmp() used with strings
- mathematical arranging of strings
 - setting "size" of string in other than alphabetical manner (e.g. small < medium < large)

```
>> allSizes = {'medium','large','small','small','medium',...
            'large','medium','small'};
>> valueset = {'small','medium','large'};
>> sizeOrd = categorical(allSizes, valueset, 'Ordinal', true);
>> comparison = sizeOrd > fliplr(sizeOrd)
```

- memory is used efficiently to store data
 - data in memory is not stored as string
 - only categories are stored as string in memory

Data type table

- array in form of a table that enables to have columns of various data types and sizes (silimar to cell array)
 - each column has to have the same number of lines (same as matrix)
 - tables have its own icon in Workspace

Workspace (\odot
Name 🛆	Value	Class	Bytes
∎т	5x4 table	table	30

Data types

Creation of table

• created by inserting individual vectors as columns of the table (same length of all vectors has to be observed)

more >> doc tables array

Т =		
	matlabSemester	favoriteDrink
		·
Miloslav	3	beer
Filip	3	milk
Viktor	2	water
Pavel	1	water
Filip Viktor Pavel	3 2 1	milk water water

Advantages of table

- advantageous way of storing data of various data types
- access to data via numerical and name indexing
 - e.g. listing all "Smiths" in the table and display their "age"
- possibility to store metadata in table's properties
 - e.g. for column "age" it is possible to set unit to "year"

tic, toc, clock, date, etime, cputime, now	time functions, measurement of code speed
datevec, weekday, eomday, calendar	time functions (days in week, month, callendat)
warning, error, try-catch	warning, error message, error catching
throw, rethrow	exception issue •
cell, celldisp, cellplot	variable cell (allocation, display)
setfield, fieldnames, getfield, rmfield	structure-related functions
isfield, isstruct	input is array field?, input is struct?
uiimport	Matlab import Wizard •
xlsread, xlswrite	read/write Excel spreadsheet
fopen, feof, fclose, fgetl	file open, test for end-of-file, file close, read line from file •

Thank you!

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors. Document created as part of B0B17MTB course.