Longest path in DAG

We process nodes of DAG in their topological order.
Denote by $\mathrm{d}[\mathrm{x}]$ length of the path which ends in x and its length is maximal.
Charakteristic DP view "from the end to the beginning":
-- $\mathrm{d}[\mathrm{x}]$ is set when values of d are known for all previous
(= already processed) nodes in the topological order.
-- $\mathrm{d}[\mathrm{x}]$ is the maximum of values

$$
\{d[y 1]+w 1, \quad d[y 2]+w 2, \ldots, d[y k]+w k\},
$$

where ($\mathrm{y} 1, \mathrm{x}$), ($\mathrm{y} 2, \mathrm{x}$) , \ldots are all edges ending in x and $\mathrm{w} 1, \mathrm{w} 2, \ldots$, are their respective weights.

Longest path in DAG

-- $\mathrm{d}[\mathrm{x}]$ is the maximum of values

$$
\{d[y 1]+w 1, \quad d[y 2]+w 2, \ldots, d[y k]+w k\},
$$

where ($\mathrm{y} 1, \mathrm{x}$), ($\mathrm{y} 2, \mathrm{x}$) , \ldots are all edges ending in x and $w 1, w 2, \ldots$, are their respective weights.
-- If all values $\{d[y 1]+w 1, d[y 2]+w 2, \ldots, d[y k]+w k\}$ are negative then none of them contributes to the longest path and the value of $d[x]$ is reset: $d[x]=0$.
-- The node $y j$, for which the value $\mathrm{d}[\mathrm{yj}]+\mathrm{wj}$ is maximal and non-negative, is set as a predecessor of x on the longest path.

Longest path in DAG

Example

Find the longest path and its length.

Longest path in DAG

Length of the longest path: 14 The longest path itself: 1 -- 2 -- 4 -- 6 -- 7

Longest path in DAG

0. allocate memory for distance and predecessor of each node
1. for each x in $V(G)$ \{
x.dist $=$ negInfinity
x.pred = null
\}
II supposing nodes are processed
II in ascending topological order
2. for each node x in $V(G)$
for each edge $e=(y, x)$ in $E(G)$
if (x. dist < y.dist + e.weight) \{
x. dist $=y . d i s t+e . w e i g h t$
x. pred $=y$;
\}
if $(x$. dist $<0)$ x.dist $=0 ; \quad / /$ avoid negative path lengths
\}

Complexity: $\Theta(\mathrm{N}+\mathrm{M})$

Longest path in DAG

Variant I

```
    2. for each node X in V(G) {
        for each edge e = (y,x) in E(G)
            if (x. dist < y.dist + e.weight) {
            x. dist = y.dist + e.weight
            x.pred = y;
        }
        if (x. dist < 0) x.dist = 0;
}
```


order of processing = topological order

Variant II

2. for each node X in $V(G)$ \{ if (x. dist <0) x.dist $=0$; for each edge $e=(x, y)$ in $E(G)$ if (y. dist < x.dist + e.weight) \{ y. dist = x.dist + e.weight y. pred = x;
\}
\}

Longest path in DAG

Warning

Algorithms presented in the literature and on the web often solve the maximum path in DAG problem only for non-negative edge weights and do not mention explicitely this limitation.
Those algorithms cannot handle DAG containing negative weight edges.

> Incorrect result produced by algorithm expecting only non-engative edge weights

Actual maximum path is $3-5-7$ which weight is 4 . Algorithm limited to non-negative weights finds only suboptimal path 1 -- 2 -- 4 -- 6 which weight is 2 .

Longest path in DAG

Problem of reconstucting optimal paths -- the number of paths can be too high.

Each path from the root to the leaf is optimal, its weight is $N \cdot(a+b)$.

Number of all paths is Comb(2N, N), it holds that $2^{\mathrm{N}}<\operatorname{Comb}(2 \mathrm{~N}, \mathrm{~N})<4^{\mathrm{N}}$.

The numbert of optimal paths thus grows exponentially with the value of \mathbf{N}.

N	\# of optimal paths
1	2
10	184756
20	137846528820
30	118264581564861424
40	107507208733336176461620

