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We process nodes of DAG in their topological order.
Denote by d[x] length of the path  which ends in x and its length  is maximal.

Charakteristic DP view "from the end to the beginning":
-- d[x] is set when values of d are known for all previous 

(= already processed) nodes in the topological order.
-- d[x] is the maximum of values

{d[y1] + w1,   d[y2] + w2, ..., d[yk] + wk}, 
where (y1, x), (y2, x) , ... are all edges ending in x 
and w1, w2, ..., are their respective weights. 

Longest path in DAG

y3y2y1

Topological order

Processed part of DAG Progress direction

w1

w2

w3 x
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-- d[x]is the maximum of values
{d[y1] + w1,   d[y2] + w2, ..., d[yk] + wk}, 
where (y1, x), (y2, x) , ... are all edges ending in x 
and w1, w2, ..., are their respective weights.

-- If all values {d[y1] + w1,  d[y2] + w2, ..., d[yk] + wk}
are negative then none of them contributes to the longest path
and the value of d[x] is reset:  d[x] = 0.

-- The node yj, for which the value d[yj] + wj is maximal and non-negative,
is set as a predecessor of x on the longest path.

y3y2y1

30

40

10 x
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d[y1]=10 d[y2]=20
p[x]=y2
d[x]=60d[y3]=35

Longest path in DAG
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Example

Find the longest path and its length.

Longest path in DAG
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d=0

d = max {0+6} 
= 6

p=1

p=nil

Longest path in DAG
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d=0
d = max {0+-2,

6+2} 
= 8

p = 2

d=6
p=nil p=1

Longest path in DAG
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d=0 d=6 d=8
d = max {0+8,

6+3,
8+-2} 

= 9

p = 2

p=nil p=1 p=2

Longest path in DAG
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d=0 d=6 d=8
d = max {6+-1,

8+-1} 
= 7

p = 3

d=9
p=nil p=1 p=2 p=2

Longest path in DAG
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d=0 d=6 d=8
d = max {0+5,

8+1,
9+3,
7+4} 

= 12

p = 4

d=9 d=7
p=nil p=1 p=2 p=2 p=3

Longest path in DAG
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d=0 d=6 d=8
d = max {6+7,

7+-3,
12+2} 

= 14

p = 6

d=9 d=7 d=12
p=nil p=1 p=2 p=2 p=3 p=4

Longest path in DAG
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d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 p=2 p=3 p=4 p=6

Length of the longest path:  14
The longest path itself:  1 -- 2 -- 4 -- 6 -- 7

Longest path in DAG
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0. allocate memory for distance and predecessor of each node 

1. for each x in V(G) {
x.dist = negInfinity         
x.pred = null 

}   

// supposing nodes are processed
// in ascending topological order
2. for each node x in V(G)

for each edge e = (y, x) in E(G)
if (x. dist < y.dist + e.weight) { 

x. dist = y.dist + e.weight
x.pred = y;   

} 
if (x. dist < 0) x.dist = 0;     // avoid negative path lengths

}

0.  Complexity (N)

1.  Complexity (N)

2.  Complexity (M), 
each edge is visited exactly
once and it is processed in 
constant time.

Complexity: (N+M)   
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Longest path in DAG
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2. for each node    x    in V(G) {
if (x. dist < 0) x.dist = 0;  
for each edge e = (x, y) in E(G)

if (y. dist < x.dist + e.weight) { 
y. dist = x.dist + e.weight
y.pred = x;   

} 
}

2. for each node   x    in V(G) {
for each edge e = (y, x) in E(G)

if (x. dist < y.dist + e.weight) { 
x. dist = y.dist + e.weight
x.pred = y;   

} 
if (x. dist < 0) x.dist = 0;  

}

yyy y yyx

order of processing 
= topological order 

order of processing 
= topological order 

Variant I

x

Variant II
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Longest path in DAG
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Actual maximum path is 3 -- 5 -- 7 which weight is 4.
Algorithm limited to non-negative weights finds
only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2. 

Algorithms presented in the literature and on the web
often solve the maximum path in DAG problem only for non-negative
edge weights and  do not mention explicitely this limitation.
Those algorithms cannot handle DAG containing negative weight edges.

Warning

Incorrect result produced by algorithm 
expecting only non-engative edge weights 

maximal d!
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Longest path in DAG
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Each path from the root to the leaf is 
optimal, its weight is N·(a+b).

Number of all paths is
Comb(2N, N), it holds that
2N < Comb(2N, N) < 4N.

The numbert of optimal paths thus 
grows exponentially with the value of N.

0

N
1 

10 
20 
30 
40 

# of optimal paths
2 

184756 
137846528820 

118264581564861424 
107507208733336176461620 
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Problem of reconstucting optimal paths
-- the number of paths can be too high.

Example

Longest path in DAG


