
24

We process nodes of DAG in their topological order.
Denote by d[x] length of the path which ends in x and its length is maximal.

Charakteristic DP view "from the end to the beginning":
-- d[x] is set when values of d are known for all previous

(= already processed) nodes in the topological order.
-- d[x] is the maximum of values

{d[y1] + w1, d[y2] + w2, ..., d[yk] + wk},
where (y1, x), (y2, x) , ... are all edges ending in x
and w1, w2, ..., are their respective weights.

Longest path in DAG

y3y2y1

Topological order

Processed part of DAG Progress direction

w1

w2

w3 x

A4B33ALG 2015/10

25

-- d[x]is the maximum of values
{d[y1] + w1, d[y2] + w2, ..., d[yk] + wk},
where (y1, x), (y2, x) , ... are all edges ending in x
and w1, w2, ..., are their respective weights.

-- If all values {d[y1] + w1, d[y2] + w2, ..., d[yk] + wk}
are negative then none of them contributes to the longest path
and the value of d[x] is reset: d[x] = 0.

-- The node yj, for which the value d[yj] + wj is maximal and non-negative,
is set as a predecessor of x on the longest path.

y3y2y1

30

40

10 x

A4B33ALG 2015/10

d[y1]=10 d[y2]=20
p[x]=y2
d[x]=60d[y3]=35

Longest path in DAG

26

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

Example

Find the longest path and its length.

Longest path in DAG

27

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0

d = max {0+6}
= 6

p=1

p=nil

Longest path in DAG

28

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0
d = max {0+-2,

6+2}
= 8

p = 2

d=6
p=nil p=1

Longest path in DAG

29

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {0+8,

6+3,
8+-2}

= 9

p = 2

p=nil p=1 p=2

Longest path in DAG

30

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {6+-1,

8+-1}
= 7

p = 3

d=9
p=nil p=1 p=2 p=2

Longest path in DAG

31

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {0+5,

8+1,
9+3,
7+4}

= 12

p = 4

d=9 d=7
p=nil p=1 p=2 p=2 p=3

Longest path in DAG

32

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8
d = max {6+7,

7+-3,
12+2}

= 14

p = 6

d=9 d=7 d=12
p=nil p=1 p=2 p=2 p=3 p=4

Longest path in DAG

33

61 2 3 4 5 6 72 -2 4 2

7

5

-1

3
8

-2

-1
1

-3

3

A4B33ALG 2015/10

d=0 d=6 d=8 d=9 d=7 d=12 d=14
p=nil p=1 p=2 p=2 p=3 p=4 p=6

Length of the longest path: 14
The longest path itself: 1 -- 2 -- 4 -- 6 -- 7

Longest path in DAG

34

0. allocate memory for distance and predecessor of each node

1. for each x in V(G) {
x.dist = negInfinity
x.pred = null

}

// supposing nodes are processed
// in ascending topological order
2. for each node x in V(G)

for each edge e = (y, x) in E(G)
if (x. dist < y.dist + e.weight) {

x. dist = y.dist + e.weight
x.pred = y;

}
if (x. dist < 0) x.dist = 0; // avoid negative path lengths

}

0. Complexity (N)

1. Complexity (N)

2. Complexity (M),
each edge is visited exactly
once and it is processed in
constant time.

Complexity: (N+M)

A4B33ALG 2015/10

Longest path in DAG

35

2. for each node x in V(G) {
if (x. dist < 0) x.dist = 0;
for each edge e = (x, y) in E(G)

if (y. dist < x.dist + e.weight) {
y. dist = x.dist + e.weight
y.pred = x;

}
}

2. for each node x in V(G) {
for each edge e = (y, x) in E(G)

if (x. dist < y.dist + e.weight) {
x. dist = y.dist + e.weight
x.pred = y;

}
if (x. dist < 0) x.dist = 0;

}

yyy y yyx

order of processing
= topological order

order of processing
= topological order

Variant I

x

Variant II

A4B33ALG 2015/10

Longest path in DAG

36

2

3

4

5

8
-3

22
-3

1
-1

2 1
-4

d= -3 d= -1 d= 1

d= -2
d= 0

d= -1 d= 1 d= 2

7

6

Actual maximum path is 3 -- 5 -- 7 which weight is 4.
Algorithm limited to non-negative weights finds
only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2.

Algorithms presented in the literature and on the web
often solve the maximum path in DAG problem only for non-negative
edge weights and do not mention explicitely this limitation.
Those algorithms cannot handle DAG containing negative weight edges.

Warning

Incorrect result produced by algorithm
expecting only non-engative edge weights

maximal d!

A4B33ALG 2015/10

Longest path in DAG

37

1 20 N

1

2

N

a a a a

a a a a

a a a a

a a a a

b b b b

b b b b

b b b b

b b b b

Each path from the root to the leaf is
optimal, its weight is N·(a+b).

Number of all paths is
Comb(2N, N), it holds that
2N < Comb(2N, N) < 4N.

The numbert of optimal paths thus
grows exponentially with the value of N.

0

N
1

10
20
30
40

of optimal paths
2

184756
137846528820

118264581564861424
107507208733336176461620

A4B33ALG 2015/10

Problem of reconstucting optimal paths
-- the number of paths can be too high.

Example

Longest path in DAG

