Biometrics (A6M33BIO) laboratory exercise
Task 2: Person identification using fingerprint

Pavel Vostatek, contact email: vostapav@fel.cvut.cz

January 11, 2013

1 Introduction

Identification using a fingerprint image can be divided into two main parts: preprocessing
and matching. Preprocessing involves segmentation of the fingerprint from its background,
determining local ridge orientation, determining the local ridge frequency, filtration using
Gabor filters for quality enhancement, fingerprint skeleton formation and minutiae search.
Every part of the process can be done using number of methods. We will discuss only
selected state of the art methods. Very exhaustive overview can be found in the book [1].

In the fingerprint matching two methonds will be compared. First, minutiae match-
ing, which is based on classical dactylography. It compares minutiae topology on the
fingerprint — only around 10 minutiae are needed to decidedly identify a person. Second
method, using Finger Code, is based on classification of the features extraceted from
fingerprint texture.

During the task you will get acquainted with preprocessing algorithms practically on
several selected fingerprints. Some parts of preprocessing methods are planned to be im-
plemented by you. In the second part — matching — you will have to implement both
matching methods and than to test their potential in fingerprint identification. A toolbox
for Matlab is provided within the lab carrying functions for data loading and processing.
Functions used in all procedures are listed in the text and in the toolbox help.

2 Fingerprint Preprocessing

2.1 Local Ridge Orientation

First technique used in fingerprint processing is computation of local ridge orientation
in a point [z,y]. The orientation is characterized by an angle ©,, and is computed at
discrete positions rather than in every image pixel. The image is processed block by block
which determines the spatial step of O, discretization. Computation is based on gradient
methods — gradient V(x,y) of the input image is a two dimensional vector [V, (z,y),
V,(z,y)]. This vector is directed to the direction of maximal intensity change. O, is then

perpendicular to the gradient. The final ©,, is obtained by averaging all directions in the
block. Example of processed fingerprint is on Fig. 2.1.

orientacni pole orientace pixelu v sede skale

"

Figure 1: Local ridge orientation, function computeorientationarray(im,
imSegmented, 10)

2.2 Local Ridge Frequency

Ridge frequency (or density) is a number of ridges per length unit in a direction orthogonal
to ridge itself. As in the case of ridge orientation, ridge density is traditionally determined
in discrete positions. Algorithm for local ridge frequency computation implemented in
Fingerprint Toolbox is based on oriented window usage — the window (traditionally wider
than longer) is oriented orthogonally to the ridge direction by its longer side. Columns of
the widow are averaged providing one dimensional vector according to a ridge profile. From
the profile we are able to assess number of spaces between peaks and than determine ridge

frequency as f = S t’;;?’;z;g‘;i Z?azj)‘zces). Example of ridge frequency image is on Figure 2.2.

puvodni otisk frekvence papilarnich linii

Figure 2: Ridge frequency, function computelocalfrequency(im, imSegmented,
orientationArray)

2.3 Fingerprint Segmentation

Aim of the fingerprint segmentation is to process only relevant part of the fingerprint image.
Number of algorithms have been developed for segmentation so far. Great review can be
found in [1].

Segmentation is, same as previous algorithms, based on block processing. Image is di-
vided into blocks and every of them is then classified as fingerprint or background. Alterna-
tively, more classification groups can be defined, e.g. smudgy, poor. The easiest technique

for fingerprint segmentation would be thresholding based on pixel intensity. However, the
intensity approach is not such powerful because the actual characteristic of the fingerprint
is a ridge line structure.

Methods used for segmentation can be divided into following groups:

Using ridge orientation when histogram of ridge orientations is assessed from every
image block. If a significant peak appears in the histogram it means that the block
has a ridge-like structure and is classified as fingerprint.

Using image pixel intensity variance in a direction orthogonal to ridges
direction. This approach is based on the assumption that intensity variance is
independent on direction outside fingerprint.

Using pixel intensity gradient averaged in every block. This approach assumes
that gradient (i.e. contrast) is significantly higher in areas with ridges than outside
fingerprint.

Using Gabor filters. Each block is filtered using a set of 8 Gabor filters with different
rotation. The output of this filter is used for both classification into fingerprint or
background, and may be used to assess the quality of the block. This step may be
associated with subsequent smoothing using fingerprint G. filtration.

segmentace otisku od pozadi
==

Figure 3: Sample segmentation. Technique using gradient of pixel intensity was used.

24

Enhancement using Gabor filters

Filtering using Gabor filters (so called contextual filtration) is a directional filtering com-
monly used as an edge detector. We use is for smoothing discontinuities caused by poor
image quality. The Fig. 2.4 shows a filter mask in the spatial domain. Its shape gives the
directional properties.

30 40

10

Figure 4: Mask used for Gabor filtration, which is convolved with filtered image. Isometric
view.

Implementation of the Gabor mask will be a task. Its definition is as follows:

r=<—16,16 >,y =< —16,16 >

x, = sin(angle) - © + cos(angle) - y

yp, = sin(angle) - y — cos(angle) - ©
I2

gab(z,y) = exp{—% - [(5) + ()]} - cos(2nf - z,)

obraz vylepseni pouzitim Gaborovych filtru kostra otisku pred cistenim

7

____/_\ \

Figure o: Gabor filtration, enhance2ridgevalley(im, imSegmented,
orientationArray, frequencyArray, 0O)

2.5 Fingerprint skeleton, minutiae

After Gabor filtration, ridge lines are reduced to a minimum width producing the skeleton
image. Minutiae are then searched using simple rules.

kostra otisku po vycisteni v otisku vyznacene markanty

O Bifurcation

Figure 6: Final minutiae detection.

3 Person Identification

Identification of a person identity is well known method used in criminology. First, enough
large database of fingerprints is needed. Then we get the finger impression, and task is to
find matching fingerprint in the database. When no fingerprint in the database is suitable,
we should declare unknown result.

Most important thing in the identification process is a method comparing (matching)
the input fingerprint with those in the database. In previous chapters we have seen the
fingerprint being preprocessed and prepared for extraction of possible features. Now we will
introduce two methods used for fingerprints matching. The first is based on the classical
fingerprint matching using minutiae. Minutiae topology determines uniquely the human
fingerprint. The second method is based on the fingerprint texture.

3.1 Minutiae Matching

Minutiae matching implementation will by one of the tasks in this lab. Function match.m
is prepared in the Fingerprint Toolbox for implementation.

Algorithm: two sets of minutiae points are on algorithm’s input: mAil and mAi2 and
threshold d determining maximal distance.

e For every point in mAi2 find the nearest point in mAil. When minutiae are nearer
than d than mark them as a pair and remove them from both mAil, mAi2. For every paired
minutiae add nbmatch = nbmatch + 1

e After pairing of all minutiae from mAi2 compute matchingScore = % which

ranks the fingerprint pair (score values are from interval < 0,1 >).
Syntax of match function is as follows:
[matchingScore, nbmatch, inputmatch, dbmatch] = match(mAil, mAi2);

On input we have matrices with marked minutiae for database fingerprint (mAil) and

matched fingerprint (mAi2). Those matrices are output of function findminutia and
mAi2 must be aligned with mAil.

Outputs:

matchingScore — score of fingerprint similarity.

nbmatch — number of matched pairs.

inputmatch — matrix with the same size as mAi2 containing only marks of minutiae which
have been paired.

dbmatch - same as inputmatch but for mAil.

3.2 Matching using Finger Code

Fingerprint image is filtered using a set of Gabor filters with different rotations. Each
filtered image is processed block by block without overlap. Value for each block N is
computed: f(N) = |mean(N) — std(N)| where std denotes the standard deviation, mean
denotes average value of the block. We obtain new image where every block is replaced with
one pixel (Block image). In the Block image only annulus of defined radius is extracted
and its values are used as the feature vector, as shown in Figure 7.

filtrovany otisk otisk po blokach zpracovany vymaskovany stred

Figure 7: Finger Code matching.

Subsequent feature vectors f; (corresponding to the database fingerprint) and fy (cor-
responding to the input image) are created by putting the image values into the feature
vector in defined order. Fingerprint matching is than computed as follows
matchingScoreGabor = —mean(abs(fi — F2))[1]. A negative value is used as a measure
to make it the biggest for the best matching fingerprint.

There is a function for Finger Code matching fingercode creation.m.

fingercode = fingercode _creation(imOriginal, Gfilt, core, maskSize, dia),

imOriginal is an input image, Gfilt is a set of k Gabor filters created using function
GaborFilter_creation, core are coordinates of fingerprint core, maskSize is a size of the
image block and dia is two-element vector containing diameters of the annulus.

Outputs:
fingercode - vector sized [1 x N], where N depends on annulus size.

4

Tasks

Each student will be provided with 10 fingerprints of different quality. The task will be to
create a system which finds the most likely matching fingerprint in a provided database or
decides on the inability to find a suitable adept.

Tasks:

A

First on provided fingerprint calculate frequency and orientation fields. Visually
assess how has fingerprint quality affect the result of the calculation. [2 pts]

Implement your own fingerprint segmentation algorithm. You can choose from the
algorithms mentioned in Section 2.3 or choose another from the literature ([1]). You
can come up with your own algorithm. [4 pts]

To enable Gabor filtering you have to implement Gabor mask making able execution
of the function enhance2ridgevalley.m (you implement sub-functions filtergabor)
according to Chapter 2.4.

Record your own set of fingerprints on our sensors and compare how preprocessing
functions deal with outputs of different sensors. Are found minutiae always the same
or different? Does your algorithm correctly segments the fingerprint? [2 pts]

Implement function match.m for fingerprint minutiae matching. [4 pts]

Implement function fingercode _creation for fingerprint matching using Finger
Code. [4 pts]

For every fingerprint you got for processing find the best matching in the database
and decide whether it is right or false result. [2 pts]

Appendix: Fingerprint toolbox structure.

The toolbox is divided into 2 parts: predzpracovani (preprocessing) and porovnani (match-
ing), every part contain functions for particular parts of the task. Necessary functions are
described in the text.

References

[1] Anil K. Jain and David Maltoni. Handbook of Fingerprint Recognition. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2003.

