Seminar 1: Asymptotic Complexity

Solved examples

Tomáś Chamra Marko Genyk-Berezovskyj

Faculty of Electrical Engineering
Czech Technical University in Prague

Algorithms
 Spring 2017

Triangles on a Circle
 Assignment as proposed by Tomás Valla

- There are N points labeled $1,2, \ldots, \mathrm{~N}$ which are irregularly positioned on the perimeter of a given circle. The task is to compute the number of such triangles which vertices are in the labeled points and which do not contain in their interior the circle center.
- Suggest an algorithm and determine its asymptotic complexity.
- Solve an analogous problem with convex quadrilaterals instead of triangles.

Triangles on a Circle

Solution I

Tomáš Chamra, Marko Genyk-Berezovskyj

Triangles on a Circle

Solution II

Tomáš Chamra, Marko Genyk-Berezovskyj

Triangles on a Circle

Solution III

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Triangles on a Circle

Solution IV

Tomáš Chamra, Marko Genyk-Berezovskyj

Triangles on a Circle

Solution V

[^0]Seminar 1: Asymptotic Complexity

Triangles on a Circle

Solution VI

- All triangles have less than 180° between first and last point

Triangles on a Circle

Solution VI

- All triangles have less than 180° between first and last point
- Idea: Sliding window
- Window covering 180° range (excluding exactly 180°)
- Always starts in some point on circle
- We can make triangles consisting of starting point and any other two points in the window
- Works exactly the same way for convex quadrilaterals, with the same complexity

Triangles on a Circle

Solution VII

Tomáš Chamra, Marko Genyk-Berezovskyj
Seminar 1: Asymptotic Complexity

Triangles on a Circle

Solution VIII

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Triangles on a Circle

Solution IX

- Low complexity: $\Theta(N)$ as we only care about number of triangles but not their exact coordinates
- If we use a queue, we can monitor exact number of points present in the window
- Number of triangles for each window step:

$$
\frac{(P-1) \cdot(P-2)}{2}
$$

where P is number of points in the window, including the starting point

Binary Representation

Assignment

- The task is to print all such positive integer smaller than N which binary representation contains exactly three 1's.
- What is the asymptotic complexity of an effective algorithm?
- We do not consider an algorithm linear in N to be effective.

Binary Representation

Solution I

- For illustration purposes, we have the number 485
- Binary representation of this number is 111100101

Binary Representation

Solution I

- For illustration purposes, we have the number 485
- Binary representation of this number is 111100101
- We can prove that length of binary representation is equal to $\left\lfloor\log _{2}(N)\right\rfloor+1$ for any positive number N
- In our example, the length is $\left\lfloor\log _{2}(485)\right\rfloor+1=9$

Binary Representation

Solution II

- Let's find all numbers with binary representation with 9 bits, having exactly three ones in their representation
- for $(0<=\mathrm{i}<9)$:

$$
\begin{aligned}
& \text { for }(0<=j<i) \text { : } \\
& \quad \text { for }(0<=k<j) \text { : } \\
& \quad \text { number }=(1 « i)|(1 « j)|(1 « k)
\end{aligned}
$$

- Finall, we have to check the results if they're ≤ 485

Binary Representation

Solution III

- Complexity is $\Theta(\log (N) \cdot \log (N) \cdot \log (N))=\Theta\left(\log ^{3}(N)\right)$

Binary Representation

Solution III

- Complexity is $\Theta(\log (N) \cdot \log (N) \cdot \log (N))=\Theta\left(\log ^{3}(N)\right)$
- By the way, $\log ^{p}(N) \in O(N)$ for any positive p

Crazy Factorial

Assignment

- Describe how to find the value for $N=10^{7}$:

$$
\log _{10}\left(\log _{10}\left(N^{(N!)}\right)\right)
$$

- How long will it take to your personal computer to compute the value? The base of logarithm is 10 .
- Do not use approximations like Stirling's formula etc.

Crazy Factorial

Solution I

- We have our original formula:

$$
\log _{10}\left(\log _{10}\left(N^{(N!)}\right)\right)
$$

Crazy Factorial

Solution I

- We have our original formula:

$$
\log _{10}\left(\log _{10}\left(N^{(N!)}\right)\right)
$$

- Let's factor our the power from the inner factorial:

$$
\log _{10}\left(N!\cdot \log _{10}(N)\right)
$$

Crazy Factorial

Solution I

- We have our original formula:

$$
\log _{10}\left(\log _{10}\left(N^{(N!)}\right)\right)
$$

- Let's factor our the power from the inner factorial:

$$
\log _{10}\left(N!\cdot \log _{10}(N)\right)
$$

- As we know, logarithm of a product is equal to the sum of the logarithms:

$$
\log _{10}(N!)+\log _{10}\left(\log _{10}(N)\right)
$$

Crazy Factorial

Solution II

- By the way, factorial of N ! is multiplication $1 \cdot 2 \cdot \ldots \cdot N$, right?:

$$
\log _{10}\left(\prod_{i=1}^{N} i\right)+\log _{10}\left(\log _{10}(N)\right)
$$

Crazy Factorial

Solution II

- By the way, factorial of N ! is multiplication $1 \cdot 2 \cdot \ldots \cdot N$, right?:

$$
\log _{10}\left(\prod_{i=1}^{N} i\right)+\log _{10}\left(\log _{10}(N)\right)
$$

- We still know that rule about logarithm of product...:

$$
\sum_{i=1}^{N} \log _{10}(i)+\log _{10}\left(\log _{10}(N)\right)
$$

Crazy Factorial

Solution III

- The assignment says that $N=10^{7}$:

$$
\sum_{i=1}^{10^{7}} \log _{10}(i)+\log _{10}\left(\log _{10}\left(10^{7}\right)\right)
$$

Crazy Factorial

Solution III

- The assignment says that $N=10^{7}$:

$$
\sum_{i=1}^{10^{7}} \log _{10}(i)+\log _{10}\left(\log _{10}\left(10^{7}\right)\right)
$$

- We need to calculate $10^{7}+2$ logarithms and 10^{7} sums

Crazy Factorial

Solution III

- The assignment says that $N=10^{7}$:

$$
\sum_{i=1}^{10^{7}} \log _{10}(i)+\log _{10}\left(\log _{10}\left(10^{7}\right)\right)
$$

- We need to calculate $10^{7}+2$ logarithms and 10^{7} sums
- Single processor core in your computer can perform cca $2 \cdot 10^{9}$ operations per second

Further Reading

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[^0]: Tomáš Chamra, Marko Genyk-Berezovskyj

