

Languages, grammars, automata

Czech instant sources:
[1] M. Demlová: A4B01JAG
http://math.feld.cvut.cz/demlova/teaching/jag/predn_jag.html
Pages 1-27, in PAL, you may wish to skip: Proofs, chapters 2.4, 2.6, 2.8.
[2] I. Černá, M. Křetínský, A. Kučera: Automaty a formální jazyky I
http://is.muni.cz/do/1499/el/estud/fi/js06/ib005/Formalni_jazyky_a_automaty_I.pdf
Chapters 1 and 2, skip same parts as in [1].
English sources:
[3] B. Melichar, J. Holub, T. Polcar: Text Search Algorithms
http://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a4m33pal/melichar-tsa-lectures-1.pdf
Chapters 1.4 and 1.5 , it is probably too short, there is nothing to skip.
[4] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory
folow the link at http://cw.felk.cvut.cz/doku.php/courses/a4m33pal/literatura_odkazy
Chapters 1., 2., 3., there is a lot to skip, consult the teacher preferably.
For more references see PAL links pages
http://cw.felk.cvut.cz/doku.php/courses/b4m33pal/odkazy_zdroje (CZ)
https://cw.fel.cvut.cz/wiki/courses/be4m33pal/references (EN)

Deterministic Finite Automaton (DFA)
Nondeterministic Finite Automaton (NFA)
Both DFA nd NFA consist of:
Finite input alphabet Σ.
Finite set of internal states Q.
One starting state $q_{0} \in Q$.
Nonempty set of accept states $F \subseteq Q$.
Transition function δ.

DFA is always in one of its states $q \in Q$.
DFA transits from current state to another state depending on the current input symbol.
NFA transition function is $\delta: Q \times \Sigma \rightarrow P(Q) \quad(P(Q)$ is the powerset of $Q)$
NFA is always (simultaneously) in a set of some number of its states.
NFA transits from a set of states to another set of states
depending on the current input symbol.

NFA A_{1}, its transition diagram and its transition table

alphabet			
states	a	b	c
	1	2	
1		3,4	
2	4,5		
3	6		0
4			$6,7,8$
		8	
	0		
7	6	6	
8	7	7	

accept states marked

NFA A_{1} processing input word abcba

Active states

abCba

NFA A_{1} has processed the word abcba and went through the input characters and respective sets(!) of states

$$
\begin{aligned}
& \{0\} \rightarrow \mathrm{a} \rightarrow\{1\} \rightarrow \mathrm{b} \rightarrow\{3,4\} \rightarrow \mathrm{c} \rightarrow \\
& \rightarrow\{0,6,7,8\} \rightarrow \mathrm{b} \rightarrow\{2,6,7\} \rightarrow \mathrm{a} \rightarrow \\
& \rightarrow\{0,4,5,6\} .
\end{aligned}
$$

NFA simulation without transform to DFA

Each of the current states is occupied by one token.
Read an input symbol and move the tokens accordingly.
If a token has more movement possibilities it will split into two or more tokens, if it has no movement possibility it will leave the board, uhm, the transition diagram.

NFA simulation without transform to DFA

Idea:

Register all states to which you have just arrived. In the next step, read the input symbol \boldsymbol{x} and move SIMULTANEOUSLY to ALL states to which you can get from ALL active states along transitions marked by \boldsymbol{x}.

```
Input: NFA, text in array t
SetOfStates S = {q0}, S_tmp;
i = 1;
while( (i <= t.length) && (!S.isEmpty()) ) {
    S_tmp = Set.emptySet();
    for( q in S ) // for each state in S
            S_tmp.union( delta(q, t[i]) );
    S = S_tmp;
    i++;
}
return S.containsFinalState(); // true or false
```

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA $\mathbf{A}_{\mathbf{1}}$ using transition tables

Data

Each state of DFA is a subset of states of NFA.
Start state of DFA is an one-element set containing the start state of NFA.
A state of DFA is an accept state iff it contains at least one accept state of NFA.

Construction
Create the start state of DFA and the corresponding first line
of its transition table (TT).
For each state Q of DFA not yet processed do \{
Decompose Q into its constituent states Q1, ..., Qk of NFA
For each symbol x of alphabet do \{
$S=$ union of all references in NFA table at positions [Q1] [x], ..., [Qk][x] if (S is not among states of DFA yet)
add S to the states of DFA and add a corresponding line to TT of DFA
\}
Mark Q as processed
\}
// Remember, empty set is also a set ot states, it can be a state of DFA

Generating DFA $\mathrm{A}_{\mathbf{2}}$ equivalent to NFA A_{1}

	a	b	c
0	1	2	
1		3,4	
2	4,5		
3	6		0
4			6,7,8
5		8	
6	0		
7	6	6	
8	7	7	

Generating DFA $\mathrm{A}_{\mathbf{2}}$ equivalent to NFA A_{1}

	a	b	c
0	1	2	
1		3,4	
2	4,5		
3	6		0
4			6,7,8
5		8	
6	0		
7	6	6	
8	7	7	

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA \mathbf{A}_{1}

A_{2}	Add new state(s)		
	a	b	c
0	1	2	
1		34	
$\Rightarrow 2$	45		
34			
45			
\ldots			

Generating DFA $\mathrm{A}_{\mathbf{2}}$ equivalent to NFA A_{1}

	a	b	c
0	1	2	
1		3,4	
2	4,5		
3	6		0
4			6,7,8
5		8	
6	0		
7	6	6	
8	7	7	

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA A_{1}

	a	b	c
0	1	2	
1		3,4	
2	F		
3	4,5		
3	6		0
			$6,7,8$
		8	
6	0		
7	6	6	
	7	7	

A_{2}

Add new state(s)

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA \mathbf{A}_{1}

	a	b	c
0	1	2	
1		3,4	
2	4,5		
3	6		0
4			6,7,8
5		8	
6	0		
7	6	6	
8	7	7	

A_{2}
Add new state(s)

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA \mathbf{A}_{1}

a	b	c	
0	1	2	
1		3,4	
2	4,5		
	F		
3	6		0
4			$6,7,8$
		8	
	F		
	0		
7	6	6	
	7	7	

Generating DFA \mathbf{A}_{2} equivalent to NFA \mathbf{A}_{1}

A_{2}	Add new state(s)		
	a	b	c
0	1	2	
1		34	
2	45		
34	6		0678
45		8	678
6	0		
0678	0167	267	
$\Rightarrow 8$	7	7	
678			
0167			
267			
7			
...			

Generating DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA \mathbf{A}_{1}

a	b	c	
0	1	2	
1		3,4	
2	4,5		
	6		0
			$6,7,8$
		8	
6	0		
7	6	6	
	7	7	

Add new state(s)

continue...
continue...

DFA $\mathbf{A}_{\mathbf{2}}$ equivalent to NFA $\mathbf{A}_{\mathbf{1}}$
A_{2} ...FINISHED!

Naïve approach

To be used with great caution!

1. Align the pattern with the beginning of the text.
2. While corresponding symbols of the pattern and the text match each other move forward by one symbol in the pattern.
3. When symbol mismatch occurs shift the pattern forward by one symbol, reset position in the pattern to the beginning of the pattern and go to 2 .
4. When the end of the pattern is passed report success, shift the pattern forward by one symbol, reset position in the pattern to its beginning and go to 2 .
5. When the end of the text is reached stop.

Start

text $a|b| c|a| b|c| a|b| c \mid \ldots$ pattern $\mathrm{a}|\mathrm{b}| \mathrm{c} \mid \mathrm{x}$
after a while:

etc...

Pattern shift

pattern

abbc|x

match
mismatch

Alphabet: Finite set of symbols.
Text: Sequence of symbols of the alphabet.
Pattern: Sequence of symbols of the same alphabet.
Goal: Pattern occurence is to be detected in the text.
Text is often fixed or seldom changed, pattern typically varies (looking for different words in the same document), pattern is often significantly shorter than the text.

Notation

Alphabet: Σ
Symbols in the text: $t_{1}, t_{2}, \ldots, t_{\mathrm{n}}$.
Symbols in the pattern: $p_{1}, p_{2}, \ldots, p_{m}$.
It holds $m \leq n$, usually $m \ll n$

Example

Text: ...task is very simple but it is used very freq...
Pattern: simple

NFA A_{3} which accepts just a single word $p_{1} p_{2} p_{3} p_{4}$.
$\mathrm{A}_{3} \longrightarrow(0) \xrightarrow{\boldsymbol{p}_{1}}(1) \xrightarrow{\boldsymbol{p}_{2}}(2) \xrightarrow{\mathrm{p}_{3}} \xrightarrow{\boldsymbol{p}_{4}}$ (4)

NFA A_{4} which accepts each word with suffix $p_{1} p_{2} p_{3} p_{4}$ and its transition table.

	p_{1}	p_{2}	p_{3}	p_{4}	z
0	0,1	0	0	0	O
1		2			
2			3		!
3				4	,
4					(1)

$$
z \in \Sigma-\{p 1, p 2, p 3, p 4\}
$$

repeated

NFA A 4 which accepts each word with suffix $p_{1} p_{2} p_{3} p_{4}$ and its transition table.
A_{4}

	$\begin{array}{llllll}p_{1} & p_{2} & p_{3} & p_{4} & z\end{array}$				
0	0,1	0	0	0	0
1		2			
2			3		
3				4	
4					
$z \in \Sigma-\{p 1, p 2, p 3, p 4\}$					

equivalently
DFA A_{5} is a deterministic equivalent of NFA A 4 .

example

NFA A_{6} which accepts each word with suffix abba and its transition table
A_{6}

DFA A_{7} is a deterministic equivalent of NFA A_{6}. It also accepts each word with suffix abba.

Note the structural difference between A_{5} and A_{7}.

NFA accepting exactly one word $p_{1} p_{2} p_{3} p_{4}$.

$$
\longrightarrow(0) \xrightarrow{p_{1}}(1) \xrightarrow{p_{2}}(2) \xrightarrow{p_{3}}(3) \xrightarrow{p_{4}} \text { (4) }
$$

NFA accepting any word with suffix $p_{1} p_{2} p_{3} p_{4}$.

$$
\xrightarrow[(1)]{\overbrace{}^{\Sigma} p_{1}} \xrightarrow{p_{2}}(2) \xrightarrow{p_{3}}(3)
$$

NFA accepting any word with substring (factor) $p_{1} p_{2} p_{3} p_{4}$ anywhere in it.

NFA accepting any word with substring (factor) $p_{1} p_{2} p_{3} p_{4}$ anywhere in it.

Can be used for searching, but the following reduction is more frequent.

Text search NFA for finding pattern $P=p_{1} p_{2} p_{3} p_{4}$ in the text.

Want to know the position of the pattern in the text?
Equip the transitions with a counter.

Example

NFA accepting any word with subsequence $p_{1} p_{2} p_{3} p_{4}$ anywhere in it.

Example

NFA accepting any word with subsequence $p_{1} p_{2} p_{3} p_{4}$ anywhere in it, one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence \mathbf{Q} whose Hamming distance from $p_{1} p_{2} p_{3} p_{4}$ is at most 1.

Search NFA can search for more than one pattern simultaneously.
The number of patterns can be
finite -- this leads also to a dictionary automaton (we will meet it later)
or infinite -- this leads to a regular language.

Chomsky language hierarchy remainder

Grammar Language

Type-0 Recursively enumerable Type-1 Context-sensitive

Type-2 Context-free
Type-3 Regular

Automaton

Turing machine Linear-bounded non-deterministic Turing machine Non-deterministic pushdown automaton Finite state automaton (NFA or DFA)

Only regular languages can be processed by NFA/DFA. More complex languages cannot. For example, any language containing well-formed parentheses is context-free and not regular and cannot be recognized by NFA/DFA.

Operations on regular languages

Let L_{1} and L_{2} be any languages. Then
$L_{1} \cup L_{2}$ is union of L_{1} and L_{2}. It is a set of all words which are in L_{1} or in L_{2}.
$L_{1} \cdot L_{2}$ is concatenation of L_{1} and L_{2}. It is a set of all words w for which holds $w=w_{1} w_{2}$ (concatenation of words w_{1} and w_{2}), where $w_{1} \in L_{1}$ and $w_{2} \in L_{2}$.
$L_{1}^{*} \quad$ is Kleene star or Kleene closure of language L_{1}. It is a set of all words which are concatenations of any number (incl. zero) of any words of L_{1} in any order.

Closure property

Whenever L_{1} and L_{2} are regular languages
then $\quad L_{1} \cup L_{2}, \quad L_{1} \cdot L_{2}, \quad L_{1}{ }^{*} \quad$ are regular languages too.
Example $L_{1}=\{001,0001,00001, \ldots\}, L_{2}=\{110,1110,11110, \ldots\}$.
$L_{1} \cup L_{2}=\{001,110,0001,1110,0001,1110, \ldots\}$
$L_{1} \cdot L_{2}=\{001110,0011110,00111110, \ldots, 0001110,00011110,000111110, \ldots\}$
$\mathrm{L}_{1}{ }^{*}=\{\varepsilon, 001,001001,001001001, \ldots 0010001,00100010001, \ldots$
$\ldots, 00100001,001000001, \ldots\} / /$ this one is not easy to list nicely... or is it?

Regular expressions defined recursively

Symbol ε is a regular expression.
Each symbol of alphabet Σ is a regular expression.
Whenever e_{1} and e_{2} are regular expressions then also strings
$\left(e_{1}\right), \quad e_{1}+e_{2}, \quad e_{1} e_{2}, \quad\left(e_{1}\right)^{*} \quad$ are regular expressions.
Languages represented by regular expressions (RE) defined recursively
$\mathrm{RE} \varepsilon$ represents language containing only empty string.
$\operatorname{RE} x$, where $x \in \Sigma$, represents language $\{x\}$.
Let RE's e_{1} and e_{2} represent languages L_{1} and L_{2}. Then
$R E\left(e_{1}\right)$ represents $L_{1}, \quad R E e_{1}+e_{2}$ represents $L_{1} \cup L_{2}$,
REs $e_{1} e_{2}, e_{1} \cdot e_{2}$ represent $L_{1} \cdot L_{2}, \quad R E\left(e_{1}\right)^{*}$ represents $L_{1}{ }^{*}$.

Examples

$0+1(0+1)^{*}$ all integers in binary without leading 0 's
$0 .(0+1)^{*} 1 \quad$ all finite binary fractions $\in(0,1)$ without trailing 0 's
$((0+1)(0+1+2+3+4+5+6+7+8+9)+2(0+1+2+3)):(0+1+2+3+4+5)(0+1+2+3+4+5+6+7+8+9)$
all 1440 day's times in format hh:mm from 00:00 to 23:59
(mon+(wedne+t(ue+hur))s+fri+s(atur+un))day
English names of days in the week
$(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^{*}((2+7) 5+(5+0) 0)$
all decimal integers ≥ 100 divisible by 25

Regular Expressions

Convert regular expression to NFA

Input: Regular expression R containing n characters of the given alphabet. Output: NFA recognizing language $L(R)$ described by R.

Create start state S
for each $k(1 \leq k \leq n)\{$
assign index k to the k-th character in R
// this makes all characters in R unique: $\mathrm{c}[1], \mathrm{c}[2], \ldots, \mathrm{c}[n]$.
create state $\mathrm{S}[k] \quad / / \mathrm{S}[k]$ corresponds directly to $\mathrm{c}[\mathrm{k}]$
\}
for each $k(1 \leq k \leq n)\{$
if $c[k]$ can be the first character in some string described by R then create transition $S \rightarrow S[k]$ labeled by $c[k]$ with index stripped off if $c[k]$ can be the last character in some string described by R then mark $\mathrm{S}[\mathrm{k}]$ as final state
for each $p(1 \leq p \leq n)$
if (c[k] can follow immediately after $c[p]$ in some string described by R) then create transition $S[p] \rightarrow S[k]$ labeled by $c[k]$ with index stripped off

NFA accepts L(R)

NFA searches the text for any occurence of any word of $L(R)$ $R=a^{*} b(c+a * b)^{*} b+c$
.The only difference from the NFA accepting R

Bonus

To find a subsequence representing a word $\in L(R)$, where R is a regular expression, do the following:

Create NFA acepting L(R)
Add self loops to the states of NFA:

1. Self loop labeled by Σ (whole alphabet) at the start state.
2. Self loop labeled $\Sigma-\{\mathrm{x}\}$ at each state whose outgoing transition(s) are labeled by single $x \in \Sigma$. // serves as an "optimized" wait loop
3. Self loop labeled by Σ at each state whose outgoing transition(s) are labeled by more than single symbol from Σ.// serves as an "usual" wait loop
4. No self loop to all other states. // which have no outgoing loop = final ones

Bonus

NFA searches the text for any occurence of any subsequence representing a word of $L(R)$
$R=a b+(a b c b+c c)^{*} a$

Transforming NFA which searches text for an occurence of a word of a given regular language into the equivalent DFA might take exponential space and thus also exponential time. Not always, but sometimes yes:

Consider regular expression $\mathbf{R}=\mathbf{a}(\mathbf{a}+\mathbf{b})(\mathbf{a}+\mathbf{b}) \ldots(\mathbf{a}+\mathbf{b})$ over alphabet $\{\mathbf{a}, \mathbf{b}\}$.
Text search NFA1 for R
NFA1

Mystery

Text search NFA2 for R, why not this one?

Search the text for more than just exact match

NFA with ε-transitions

The transition from one state to another can be performed without reading any input symbol. Such transition is labeled by symbol ε.

ε-closure

Symbol ε-CLOSURE (p) denotes the set of all states q, which can be reached from state p using only ε-transitions.
By definition, let ε - $\operatorname{CLOSURE}(p)=\{p\}$ when there is no ε-transition out from p.

Construction of equivalent NFA without ε-transitions

Input: NFA A with some ε-transitions.
Output: NFA A^{\prime} without ε-transitions.

1. $A^{\prime}=$ exact copy of A.
2. Remove all ε-transitions from A^{\prime}.
3. In A^{\prime} for each (q, a) do:
add to the set $\delta(p, a)$ all such states r for which it holds $q \in \varepsilon-\operatorname{CLOSURE}(p)$ and $\delta(q, a)=r$.
4. Add to the set of final states F in A^{\prime} all states p for which it holds $\varepsilon-\operatorname{CLOSURE}(p) \cap F \neq \varnothing$.
easy construction

NFA for search for any unempty substring of pattern $p_{1} p_{2} p_{3} p_{4}$ over alphabet Σ.
Note the ε-transitions.

Powerful trick!

Union of two or more NFA:
Create additional start state S and add ε-transitions from S to start states of all involved NFA's. Draw an example yourself!

Equivalent NFA for search for any unempty substring of pattern $p_{1} p_{2} p_{3} p_{4}$ with ε-transitions removed.

States 5, 9, 12 are unreachable. Transformation algorithm NFA -> DFA if applied, will neglect them.

	p_{1}	p_{2}	p_{3}	p_{4}	z	
0	0,1	0,6	0,10	0,13	0	
1		2			0	F
2			3		0	F
3				4	0	F
4					0	F
5		6	10	13	0	
6			7		0	F
7				8	0	F
8					0	F
9			10	13	0	
10				11	0	F
11					0	F
12				13	0	
13					0	

Transition table of NFA above without ε-transitions.

Transition table of DFA which is equivalent to previous NFA.

DFA in this case has less states than the equivalent NFA.
Q: Does it hold for any automaton of this type? Proof?

Text search using NFA simulation without transform to DFA

```
Input: NFA, text in array t,
```

```
SetOfStates S = eps_CLOSURE(q0), S_tmp;
int i = 1;
while ((i <= t.length) && (!S.empty())) {
    for (q in S) // for each state in S
        if (q.isFinal)
            print(q.final_state_info); // pattern found
    S_tmp = Set.empty(); // transiton to next
    for (q in S) // set of states
        S_tmp.union(eps_CLOSURE(delta(q, t[i])));
    S = S_tmp;
    i++; // next char in text
}
return S.containsFinalState(); // true or false
```

