B0B17MTB - Matlab

Part \#3

Miloslav Čapek
miloslav.capek@fel.cvut.cz
Viktor Adler, Pavel Valtr, Filip Kozák

Department of Electromagnetic Field
B2-634, Prague
\ldots
:.
:

Learning how to ...

$$
\begin{gathered}
\text { ResTable.datal }(\ldots \\
\text { PsoData. . cond\{crt }\}(\operatorname{spr}, 2), \ldots \\
\text { Indexing } \quad \text { PsoData.cond\{crt }(\operatorname{spr}, 3) \ldots
\end{gathered}
$$

Size and type of data

Output format

Indexing in Matlab

- now we know all the stuff necessary to deal with indexing in Matlab
- mastering indexing is crucial for efficient work with Matlab!!!
- up to now we have been working with entire matrices, quite often we need, however, to access individual elements of matrices
- two ways of accessing matrices / vectors are distinguished
- access using round brackets „() "
- matrix indexing: refers to position of elements in a matrix
- access using square brackets , [] "
- matrix concatenation: refers to element's order in a matrix

Indexing in Matlab

- let's consider following triplet of matrices
- execute individual commands and find out their meaning
- start from inner part of the commands
- note the meaning of the keyword end

Indexing in Matlab

- remember the meaning of end and the usage of colon operator ":"
- try to:
- flip the elements of the vector $\mathbf{N} 1$

- without using fliplr/flipudfunctions
- select only the even columns of $\mathbf{N} 2$

- select only the odd rows of N3

- $2^{\text {nd }}, 4^{\text {th }}$ and $5^{\text {th }}$ column of $\mathbf{N} \mathbf{2}^{\text {'s }}$ $2^{\text {nd }}$ row

- create matrix $\mathbf{A}(4 \times 3)$ containing numbers 1 to 12 (row-wise, from left to right) $\mathrm{a}=$

1	2	3
4	5	6
7	8	9
10	11	12

Indexing in Matlab

- calculate cumulative sum \mathbf{S} of a vector \mathbf{x} consisting of integers from 1 to 20
- search Matlab help to find appropriate function (cumulative sum)

$$
\begin{aligned}
& \mathbf{x}=\left(\begin{array}{llll}
1 & 2 & \ldots & 20
\end{array}\right) \\
& S=\left(\begin{array}{llll}
1 & 1+2 & \ldots & 1+2 \mathrm{~L}+20
\end{array}\right)
\end{aligned}
$$

- calculate cumulative sum \mathbf{L} of even elements of the vector \mathbf{x}
- what is the value of the last element of the vector \mathbf{L} ?

Indexing in Matlab

- which one of the following returns corner elements of a matrix A (10x10)?

```
>> A([1,1], [end,end]) % A.
>> A({[1,1], [1,end], [end,1], [end,end]}) % B.
>> A([1,end], [1,end]) % C.
>> A(1:end, 1:end) % D.
```


Deleting elements of a matrix

- empty matrix is a crucial point for deleting matrix elements

$$
\gg T=[]
$$

- we want to:
- remove $2^{\text {nd }}$ row of matrix \mathbf{A}

```
>> A(2, : ) = []
```

- remove $3^{\text {rd }}$ column of matrix \mathbf{A}

```
>> A(:, 3) = []
```

```
>> A(:, [11 2 5]) = []
```

of matrix \mathbf{A}

Adding and replacing elements of a matrix

- we want to replace:
- $3^{\text {rd }}$ column of matrix \mathbf{A} (of size $\mathbf{M} \times \mathbf{N}$) by a vector \mathbf{x} (length \mathbf{M})

$$
\gg A(:, 3)=x
$$

- $2^{\text {nd }}, 4^{\text {th }}$ a $5^{\text {th }}$ row of matrix \mathbf{A} by three rows of matrice \mathbf{B} (number of columns of both \mathbf{A} and \mathbf{B} is the same)

$$
\gg A\left(\left[\begin{array}{lll}
2 & 4 & 5
\end{array}\right],:\right)=B(1: 3,:)
$$

- we want to swap
- $2^{\text {nd }}$ row of matrix \mathbf{A} and $5^{\text {th }}$ column of matrix \mathbf{B} (number of columns of \mathbf{A} is the same as number of rows of \mathbf{B})

$$
\gg A(2,:)=B(:, 5)
$$

- remember that always the size of matrices have to match!

Deleting, adding and replacing matrices

- which of the following deletes the first and the last column of matrix A (6×6) ?
- create your own matrix and give it a try

- replace the $2^{\text {nd }}, 3^{\text {rd }}$ and $5^{\text {th }}$ row of matrix \mathbf{A} by the first row of matrix \mathbf{B}
- assume the number of columns of matrices \mathbf{A} and \mathbf{B} is the same
- consider the case where \mathbf{B} has more columns than \mathbf{A}
- what happens if \mathbf{B} has less columns than \mathbf{A} ? error is raised, can be modified:

Matrix creation, element replacement

- create following 3D array

$$
\mathbf{M}(:,:, 1)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \mathbf{M}(:,:, 2)=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{M}(:,:, 3)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

- replace elements in the first two rows and columns of the first sheet of the array (i.e. the matrix [10;01]) with NaN elements

Linear indexing

- elements of an array of arbitrary number of dimensions and arbitrary size can be referred to using single index
- indexing takes place along the main dimension (column-wise) than along the secondary dimension (row-wise) etc.

$$
\gg A=\text { magic }(3)
$$

Linear indexing - application

- let's consider following matrix:

```
>> MAT = ones(7);
```

- we set all the red-highlighted elements to zero:

```
```

>> MAT(2:2:end) = 0

```
```

>> MAT(2:2:end) = 0
>> imagesc(MAT);

```
```

>> imagesc(MAT);

```
```


Linear indexing - ind2sub, sub2ind

- ind2 sub: recalculates linear index to subscript corresponding to size and dimension of the matrix

1	4	7
2	5	8
3	6	9

1,1	1,2	1,3
2,1	2,2	2,3
3,1	3,2	3,3

- applicable to an array of arbitrary size and dimension

```
>> ind = 3:6;
>> [rw, col] = ind2sub([3, 3], ind)
% rw = [llllll
% col = [lllll
```

- sub2ind: recalculates subscripts to linear index
- applicable to an array of arbitrary size and dimension

1,1	1,2	1,3				
2,1	2,2	2,3				
3,1	3,2	3,3	\longrightarrow	1	4	7
:---	:---	:---				
2	5	8				
3	6	9				

```
>> ind2 = sub2ind([3, 3], rw, col)
% ind2 = [3 4 5 6]
```


Linear indexing

- for a two-dimensional array, find a formula to calculate linear index from position given by row (row) and col (column)
- check with a matrix A of size 4×4, where
- row $=[2,4,1,2]$
- col $=[1,2,2,4]$
- and therefore
- ind $=[2,8,5,14]$

$$
\begin{aligned}
& \gg A=\operatorname{zeros}(4) ; \\
& >A(:)=(1: 16)
\end{aligned}
$$

Function who, whos

- function who lists all variables in Matlab Workspace
- wide variety of options
- function whos lists the variable names + dimension, size and data type of the variables or displays content of a file
- wide variety of options

```
>> whos('-file',''matlab.mat');
```

```
>> a = 15; b = true;
>> c = 'test'; d = 1 + 5j;
>> who
>> whos
>> Ws = whos;
```


Function what, which, delete

- function what lists names of all Matlab files in the current folder

```
>> Wt = what;
```

- function which is able to localize (in this order)
- .m/.p/Simulink function
- Method of Java class
- Workspace variable
- arbitrary file, if present in the current folder

```
>> which sin
built-in (C:\Program Files\MATLAB\R2013a\toolbox\matlab\elfun\@double\sin) % double method
```

- function delete deletes
- files
- handle objects (e.g. graphical objects)

Functions cd, pwd, dir

- function cd changes current folder
- lists current folder when called without a parameter
- „cd . ." jumps up one directory, „cd /" jumps up to root
- function pwd identifies current folder
- function dir lists current folder content
- for other functions (mkdir, rmdir, ...) see Matlab Help

Function prefdir

- folder containing preferences, history, and layout files

```
>> folder = prefdir
>> cd(folder);
```

- it is recommended to do not edit any file!

Function memory, ver

- function memory displays information on how much memory is available and how much the MATLAB software is currently using

```
>> memory
>> M = memory
```

```
>> memory
Maximum possible array: 4408 MB (4.622e+09 bytes) *
Memory available for all arrays: 4408 MB (4.622e+09 bytes) *
Memory used by MATLAB: 696 MB (7.294e+08 bytes)
Physical Memory (RAM): 3534 MB (3.705e+09 bytes)
* Limited by System Memory (physical + swap file) available.
```

- function ver displays license information
- Matlab version

```
>> ver
>> V = ver
```

- License number
- List of toolboxes and their version
- if you need to know the vesion of Matlab only, use version

```
>> V = version
```

- up to now we have been using basic setup
- Matlab offers number of other options
- use format style
- output format does not change neither the computation accuracy nor the accuracy of stored result (eps, realmax, realmin, ... still apply)

```
style format description
short fixed 4 decimal points are displayed
long 15 decimal points for double accuracy, 7 decimal points for single accuracy
shortE floating-point format (scientific notation)
longE -//-
bank two decimal points only (euro - cents)
    rat Matlab attempts to display the result as a fraction
compact suppressed the display of blank lines
and others note.: omitting setting parameter restors default setup
```


Format of command line output

- try following output format settings
- each format is suitable for different type of problem

```
>> s = [5 1/2 1/3 10*pi sqrt(2)];
>> format long; s
>> format rat; s
>> format bank; s
>> format hex; s
>> format +; s
>> format; s
```

- there exist other formats with slight differences
- check doc format
- later, we will learn how to use formatted conversion into strings (commands sprintf a fprintf)

List of ASCII characters

- ASCII characters used in Matlab
- All characters to be found on EN keyboard

$[$	ALT +91	matrix definition, indexing
$]$	ALT +93	$-/ /-$
$\{$	ALT +123	cell elements indexing
$\}$	ALT +125	$-/ /-$
$@$	ALT +64	handle (symbolic math)
$>$	ALT +62	relation operator
$<$	ALT +60	-//-
\backslash	ALT +92	Matrix left division
।	ALT +124	logical operator OR
$\&$	ALT +38	logical operator AND
\sim	ALT +126	logical operator NOT
\wedge	ALT +94	power

- for more see: http://www.asciitable.com/

Launching external programs

- rarely used
- external programs are launched using the exclamation mark "!"
- the whole line after the "!" is processed as operation system command

```
>> !calc
```

- if you don't want to interrupt execution of Matlab by the launch, add "\&"

```
>> !calc &
>> !notepad notes.txt &
```

- it is possible to run Matlab with several ways

```
>> doc matlab Windows
>> doc matlab UNIX
```


Work with files using the prompt

- try the following
- copy \& paste line by line, observe what happens
- be careful when editing the commands!!!

```
>> mkdir('My_experiment');
>> cd('My_experiment');
>> this_directory = pwd;
>> our_file = 'pathdef.m';
>> our_data = fullfile(matlabroot, 'toolbox', 'local', our_file);
>> copyfile(our_data, this_directory);
>> new_file = 'my_demo.txt';
>> movefile(our_file, new_file);
>> !write my_demo.txt
```


Exercise \#1

- consider signal:

$$
s(t)=\sqrt{2 \pi} \sin \left(2 \omega_{0} t\right)+n(\mu, \sigma), \quad \omega_{0}=\pi,
$$ where the mean and standard deviation of normal distribution n is:

$$
\begin{array}{|l|l}
\mathrm{mu} & \mu=0, \quad \sigma=1 \quad \text { sigma } \\
\hline
\end{array}
$$

- create time dependence of the signal spanning $N=5$ periods of the signal using $V=40$ samples per period
- one period: $T=1: t \in[k T,(k+N) T], k \in \mathbf{Z}^{0}$ (choose k equal for instance to 0)
- the function $n(\mu, \sigma)$ has Matlab syntax:

```
>> n = mu + sigma*randn(1, N*V);
```

```
>> plot(t, s_t);
```


Exercise \#2

- apply threshold function to generated signal from the previous exercise to limit its maximum and minimum value:
- the result is vector $s p _t$
- use functions min and max with two

$$
s_{\mathrm{p}}(t)= \begin{cases}s_{\min } \Leftrightarrow s(t)<s_{\min } & s_{\min }=-\frac{9}{10} \\ s_{\max } \Leftrightarrow s(t)>s_{\max } & \\ s(t) \ldots \text { otherwise } & s_{\max }=\frac{\pi}{2}\end{cases}
$$ input parameters, see Matlab Help for details

- use the following code to check your output:

```
>> close all;
>> plot(t, s_t); hold on;
>> stem(t, sp_t, 'r');
```


Linear indexing

- let's consider following matrix:

```
>> A = magic(4);
```

- use linear indexing so that only the element with the highest value in each row of A was left (all other values set to 0); call the new matrix B

```
>> B = zeros(size(A));
>> [val, col] = max(A, [], 2);
>> B(sub2ind(size(A), 1:4, col.')) = val
```


Discussed functions

who, what, whos, which	information on variables, files, folders		
cd, pwd, dir	change directory, list folder		
memory, ver	available memory information, version of Matlabu and toolboxes		
format, delete	command line display format, delete file $/$ objects	$\quad \bullet$	\bullet
:---	:---		

Exercise \#1

- generate vector containing following sequence

- note the x axis (interval, number of samples)
- split the problem into several parts to be solved separately
- several ways how to solve the problem
- use stem (x) instead of plot (x) for plotting
- try to generate the same signal beginning with zero ...

Exercise \#2

- generate vector containing following sequence
- one of possible solutions:
- or

A Figure 1File Edit View Insert Tools Desktop Window Help									

Exercise \#3

- reflection coeff. S_{11} of a one-port device of impedance Z is given by :

$$
S_{11}=10 \log _{10}\left(\left|\frac{Z-Z_{0}}{Z+Z_{0}}\right|^{2}\right)
$$

where $Z_{0}=50 \Omega$ and $Z=R+j X$.

- calculate and depict the dependence of S_{11} for $R=30 \Omega$ and X on the $<1,10^{3}>$ interval with 100 evenly spaced point in logarithmic scale
- Use the code below and correct errors in the code. Correct solution will be presented during next lecture.

```
>> 500 = Z0;
>> R == 30;
>> X = Logspace(0, 3, 1e2); % reactance vector
>> clear;
>> Z = i*(R + 1i*X); % impedance
>> S11 = 10* log(abs(Z-Z0)./(Z+Z0))^2); % reflection coeff. in dB
>> semilogx(S11, X) % plotting using log. x-axis
```


Exercise \#4

- Correct solution results in the following:

Thank you!

ver. 11.1 (04/03/2019)
Miloslav Čapek, Pavel Valtr
miloslav.capek@fel.cvut.cz
pavel.valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors.

Document created as part of B0B17MTB course.

