A0B17MTB – Matlab

Part #1

Miloslav Čapek

miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field B2-626, Prague

Command Window, Command History

Saving and loading variables

Exercises

A0B17MTB: Part #1 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Data types

Matrices in Matlab

- matrix is a basic data structure in Matlab
- there are following types depending on size :
 - 1×1 (scalar)
 - $M \times 1$, or $1 \times N$ (vector)
 - M×N (matrix)
 - array (multidimensional matrices) $M \times N \times P \times Q \times R \times ...$

- can be complex
- can contain text as well (beware the length)

	m-by-n matrix							
a _{i,j}	n colum	ins 🗾	chang	es				
m				<u>_</u>				
	a _{1,1}	a _{1,2}	a _{1,3}					
c h	a _{2,1}	a _{2,2}	a _{2,3}					
a g	a _{3,1}	a _{3,2}	a _{3,3}					
es		:	:	۰.				
-								

Matrix creation

- following techniques are available:
 - element-by-element entering (suitable for small matrices only)
 - colon notation ,,: " to define elements of a series
 - generation by built-in functions
 - generation of matrices in m-files
 - import and export from/to external files (.mat, .txt, .xls)

Matrix construction element-by-element

- test following commands to construct matrices by element enumeration
 - suitable for small matrices only

>> a1 = -1
>> a2 = [-1] % brackets are redundant

$$a_1 = a_2 = -1$$

$$\mathbf{v}_{1} = \begin{pmatrix} -1 & 0 & 1 \\ 0 \\ 1 \end{pmatrix}$$

$$>> v1 = \begin{bmatrix} -1 & 0 & 1 \\ >> v2 = \begin{bmatrix} -1 & 0 & 1 \\ >> v2 = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ >> M2 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \end{bmatrix}$$

$$>> M3 = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \end{bmatrix}, \quad \mathbf{M}_{2} = \begin{pmatrix} -1 & -2 \\ 0 & 0 \\ 1 & 2 \end{bmatrix}, \quad \mathbf{M}_{3} = \begin{pmatrix} -1 & -2 \\ 0 & 0 \\ 1 & 2 \end{bmatrix},$$

A0B17MTB: Part #1

19.2.2016 17:58

Matrix construction element-by-element

90 s

- construct following matrices:
 - matrix values are defined inside square brackets []
 - semicolon "; " separates individual rows of a matrix

$$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

19.2.2016 17:58

A0B17MTB: Part #1

6

Data types

120 s

• semicolon placed at the end of a command suppresses display of the output in Command Window

• when more than one command on the same line, coma is used to separate each command

• note: it is possible to copy and paste code including ">>"

$$\mathbf{c} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{d} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• "row" vs. "column" vektor

Matrix construction

19.2.2016 17:58

7

A0B17MTB: Part #1
Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Workspace browser

- new variables
- deleting / modification of existing variables
- saving / loading
- size, elements of variables
 - other information can be added
- fast data plotting option

 all operations can be carried out using Matlab functions that we learn later, e.g. min, max, size, length

-+ I R × Image: Stack: Base V Select data to plot Name Value Size Min Max A [-1,1;1,-2] 2x2 -2 1 B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1							
CS Value Size Min Max Name A Value Size Min Max A [-1,1;1,-2] 2x2 -2 1 B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1 A [0;0;1] 3x1 0 1		Worl	kspace			→ 1	□ * ×
CS Value Size Min Max A [-1,1;1,-2] 2x2 -2 1 B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1 Value Size Min Max A [-1,1;1,-2] 2x2 -2 1 Ix1 1 1 D		1	📹 🖢 💺	B Stack: B	ase 🔻 😡	Select data to p	olot 👻
es A [-1,1;1,-2] 2x2 -2 1 B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1 V (0;0;1] V (0;0;1] V (0;0;1) V (Name		/alue	Size	Min	Max
CS B [1,2,3;4,5,6;7,8,9] 3x3 1 9 a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1 V	00	A		[-1,1;1,-2]	2x2	-2	1
a 1 1x1 1 1 b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1 4	5	В	-	1,2,3;4,5,6;7,8,	9] 3x3	1	9
b 5 1x1 5 5 c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1		🕂 a	i	1	1x1	1	1
c [1,0,0] 1x3 0 1 d [0;0;1] 3x1 0 1	/	b 🔡	5	5	1x1	5	5
d [0;0;1] 3x1 0 1		c 🔜	[[1,0,0]	1x3	0	1
12					JA1	Ŭ	
	1	2	3	4	5	6	7
1 2 3 4 5 6 7	-1	1					
1 2 3 4 5 6 7 -1 1 7	1	-2					
1 2 3 4 5 6 7 -1 1 -2							
1 2 3 4 5 6 7 -1 1 -2							
1 2 3 4 5 6 7 -1 1 2 <th2< th=""> 2 2 2</th2<>							
1 2 3 4 5 6 7 -1 1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2							

A0B17MTB: Part #1 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Program flow

Workspace browser

- Workspace now contains variables A, B, a, b, c, d (from previous slides)
 - all variables in the base workspace are displayed
- variable ans contains the last result
 - can be used for calculation
 - overwritten by each command input!

>> 2*2, ans^2

- try to edit variables A, a
 - by a Matlab command directly
 - by change of value in Workspace browser
- try to delete variables B, c

Workspace			(
Name 🛆	Value	Min	Max	
A	[-1 1;1 -2]	-2	1	
B	[1 2 3;4 5 6;7 8 9]	1	9	
🕂 a	1	1	1	
🕂 b	5	5	5	
🕂 с	[100]	0	1	
d	[0;0;1]	0	1	

Basic math operators

- of several types:
 - arithmetic
 - matrix
 - vector
 - relational
 - logical
 - and other (to be mentioned later...)

- other operations using Matlab functions
 - complex conjugate,
 - sum, determinant, square root
 - and hundreds of other functions ...

-	addition	

- subtraction
- * multiplication
- ^ power
- ' transpose
- \land left matrix division
- / right matrix division
- . dot notation

2/19/2016 5:58 PM

Operator Precedence in Matlab

- according to the following table
 - see Matlab \rightarrow Language Fundamentals \rightarrow Operators and Elementary Operations \rightarrow Arithmetic

		1	parentheses	()					
rity		2	transpose, power	T	. '	^	• ^		
high prio		3	unary plus, unary minus, logical negation	+	-	~			
		4	multiplication, division	*	•*	/	\setminus	./	. \
		5	addition, subtraction	+	-				
		6	colon operator	:					
		7	relational operators	<	>	<=	>=	==	~=
er rity		8	logical AND (element-wise)	æ					
		9	logical OR (element-wise)						
prio_		10	logical AND (short-circuit)	& &					
¥		11	logical OR (short-circuit)						

2/19/2016 5:58 PM

...

A0B17MTB: Part #1 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Basic math operators

200 s

- type in following commands
 - zero can be omitted with a decimal number beginning with zero (not recommended!)

>> a3 = -2/4 >> a4 = -0.5 >> a5 = -.5

- what is the difference between a3, a4, a5?
- beware the precedence of operators (we see in the next slides):

>> 3*5*6
>> a1 = 15
>> a2 = 10;
>> a2/a3
>> a2/a3*a4
>> a2/(a3*a4)

- explain the difference between a2/a3*a4 and a2/(a3*a4)
- verify the rules of operator precedence from the previous slide

A0B17MTB: Part #1

19.2.2016 17:58

Lengthy commands in Matlab

120 s

- it is suitable to structure command blocks for clarity:
 - next line: SHIFT+ENTER

>> A = [1 1 1]; B = [2 2 2]; % SHIFT+ENTER C = [2 3 2];

- three dots notation
 - for continuation of the same command on the next line
 - compare results:

A0B17MTB: Part #1

Basic math functions

• math functions in Matlab are generally divided in three groups:

• <u>scalar</u>

- function operates over individual elements of a matrix
- e.g.: sin, sqrt, log, factorial

• <u>vector</u>

- Function operates over individual rows/columns of a matrix
- e.g.: sum, max

• <u>matrix</u>

- function operates over whole matrix
- e.g.: det, trace

Basic math functions #1

600 s

- using Matlab help, calculate following expression: $a\sin^2(\alpha) + a\cos^2(\alpha) a$
 - use numerical values you choose

• verify following logarithmic identity:

$$\log_{10}(a) + \log_{10}(b) - \log_{10}(ab) = 0$$

• find sum of all elements in individual rows of the following matrix

$$\mathbf{T} = \begin{pmatrix} \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ 6 & 7 & 8 & 9 \\ 0.2 & 0.3 & 0.4 & 0.5 \end{pmatrix}$$

A0B17MTB: Part #1 Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

Basic math functions #2

- assume following vectors \mathbf{u}, \mathbf{v} : $\mathbf{u} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$
 - calculate

- uv^T, vu^T,v^Tu, u^Tv,u · v, u × v,
- following functions are needed:
 - transpose of a matrix
 - dot / scalar product
 - cross product
- what is the result of the above mentioned operations?

600 s

wikipedia.org

2/19/2016 5:58 PM

16

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #1

17

A0B17MTB: Part #1

Basic math functions #3

use following code and round the resulting number to:

- (a) nearest integer
- (b) nearest integer greater than r
- (c) nearest integer lower than r
- (d) zero
- note: one of the functions is called round (e) zero with precision of 2 decimal digits
- find remainder after r is divided by 0.1
 - modulus vs. remainder after division

420 s

Matrix division in Matlab

- matrix operation
- two cases are distinguished: <u>left</u> division ("\") and <u>right</u> division ("/")
 - A is invertible (regular), b is row (column) vector

$\mathbf{A}\mathbf{x} = \mathbf{b}$		$\mathbf{x}\mathbf{A} = \mathbf{b}$
/2	solution to linear	
	system of equations	
$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$	•	$\mathbf{x} = \mathbf{b}\mathbf{A}^{-1}$

$$>> x = A \setminus b$$

18

500 s

- find the sum of diagonal elements (trace of a matrix) of the matrix T with elements coming from normal distribution with mean equal to 10 and standard deviation equal to 4
 > T = 10 + 4*randn(7, 7);
- find determinant of matrix **U**

$$\mathbf{U} = \begin{pmatrix} 1 & 2 & \frac{17}{81} \\ 0 & 2 & 0 \\ 0 & -2 & -1 \\ & & & \end{pmatrix}$$

• solve the linear system of equations

$$x_{1} + 2x_{2} + 3x_{3} = 6$$

$$4x_{1} + 5x_{2} + 6x_{3} = 15$$

$$7x_{1} + 8x_{2} + x_{3} = 16$$

Ax = **b**
x = **A**⁻¹**b**

Matlab commands

- Matlab is cAsE sEnSiTiVe
 - almost entirely, with certain exceptions (properties of graphic objects, ...)
 - pay attention to typos and variable names (see later)
 - new versions of Matlab offer certain options

- beware of different syntax in Mathematica
 - following syntax is incorrect both in Matlab and Mathematica:

>> Sin(pi/2) % function names start with lower case
>> cos[pi/3] % function input is in parentheses ()

19.2.2016 17:58

Predefined values in Matlab

- Matlab contains several predefined values
 - eps precision of single/double numbers
 - eps determines the shortest distance between two single/double numbers
 - ans most recent answer
 - NaN not a number (every expression containing NaN results is NaN)
 - NaN can be used advantageously in some cases
 - Inf *infinite number* (variable Inf can be used in calculation :))
 - pay attention to Inf propagation throughout your code (use allowed operations only)
 - i, j complex unit
 - they are all basically functions (without input parameters)
 - check results of the following expressions:

>>	t1	=	10/0		0/0	t1	=	Inf
>>	t2	=	0/0		0/0	t2	=	NaN
>>	t3	=	t1*5		0/0	t3	=	Inf
>>	t4	=	t1 +	t2	0/0	t4	=	NaN

• pi, intmin, intmax, realmin, realmax, ... (functions)

Workspace - output deletion #1

• to clean (erase) the command window:

>> home % cursor (>>) is shifted to the top-left position
>> clc % Command Window is erased

• try and compare

Workspace – output deletion #2

• to clean one (or more) variable, use clear

>>	clear	0/0	whole Workspace is deleted
>>	clear XX	0/0	variable XX is deleted
>>	clear XX YY	0/0	variables XX and YY are deleted
>>	clear z*	0/0	everything starting with 'z' is deleted

- clear clear has a number other options (graphics, I/O)
- try to delete selected variables in workspace

Workspace - output deletion #3

• to delete all variables except for one (or several):

```
>> clearvars -except a3 % clears everything except a3
```

• further information in doc clear, doc clearvars

Command History window

- Command History window stores all commands from the Command Window
- Command History accessible though (\uparrow or \downarrow)
- it is possible to filter out past commands by

• e.g.
$$>> A = [+ \uparrow]$$

- It is possible to copy-and-paste entire Command History
 - SHIFT / CTRL / CTRL+A \rightarrow CTRL+C

Command History		\odot
U = [1 2 17/81;	0 2 0;	
det (U)		
clear,clc		
	(10,10);	
trace(T)		
υ = [1 2 17/81;	0 2 0;	
0 -2 -1];	Furtherin Colorian	50
det (U)	Create Script	F9
A = [1 2 3; 4 5]	Create Shortcut	
$b = [6 \ 15 \ 16]';$	Profile Code	
x = inv(A) *b	Cut	Ctrl+X
$\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$	Сору	Ctrl+C
+1 = 10/0 & +	Delete Selection	Delete
$t_1 = 10/0$ % t	Delete to Selection	
	Select All	Ctrl+A
	Find	Ctrl+F
	Print	Ctrl+P
nome s vrati pro	Print Selection	
Clc % vymaže Co	Page Setup	
	Clear Command Histo	ry

• later on, we will work with scripts and functions to store all the commands/code

A0B17MTB: Part #1

19.2.2016 17:58

Variables storing and loading

• existing variables in Matlab Workspace can be stored on disk

```
>> save % stores all variables in matlab.mat in current folder
>> save task1 % stores all variables in task1.mat
>> save task1 a b c % stores variables "a", "b" and "c" in task1.mat
```

• CTRL+S in Command Window/Command History

• loading variables is analogical

>> load % loads matlab.mat in current folder
>> load task1 % loads all variables from task1.mat
>> load task1 a b c % loads variables "a", "b" and "c" from task1.mat

• alternatively, drag & drop the file from Current Folder in Command Window

Storing history and variables

180 s

- save today's Command History
 - use *.txt file
- store all variables from Workspace in Data.mat

• try to store selected variables only

• clear Workspace and load above mentioned files

• both storing and loading can be carried out using mouse!!

.mat file structure

- .mat files of the 7.3 version have the HDF5 format
 - HDF = Hierarchical Data Format
 - enable to store variables exceeding 2GB (64-bit system)
 - scientific format for data storing
- advantages of accessing HDF directly for certain applications:
 - speed
 - it is possible to define structure of the file and the stored data
 - Matlab *High-Level* functions and HDF *Low-Level* functions are available
- for more detailed information see:
 - MATLAB → Data and File Management → Data Import and Export → Scientific Data

Variable names #1

- max. 63 characters starting with a letter (>> namelengthmax)
 - underscore is allowed in the variable name ,,___`(not at the beginning!)
 - characters not allowed are colon ,, : ", hyphen ,,-" and others
- lowercase letters in the names of scalars and variables (a = 17.59;)
- matrix names usually start with a capital letter $(A = [\dots])$
 - clear huge matrices after they are used (clear ..., memory')
- iteration variables, variables used in for cycles usually named m, n, k etc.
 - it is advisable to avoid i, j (complex unit)
- chose the names to correspond to the purpose of the variable
- avoid, if possible, standalone letter 'l' (to be confused with 1) and predefined variables in Matlab environment

Variable names #2

• exceeding the maximum variable's name length :

>> a012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789
Warning: 'a012345678901230

a01234567890123456789012345678901234567890123456789012345678901 =

10

Variable names #3

• samples of valid variable names

a, A, b, c, x1, x2, M_12, test1, matrix_A, fx, fX

• samples of invalid variable names

lvar		0/0	starts with a number (not possible in Matlabu)
matrix 2	A	00	contains space
coef.a		00	possible only if coef is of type 'struct'
Test-1		00	algebraic expression: ans = Test - 1
f(y)		00	makes sense when using symbolic expressions

- samples of valid numbers in Matlab
 - pay attention to miss inserted spaces after exponent and imaginary unit

3, -66, +0.0015, .015, 1.6025e-10, 3i, 3.17e5i, -3.51j

Discussed functions

sin, cos	trigonometric functions
sqrt	square root
max	largest element of column of a matrix; largest element of a vector
sum	sum of elements of column of a matrix; sum of elements of a vector
log, log10	natural logarithm, logarithm with base 10
factorial	factorial
det, trace	determinant of a (square) matrix, trace of a (square) matrix
transpose	transpose
dot, cross	scalar product, vector product
inv	invers of a matrix
round, ceil, floor, fix	rounding
rem	remainder after division
rand, randn	random number generation
save, load	storing, loading of variables
clear, clearvars	deleting variables and functions, deleting variables only
home, clc	command prompt shift, clears output
ans, eps	returns last answer, numerical accuracy of Matlab

• forces were localized at point **P** in (x - y) plane:

• what is the direction of the resultant force **F**?

• normalize the resulting vector

240 s

- type-in following commands:
 - >> clear, clc; >> w1 = [1 2 3], w2 = [-2 -3 -4]', >> w3 = [-2; -3; -4], >> w4 = w2 - w3, w5 = w2 - w1

- compare differences
- the error of calculating w5 resides in what?
- try also

- calculate the norm (magnitude) of vector w1
 - try more options

$$\hat{\mathbf{w}}_1 = \frac{\mathbf{w}_1}{|\mathbf{w}_1|}$$

• how to modify the calculation in the case of a complex vector?

A0B17MTB: Part #1

Exercise #3

- calculate roots of the quadratic function
 - rearrange the terms of the function first

$$2x^{2} + 5x + 3 = 0, \implies a = 2, b = 5, c = 3$$
$$x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 24}}{4}$$
$$x_{1} = -1, \quad x_{2} = -\frac{3}{2}$$

• Matlab provides particular function for calculation of roots of a function, try to search it out

 $-2x^2 - 5x = 3$

180 s

19.2.2016 17:58

A0B17MTB: Part #1

Exercise #4

 \mathbf{Z}_{i}

xŁ

300 s

- consider matrices (prepare matrices for later use)
 - rotating by angle α in *x*-*z* plane

$$\mathbf{R} = \begin{pmatrix} \cos(\alpha) & 0 & -\sin(\alpha) \\ 0 & 1 & 0 \\ \sin(\alpha) & 0 & \cos(\alpha) \end{pmatrix}$$

• mirroring across plane 1x + 2y + 0z = 0• use Householder's transform $\mathbf{P} = \mathbf{I} - 2\mathbf{n}_0 \mathbf{n}_0^{\mathrm{T}}$

$$\mathbf{n}_{0} = \frac{\mathbf{v}_{1} \times \mathbf{v}_{2}}{|\mathbf{v}_{1} \times \mathbf{v}_{2}|} \qquad \mathbf{P}_{1} = \begin{bmatrix} -2; 1; 0 \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} 0; 0; 1 \end{bmatrix}$$
$$\mathbf{v}_{k} = \left(\mathbf{P}_{k} - \mathbf{0}\right) \begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{y}_{0} \\ \mathbf{z}_{0} \end{pmatrix}, \quad k \in \{1, 2\}$$

 $\mathbf{z} \mathbf{P}_{2} \mathbf{P}_{1}$ $\mathbf{x} \mathbf{P}_{0} \mathbf{1} \mathbf{y}$

Department of Electromagnetic Field, CTU FEE, miloslav.capek@fel.cvut.cz

A0B17MTB: Part #1

• use rotation matrix **R** to rotate vector $\mathbf{k} = [1; 0; 0]$ by angle $\alpha = \pi/2$

$$\mathbf{m} = \mathbf{R}\mathbf{k} = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^{\mathrm{T}}$$

• use reflection matrix **P** across plane: 1x + 2y + 0z = 0

to mirror vectors:

$$\mathbf{u}_1 = \mathbf{n}_0, \quad \mathbf{u}_2 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}^T$$

 $\mathbf{m}_1 = \mathbf{P}\mathbf{u}_1 = -\mathbf{n}_0, \quad \mathbf{m}_2 = \mathbf{P}\mathbf{u}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}^T$

- calculate the determinant of matrices **R** and **P**
 - can you interpret the results?

$$\det \mathbf{R} = 1, \quad \det \mathbf{P} = -1$$

3

180 s

19.2.2016 17:58

A0B17MTB: Part #1

37

Thank you!

ver. 5.1 (19/02/2016) Miloslav Čapek (C), Pavel Valtr (E) miloslav.capek@fel.cvut.cz Pavel.Valtr@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors. Document created as part of A0B17MTB course.