Seminar 1: Asymptotic Complexity Solved examples

Tomáš Chamra Marko Genyk-Berezovskyj

Faculty of Electrical Engineering Czech Technical University in Prague

> Algorithms Spring 2017

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= シQ@

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Assignment as proposed by Tomáš Valla

- There are N points labeled 1, 2, ..., N which are irregularly positioned on the perimeter of a given circle. The task is to compute the number of such triangles which vertices are in the labeled points and which do not contain in their interior the circle center.
- Suggest an algorithm and determine its asymptotic complexity.
- Solve an analogous problem with convex quadrilaterals instead of triangles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= シQ@

Assignment Solution

Triangles on a Circle Solution I

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution II

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution III

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution IV

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution V

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution VI

 \bullet All triangles have less than 180° between first and last point

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution VI

- $\bullet\,$ All triangles have less than 180° between first and last point
- Idea: Sliding window
 - Window covering 180° range (excluding exactly 180°)
 - Always starts in some point on circle
 - We can make triangles consisting of starting point and any other two points in the window

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

• Works exactly the same way for convex quadrilaterals, with the same complexity

Assignment Solution

Triangles on a Circle Solution VII

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution VIII

Tomáš Chamra, Marko Genyk-Berezovskyj

Seminar 1: Asymptotic Complexity

Assignment Solution

Triangles on a Circle Solution IX

- Low complexity: Θ(N) as we only care about number of triangles but not their exact coordinates
- If we use a queue, we can monitor exact number of points present in the window
- Number of triangles for each window step:

$$\frac{(P-1)\cdot(P-2)}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

where P is number of points in the window, including the starting point

Assignment Solution

Binary Representation Assignment

- The task is to print all such positive integer smaller than N which binary representation contains exactly three 1's.
- What is the asymptotic complexity of an effective algorithm?
- We do not consider an algorithm linear in N to be effective.

Binary Representation Solution I

- For illustration purposes, we have the number 485
- Binary representation of this number is 111100101

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Binary Representation Solution I

- For illustration purposes, we have the number 485
- Binary representation of this number is 111100101
- We can prove that length of binary representation is equal to $\lfloor \log_2(N) \rfloor + 1$ for any positive number N
- $\bullet~$ In our example, the length is $\lfloor \log_2{(485)} \rfloor + 1 = 9$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Binary Representation Solution II

- Let's find all numbers with binary representation with 9 bits, having exactly three ones in their representation
- for $(0 \le i \le 9)$: for $(0 \le j \le i)$: for $(0 \le k \le j)$: number = $(1 \le i) | (1 \le j) | (1 \le k)$
- $\bullet\,$ Finall, we have to check the results if they're $\leq 485\,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Assignment Solution

Binary Representation Solution III

• Complexity is $\Theta(\log(N) \cdot \log(N) \cdot \log(N)) = \Theta(\log^3(N))$

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Binary Representation Solution III

- Complexity is $\Theta(\log(N) \cdot \log(N) \cdot \log(N)) = \Theta(\log^3(N))$
- By the way, $log^{p}(N) \in O(N)$ for any positive p

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

• Describe how to find the value for $N = 10^7$:

 $\log_{10}\left(\log_{10}\left(N^{(N!)}\right)\right)$

- How long will it take to your personal computer to compute the value? The base of logarithm is 10.
- Do not use approximations like Stirling's formula etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Crazy Factorial Solution I

• We have our original formula:

 $\log_{10}(\log_{10}(N^{(N!)}))$

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Crazy Factorial Solution I

• We have our original formula:

 $\log_{10} (\log_{10} (N^{(N!)}))$

• Let's factor our the power from the inner factorial:

 $\log_{10}\left(N!\cdot\log_{10}\left(N\right)\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Crazy Factorial Solution I

• We have our original formula:

 $\log_{10} (\log_{10} (N^{(N!)}))$

• Let's factor our the power from the inner factorial:

 $\log_{10}\left(N! \cdot \log_{10}\left(N\right)\right)$

• As we know, logarithm of a product is equal to the sum of the logarithms:

$$\log_{10}\left(N!\right) + \log_{10}\left(\log_{10}\left(N\right)\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Assignment Solution

Crazy Factorial Solution II

• By the way, factorial of N! is multiplication $1 \cdot 2 \cdot ... \cdot N$, right?:

$$\log_{10} (\prod_{i=1}^{N} i) + \log_{10} (\log_{10} (N))$$

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Crazy Factorial Solution II

• By the way, factorial of N! is multiplication $1 \cdot 2 \cdot ... \cdot N$, right?:

$$\log_{10} \left(\prod_{i=1}^{N} i\right) + \log_{10} \left(\log_{10} (N)\right)$$

• We still know that rule about logarithm of product...:

$$\sum_{i=1}^{N} \log_{10}\left(i\right) + \log_{10}\left(\log_{10}\left(N\right)\right)$$

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のなべ

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Crazy Factorial Solution III

• The assignment says that $N = 10^7$:

$$\sum_{i=1}^{10^7} \log_{10}{(i)} + \log_{10}{(\log_{10}{(10^7)})}$$

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Assignment Solution

Crazy Factorial Solution III

• The assignment says that $N = 10^7$:

$$\sum_{i=1}^{10^{7}} \log_{10}{(i)} + \log_{10}{(\log_{10}{(10^{7})})}$$

 \bullet We need to calculate 10^7+2 logarithms and $10^7~{\rm sums}$

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity

Crazy Factorial Solution III

• The assignment says that $N = 10^7$:

$$\sum_{i=1}^{10^{7}} \log_{10}{(i)} + \log_{10}{(\log_{10}{(10^{7})})}$$

- We need to calculate $10^7 + 2$ logarithms and 10^7 sums
- Single processor core in your computer can perform cca $2\cdot 10^9$ operations per second

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Further Reading

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein Introduction to Algorithms, Third Edition. The MIT Press, 2009.

Tomáš Chamra, Marko Genyk-Berezovskyj Seminar 1: Asymptotic Complexity