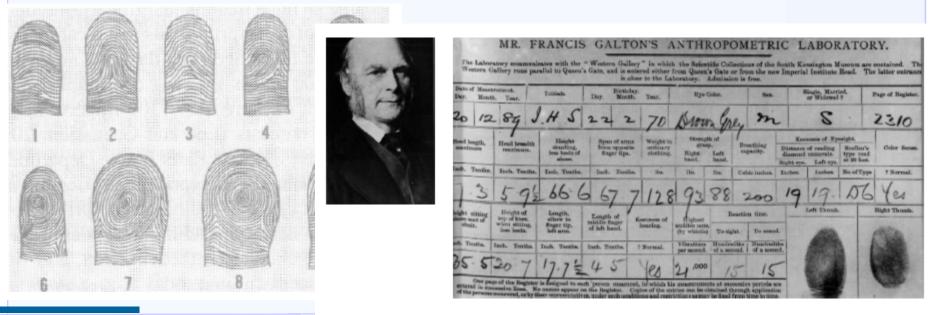


Classification Daniel Novák

20.12, 2018, Prague

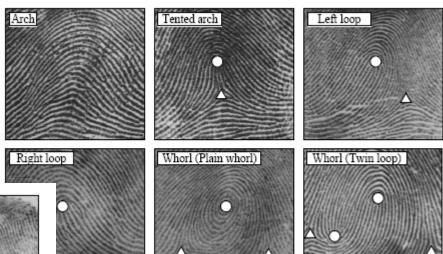
Acknowledgments: Xavier Palathingal, Andrzej Drygajlo, Handbook of Fingerprint Recognition

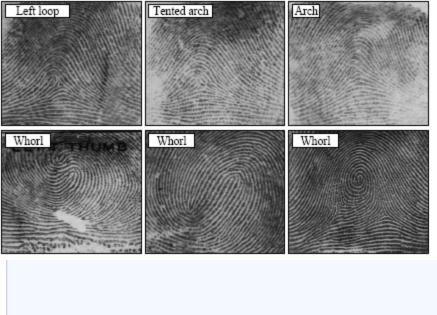


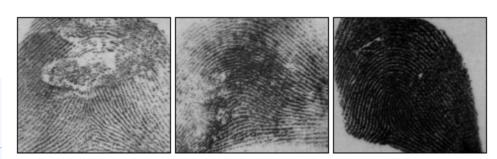
Department of Cybernetics, Czech Technical University

History

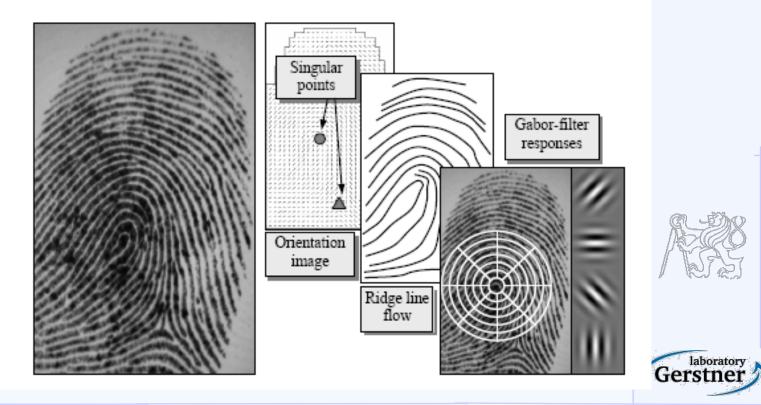
- In 1823, Purkinji proposed the first fingerprint classification, which classified into nine categories: (transverse curve, central longitudinal stria, oblique stripe, oblique loop, almond whorl, spiral whorl, ellipse, circle, and double whorl)
- Sir Francis Galton introduced the minutae features for fingerprint matching in late 19th century






- Arch: 3.7%, tented arch: 2.9%, left loop: 33.8%, right loop: 31.7%, whorl: 27.9%
 Arch
- Pattern recognition
 PROBLEM
 Small inter class variab

Small-inter class variability Large intra-class variability



presence of noise

Features

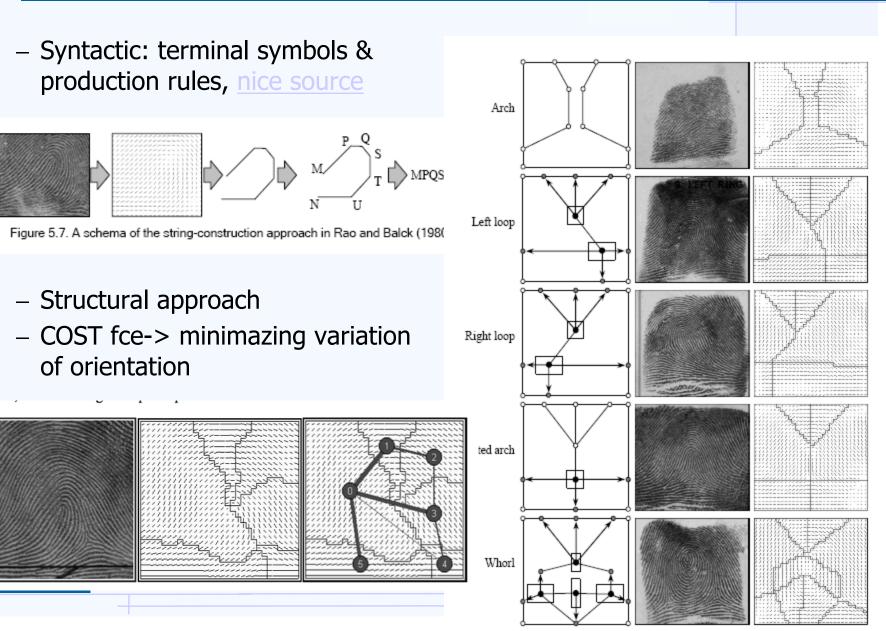
- Based on global features
- Ridge line flow, orientation image, singular point, Gabor filters
- A-priori information: sex, race, age.

Techniques

– Features:

- O = orientation image
- S = singularities
- R = ridge flow,
- G = Gabor
- classification technique
 - Rb = rule-based
 - Sy = syntactic
 - Str = structural,
 - Sta = statistical
 - Nn = neural network
 - Mc = multiple classifiers

Fingerprint classification approach		Features				Classifier					
		s	R	G	Rb	Sy	Str	Sta	Nn	Mc	
Moayer and Fu (1975)	N					V					
Moayer and Fu (1976)	\sim					V					
Rao and Balck (1980)	\sim					$\overline{\mathbf{A}}$					
Kawagoe and Tojo (1984)	-				1						
Hughes and Green (1991)									V		
Bowen (1992)									V		
Kamijo, Mieno, and Kojima (1992)									V		
Kamijo (1993)									V		
Moscinska and Tyma (1993)					1				V		
Wilson, Candela, and Watson (1994)	\sim								V		
Candela et al. (1995)	\sim				1				V	V	
Omidvar, Blue, and Wilson (1995)	\neg										
Halici and Ongun (1996)	\sim								V		
Karu and Jain (1996)		_√			\checkmark						
Maio and Maltoni (1996)							$^{\vee}$				
Ballan, Sakarya, and Evans (1997)		\checkmark			\checkmark						
Chong et al. (1997)			\checkmark		\checkmark						
Senior (1997)			\checkmark				$^{\vee}$				
Wei, Yuan, and Jie (1998)					\checkmark				V	V	
Cappelli et al. (1999)	\sim						$^{\prime}$				
Cappelli, Maio, and Maltoni (1999)	\sim										
Hong and Jain (1999)		\neg	\neg		\neg					V	
Jain, Prabhakar, and Hong (1999)				\neg						V	
Lumini, Maio, and Maltoni (1999)	\sim										
Cappelli, Maio, and Maltoni (2000a)	\sim							V		V	
Cho et al. (2000)		$^{\prime}$			1						
Bartesaghi, Fernández, and Gómez (2001)		$^{\prime}$			$^{\sim}$						
Bernard et al. (2001)	\sim								V		
Marcialis, Roli, and Frasconi (2001)	\sim			\checkmark				V	V	V	
Pattichis et al. (2001)					\checkmark				V	V	
Senior (2001)	\sim		$\overline{\mathbf{v}}$		\neg		$^{\prime}$			V	
Yao, Frasconi, and Pontil (2001)				$\overline{\mathbf{A}}$				V		V	
Cappelli, Maio, and Maltoni (2002a)	\neg									V	
Jain and Minut (2002)			$\overline{\mathbf{v}}$		\neg						
Cappelli et al. (2003)	\sim							V		V	
Yao et al. (2003)	\sim			$^{\vee}$			$^{\prime}$	V	V	V	


Overview

Fingerprint classification approach		Features			Classifier					
		S	R	G	Rb	Sy	Str	Sta	Nn	Mc
Cappelli and Maio (2004)	$$									\checkmark
Klimanee and Nguyen (2004)	$$									
Senior and Bolle (2004)					\checkmark		$$		$$	
Shah and Sastry (2004)										\checkmark
Wang and Xie (2004)										
Zhang and Yan (2004)	\checkmark									
Park and Park (2005)										
Neuhaus and Bunke (2005)										
Tan, Bhanu, and Lin (2005)										
Min, Hong, and Cho (2006)				\checkmark						\checkmark
Kristensen, Borthen, and Fyllingsnes (2007)				\checkmark						
Wang and Dai (2007)		\checkmark			\checkmark					
Hong et al. (2008)				\checkmark						\checkmark
Li, Yau, and Wang (2008)										

Syntactic & Structal approach

Statistical approach

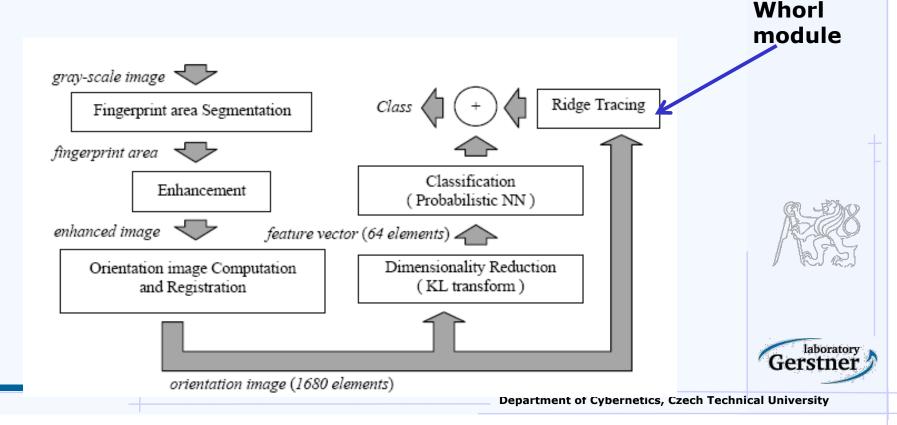
- Statistical
 - Orientation image
 - k-nearest neighbor
 - 30x30 array, 1800 elements, training impossible, high dimension
 - PCA (the Karhunen-Loeve) transform

 $\mathbf{d} = \left[r \cdot \cos\left(2\theta\right), r \cdot \sin\left(2\theta\right) \right].$

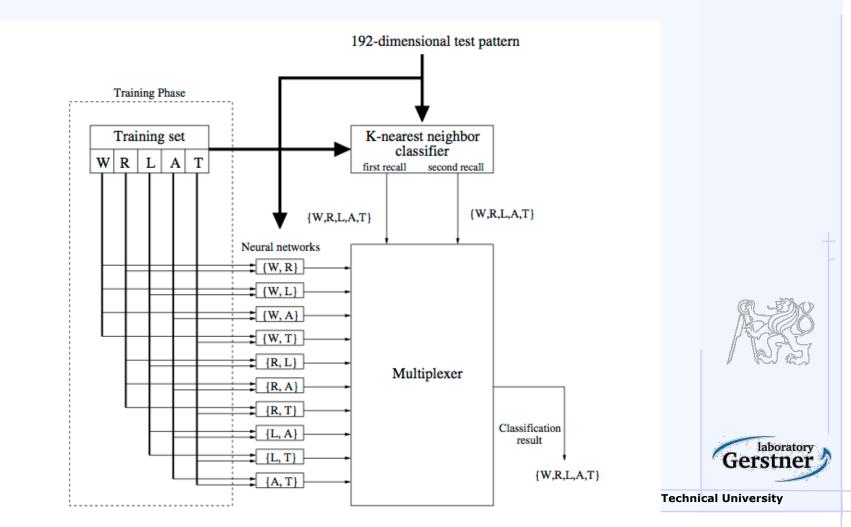
- Another examples: Bayes decision rule, Support Vector Machine

- Neural networks
 - orientation image
 - multilayer percepton

Multiple approach I



	Distinct features	Distinct classi- fiers	Distinct training sets	Combination strategy
Candela et al. (1995)	Yes	Yes	No	Rule-based
Jain, Prabhakar, and Hong (1999)	No	Yes	No	Sequential (two stages)
Cappelli, Maio, and Maltoni (2000a)	No	Yes	Yes	Majority vote rule
Senior (2001)	Yes	Yes	No	Neural network
Marcialis, Roli, and Frasconi (2001)	Yes	Yes	No	k-nearest neighbor
Yao et al. (2003)	Yes	Yes	No	k-nearest neighbor
Cappelli et al. (2003)	No	Yes	No	Sequential (two stages)
Shah and Sastry (2004)	Yes	Yes	No	Sequential (two stages)
Hong et al. (2008)	Yes	Yes	No	Bayes rule


Multiply approach II

- Multiple classifier-based apparoaches
- PCASYS: Pattern-level Classification Automation system
- Open Source: <u>http://ffpis.sourceforge.net/</u>
- Developed by NIST: <u>http://www.nist.gov/index.html</u>
 - National Institute of Standards and Technology

Multiply approach III

 Finger code features – k-two most likely classes, neural networks distinguishing two classes

Prize of GOLD

- Good large database> very expensive (FP,ECG,EEG, etc.)
 - DB4,DB14: STANDARDS for classification systems
 - 8bit- grey level images of rolled FP scanned from cards,
 - Manual annotation by a human expert (A,L,R,T,W)
 - 2000 FPs: DB4
 - 27000 FPs: DB14
 - All classes are distributed equally. However, Arch: 3.7%, tented arch: 2.9%, left loop: 33.8%, right loop: 31.7%, whorl: 27.9%
 - Therefore some authors weight results according class distribution

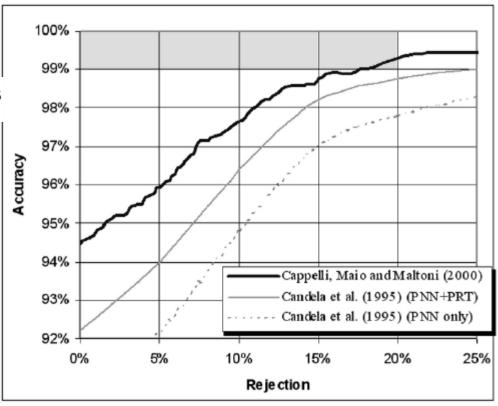
Classification Evaluation

- Accuracy

Rejection can improve accuracy

 $error rate = \frac{number of misclassified fingerprints \times 100}{total number of fingerprints} \%$ accuracy = 100% - error rate.

Penetration rate: time constraint


penetration rate = $\frac{\text{number of accessed fingerprints} \times 100}{\text{total number of fingerprints in the database}}$ %

Confusion matrix (DB4)

True	Hypothesized class								
class	Α	L	R	W	Т				
Α	420	6	3	1	11				
L	3	376	3	9	11				
R	5	1	392	6	16				
W	2	5	14	377	1				
Т	33	18	9	0	278				

- Rejection can improve accuracy (DB14)
 - Unknown class
 - FBI target:shaded area

NIST database -DB 4, DB14

Results on DB4, DB14

Results on DB4

True	Hypothesized class							
class	Α	L	R	W	Т			
Α	420	6	3	1	11			
L	3	376	3	9	11			
R	5	1	392	6	16			
W	2	5	14	377	1			
Т	33	18	9	0	278			

True	Н	Hypothesized class								
class	A+T	L	R	W						
A+T	782	10	17	6						
L	6	373	2	4						
R	7	1	381	9						
W	0	4	7	391						

Results on DB14, last
 2700 examples for
 testing

Method	Error rate (%)
Candela et al. (1995)	7.8
Wei, Yuan, and Jie (1998)	6.0
Cappelli, Maio, and Maltoni (2000a)	5.6

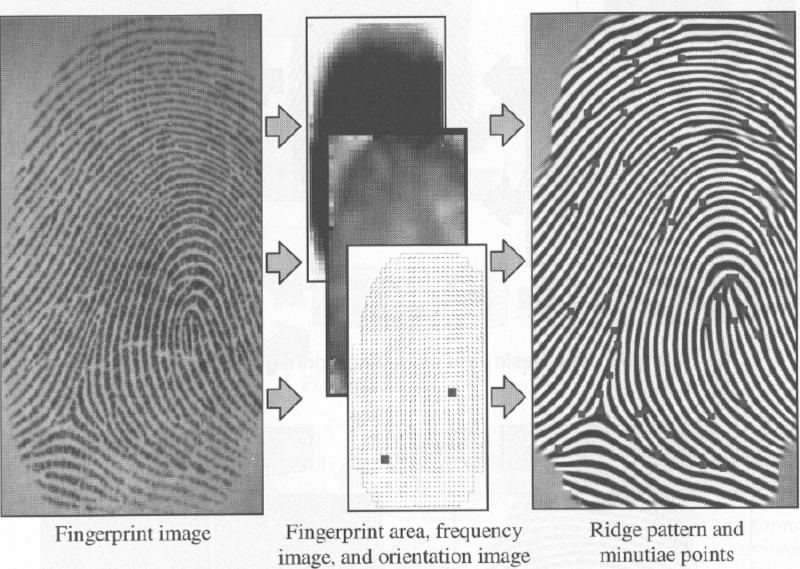
Method	Test set	5 cl	asses	4 c	4 classes		
		%	Weighted (%)	%	Weighted (%)		
Candela et al. (1995)	Second half	-	-	11.4	6.1		
Karu and Jain (1996)	Whole DB	14.6	11.9	8.6	9.4		
Senior (1997)	Random 542	_	-	_	8.4		
Cappelli, Maio, and Maltoni (1999)	Second half	7.9	6.5	5.5	-		
Hong and Jain (1999)	Whole DB	12.5	10.6	7.7	-		
Jain, Prabhakar, and Hong (1999)	Second half (*)	10.0	7.0	5.2	-		
Marcialis, Roli, and Frasconi (2001)	Second half ^(*)	12.1	9.6	_	-		
Senior (2001)	Second half	_	-	-	5.1		
Yao, Frasconi, and Pontil (2001)	Second half (*)	10.7	9.0	6.9	-		
Jain and Minut (2002)	Whole DB	_	_	8.8	9.3		
Cappelli et al. (2003)	Second half	4.8	3.7	3.7	3.4		
Yao et al. (2003)	Second half (*)	10.0	8.1	-	-		
Cappelli and Maio (2004)	Second half	7.0	5.9	4.7	5.4		
Wang and Xie (2004)	Whole DB	-	-	18.0	-		
Zhang and Yan (2004)	Whole DB	15.7	11.0	7.3	8.3		
Neuhaus and Bunke (2005)	Second half	19.8	-	-	-		
Park and Park (2005)	Second half	9.3	7.9	6.0	-		
Tan, Bhanu, and Lin (2005)	Second half	8.4	8.0	6.7	7.5		
Min, Hong, and Cho (2006)	Second half (*)	9.6	7.2	-	-		
Wang and Dai (2007)	Whole DB	11.5	9.4	-	-		
Hong et al. (2008)	Second half (*)	9.2	6.2	5.1	-		
Li, Yau, and Wang (2008)	Second half	6.5	7.0	5.0	-		

Synthetic fingerprint generation Daniel Novák

20.12, 2018, Prague

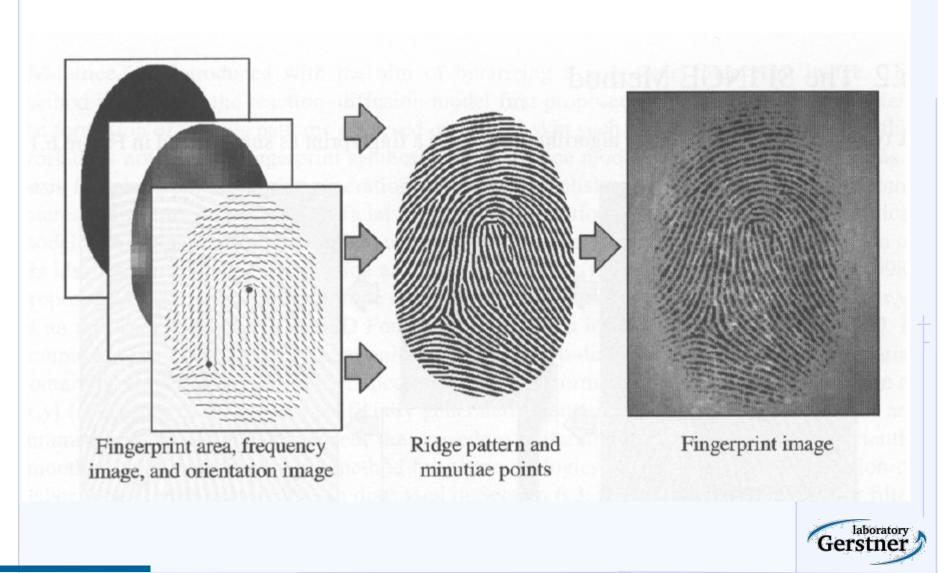
Acknowledgments: Xavier Palathingal, Andrzej Drygajlo, Handbook of Fingerprint Recognition

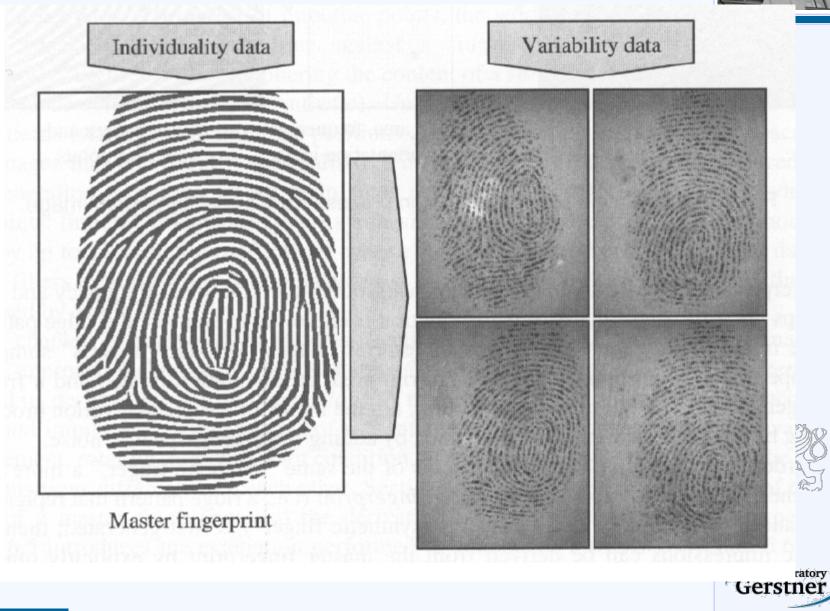
Department of Cybernetics, Czech Technical University


Synthetic fingerprint generation

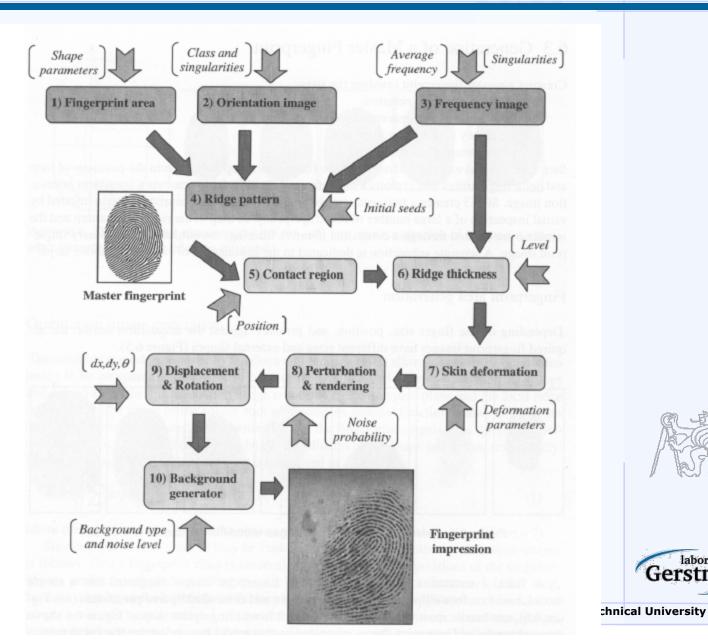
• Motivation

- Accuracy of each algorithm is usually evaluated on relatively small proprietary databases
- Evaluation on small databases makes the accuracy estimates highly data dependent
- When the databases are proprietary, the accuracy of various fingerprint matching algorithms cannot be compared directly
- Synthetic fingerprint generation can be used to automatically create large databases of fingerprints, thus allowing fingerprint recognition algorithms to be effectively trained, tested, optimized, and compared

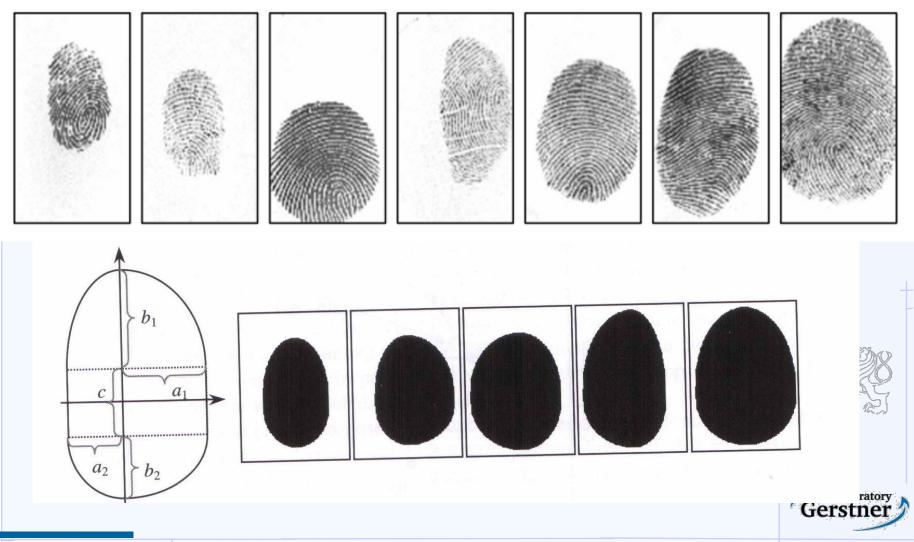

Feature extraction process


OCIDII

Basic idea

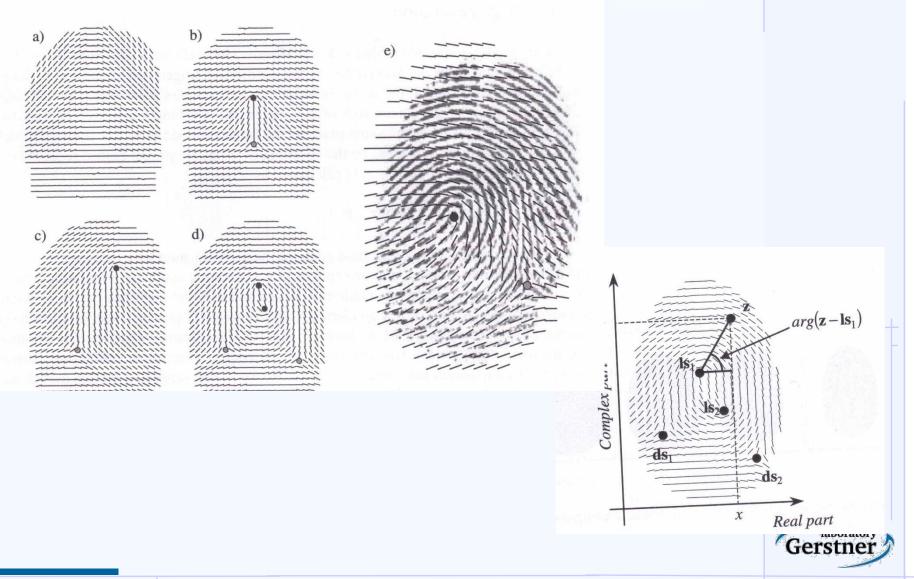

From master to final impression

SFINGE

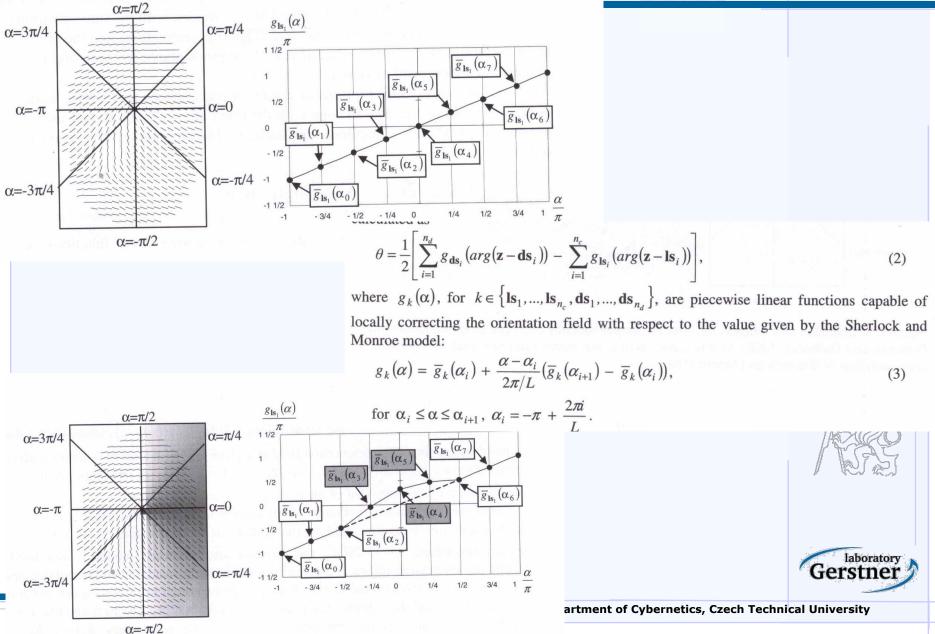


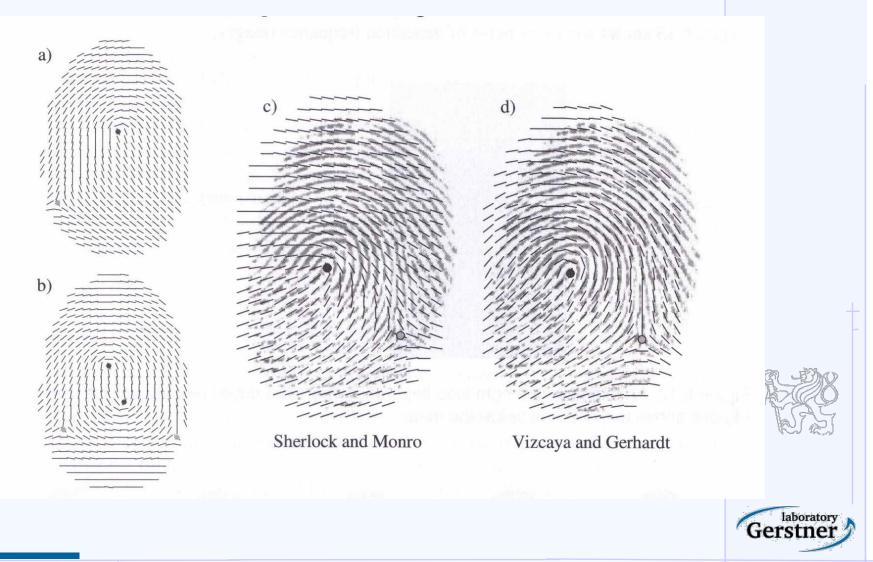
Gerstner

FP area generation

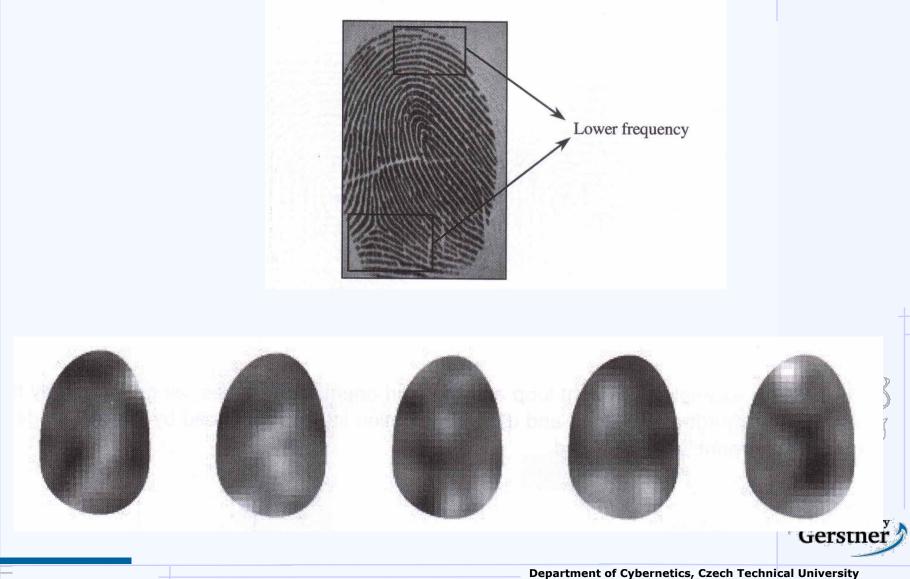


Department of Cybernetics, Czech Technical University

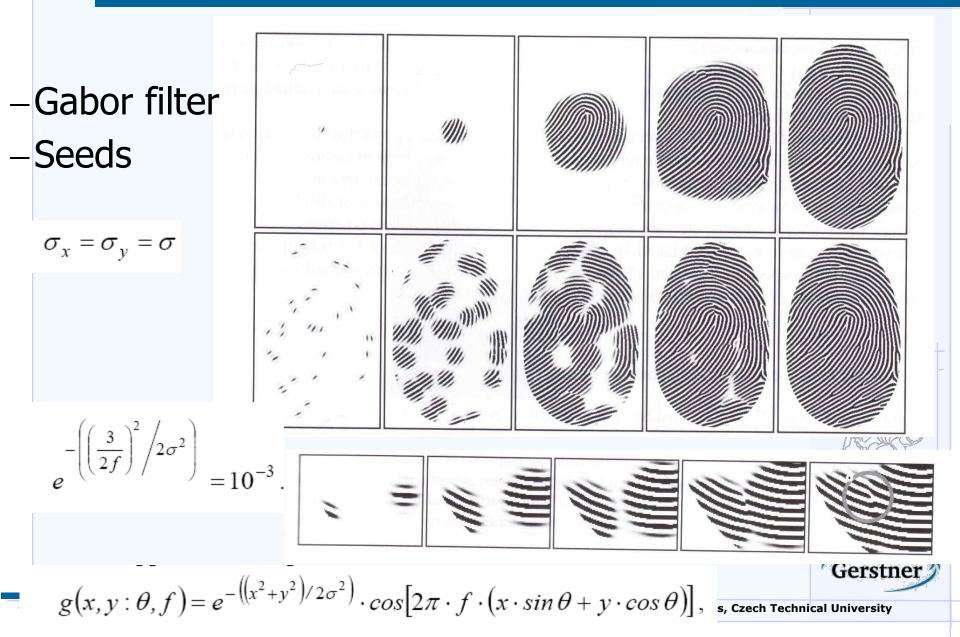

Orientation



Orientation

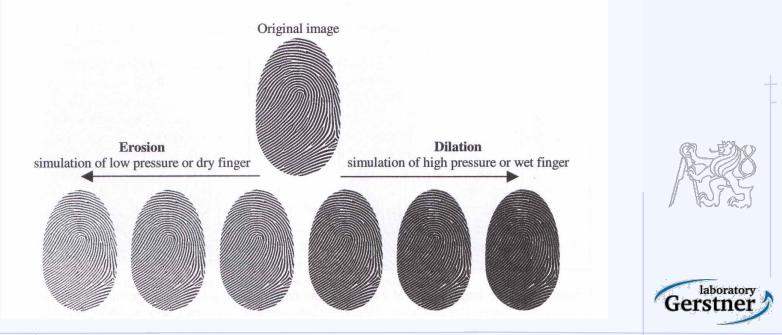


Orientation


Frequency

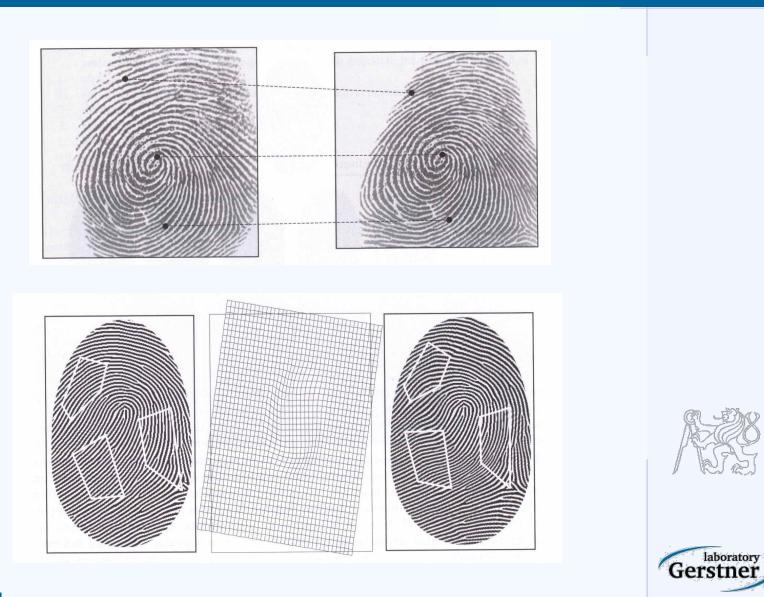
Ridge line

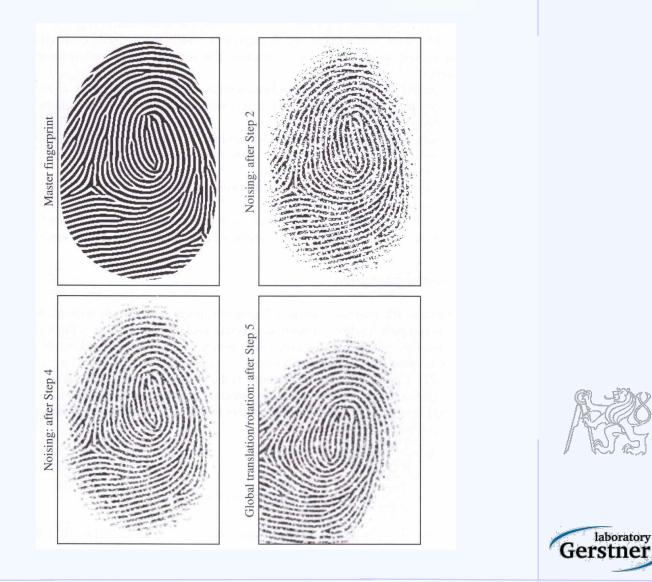
Ridge line



Department of Cybernetics, Czech Technical University

Ridge thickness




Department of Cybernetics, Czech Technical University

Distortion

Perturbation & Translation

Background

- $\overline{\mathbf{b}} = \frac{1}{m} \sum_{\mathbf{b} \in \mathbf{B}} \mathbf{b}$ be their mean vector;
- $\mathbf{C} = \frac{1}{m} \sum_{\mathbf{b} \in \mathbf{B}} (\mathbf{b} \overline{\mathbf{b}}) (\mathbf{b} \overline{\mathbf{b}})^T$ be their covariance matrix;
- $\Phi \in \Re^{n \times n}$ be the orthonormal matrix that diagonalizes C; that is, $\Phi^T C \Phi = \Lambda$,

$$\boldsymbol{\Lambda} = Diag(\lambda_1, \lambda_2, ..., \lambda_n), \ \boldsymbol{\Phi} = [\boldsymbol{\varphi}_1, \boldsymbol{\varphi}_2, ..., \boldsymbol{\varphi}_n],$$

where λ_i and φ_i , i = 1..n are the eigenvalues and the eigenvectors of **C**, respectively.

- 1. a k-dimensional vector $\mathbf{y} = [y_1, y_2, ..., y_k]$ is randomly generated according to k normal distributions: $y_j = N(0, \lambda_{i_j}^{1/2}), j = 1..k$;
- 2. the corresponding *n*-dimensional vector **b** is obtained as: $\mathbf{b} = \mathbf{\Phi}_k \mathbf{y} + \overline{\mathbf{b}}$.

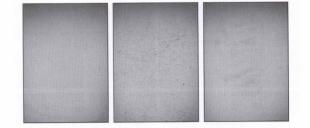


Figure 6.22. Examples of background-only images (acquired from an optical scanner) used for training the background generator.

Departm Figure 6.23. Three synthetic images with backgrounds generated according to the model (the parameters used for training are m = 65 and k = 8).

Department of Cybernetics, Czech rechnical oniversity

- DB1,2,3-real, DB4 synthetic, FMR **FNMR**
- 2nd experiment
- В

С

10%

0%

50%

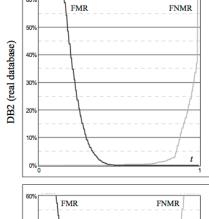
40%

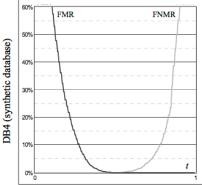
0%

DB3 (real database)

FMR

FNMR


FNMR



recognizing synthetic FP -> 23%

 -1^{st} experimtn, 90 experts

