
Evolutionary Algorithms: Introduction

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a4m33bia/start

pContents

� Introduction to Evolutionary Algorithms (EAs)

− pioneers of EAs,

− Simple Genetic Algorithm (SGA),

− areas for EA’s applications,

− SGA example: Evolving strategy for an artificial ant problem.

− Schema theory – a schema, its properties, exponential growth equation and its conse-

quences.

� Real-coded EAs

− Evolution strategies,

− crossover operators for real-coded representation,

− differential evolution.

� EAs for dynamic optimization problems.

� Multi-objective EAs (MOEAs).

− concept of dominance and Pareto-optimality,

− NSGA, NSGA-II, SPEA, SPEA2.

� �Evolutionary Algorithms: Introduction

� Genetic Programming (GP) and Grammatical Evolution (GE).

− tree representation, closure condition, ’strong typing’,

− application of GP to artificial ant problem,

− other examples.

� �Evolutionary Algorithms: Introduction

pEvolutionary Programming

:: Lawrence J. Fogel in 1960: Evolutionary programming (1960)

:: The goal is to evolve an ”intelligent behavior” that would exhibit the composite ability to

(1) predict one’s environment, coupled with (2) a translation of the predictions into a suitable

response in light of the given goal.

� the environment was described as a sequence of symbols taken from a finite alphabet,

� finite state machines (FSMs) were used for representing the required behavior.

:: Five modes of mutation

� add a state,

� delete a state,

� change the initial state,

� change an output symbol,

� change a next-state transition.

� �Evolutionary Algorithms: Introduction

pEvolutionary Programming: Prediction experiments

:: The goal was to evolve a population of FSMs that would predict the next symbol of the

periodic sequence consisting of (101110011101)∗ in one period.

� The alphabet for the FSMs was 0, 1.

� Evolution was started with a training set consisting of the first 20 symbols of the cyclic

sequence, which served as the initial observation.

� A population of random FSMs was generated

and evolved for five generations.

� The evaluation function for evolving the pop-

ulation was the mean absolute error over the

symbols in the training set.

� Then, the next symbol was added to the

training set (as an additional observation)

and the population was evolved for another

five generations.

� This was repeated 300 times, resulting in a

total of 1500 generations.
c©David B. Fogel and Kumar Chellapilla: Revisiting Evolutionary Programming,

Aerospace/Defense Sensing and controls, Orlando, Apr. 1998.

� �Evolutionary Algorithms: Introduction

pEvolution Strategies: Optimization of a Two-Phase Nozzle

:: Ingo Rechenberg and Hans-Paul Schwefel: Evolution Strategy (early 1960s)

:: The task was to determine the internal shape of a two-phase jet nozzle with maximum thrust

under constant starting conditions.

� The nozzles were built of conical pieces such that no discontinuity within the internal shape

was possible.

� Every nozzle shape could be represented by its overall length and the inside diameters at the

borders between the segments (every 10mm).

� For technical reasons the incoming diameter of the first segment had to be 32mm and the

smallest diameter was fixed to 6mm resulting in an convergent-divergent structure of the

nozzles.

http://ls11-www.cs.uni-dortmund.de/people/kursawe/Demos/Duese/dueseGIFE.html

� �Evolutionary Algorithms: Introduction

pEvolution Strategies: Optimization of a Two-Phase Nozzle

:: (1+1) Evolution Strategy.

� The genotype of each nozzle had the following form: Z1, Z2, D(−nc), ..., D(−1), D(1), ..., D(nd),

where Z1 and Z2 denote the number of segments in the convergent (divergent, respectively)

part of the nozzle, i.e. the number of segments in front of or behind the smallest diameter.

D(−nc), ..., D(−1) designate the diameters in the convergent part and D(1), ..., D(nd) those

in the divergent part of the nozzle.

� Mutation was carried out in the following form:

− Z1 and Z2 were mutated with the help of a probability table that puts a stronger emphasis

on no mutation at all.

− According to the new lengths Z1’ or Z2’, segments were added or deleted at positions

chosen at random.

In the case of gene duplication the additional element(s) had the same diameter as the

element to be duplicated.

− Finally, all diameters Di, i = -nc, ..., -1, 1, ..., nd are varied in 2mm steps.

� �Evolutionary Algorithms: Introduction

pEvolutionary Algorithms: Characteristics

:: EA are stochastic optimization algorithms

� Stochastic – but not random search,

� Use an analogy of natural evolution

− genetic inheritance (J.G. Mendel) – the basic principles of transference of hereditary fac-

tors from parent to offspring – genes, which present hereditary factors, are lined up on

chromosomes.

− strife for survival (Ch. Darwin) – the fundamental principle of natural selection – is the

process by which individual organisms with favorable traits are more likely to survive and

reproduce.

� Not fast in some sense – population-based algorithm,

� Robust – efficient in finding good solutions in difficult searches.

� �Evolutionary Algorithms: Introduction

pEA: Vocabulary

:: Vocabulary borrowed from natural genetics

� Individual (chromosome + its quality measure ”fitness value”) – a solution to a problem.

� Chromosome – entire representation of the solution.

� Fitness – quality measure assigned to an individual, expresses how well it is adapted to the

environment.

� Gene (also features, characters) – elementary units from which chromosomes are made.

− each gene is located at certain place of the chromosome called locus (pl. loci),

− a particular value for a locus is an allele.

example: the ”thickness” gene (which might be at locus 8) might be set to allele 2,

meaning its second-thinnest value.

� Genotype – what’s on the chromosome.

� Phenotype – what it means in the problem context (e.g., binary sequence may map to

integers or reals, or order of execution, etc.).

� �Evolutionary Algorithms: Introduction

pRepresentation

:: Problem can be represented as

� binary string –

� real-valued string –

� string of chars –

� or as a tree

� or as a graph, and others.

� �Evolutionary Algorithms: Introduction

pEvaluation Function

:: Objective (Fitness) function

� the only information about the sought solution the algorithm dispose of,

� must be defined for every possible chromosome.

:: Fitness function may be

� multimodal,

� discrete,

� multidimensional,

� nonlinear,

� noisy,

� multiobjective.

:: Fitness does not have to be define analytically

� simulation results,

� classification success rate.

:: Fitness function should not be too costly!!!

� �Evolutionary Algorithms: Introduction

pExample: Coding & Evaluation

:: Function optimization

� maximization of f (x, y) = x2 + y2,

� parameters x and y take on values from interval < 0, 31 >,

� and are code on 5 bits each.

� �Evolutionary Algorithms: Introduction

pEvolutionary Cycle

� �Evolutionary Algorithms: Introduction

pIdealized Illustration of Evolution

� Uniform sampled population. � Population converged to promising regions.

� �Evolutionary Algorithms: Introduction

pInitialization

:: Random

� randomly generated solutions,

� no prior information about the shape of the sought solution,

� relies just on ”lucky” sampling of the whole search space by a finite set of samples.

:: Informed (pre-processing)

� (meta)heuristic routines used for seeding the initial population,

� biased random generator sampling regions of the search space that are likely to contain the

sought solutions,

+ may help to find better solutions,

+ may speed up the search process,

– may cause irreversible focusing of the search process on regions with local optima.

� �Evolutionary Algorithms: Introduction

pReproduction

:: Models nature’s survival-of-fittest principle

� prefers better individuals to the worse ones,

� still, every individual should have a chance to reproduce.

:: Roulette wheel

� probability of choosing some solution is di-

rectly proportional to its fitness value

:: Other methods

� Stochastic Universal Sampling,

� Tournament selection,

� Reminder Stochastic Sampling.

� �Evolutionary Algorithms: Introduction

pGenetic Operators: Crossover

:: Idea

� given two well-fit solutions to the given problem, it is possible to get a new solution by properly

mixing the two that is even better than both its parents.

:: Role of crossover

� sampling (exploration) of the search space

Example: 1-point crossover

� �Evolutionary Algorithms: Introduction

pGenetic Operators: Mutation

:: Role of mutation

� preservation of a population diversity,

� minimization of a possibility of loosing some important piece of genetic information.

Example: Single bit-flipping mutation

� �Evolutionary Algorithms: Introduction

pReplacement Strategy

:: Replacement strategy defines

� how big portion of the current generation will be replaced in each generation, and

� which solutions in the current population will be replaced by the newly generated ones.

:: Two extreme cases

� Generational – the whole old population is completely rebuild in each generation (analogy

of short-lived species).

� Steady-state – just a few individuals are replaced in each generation (analogy of longer-lived

species).

� �Evolutionary Algorithms: Introduction

pApplication Areas of Evolutionary Algorithms

:: EAs are popular for their

� simplicity,

� effectiveness,

� robustness.

:: Holland: ”It’s best used in areas where you don’t really have a good idea what the solution

might be. And it often surprises you with what you come up with.”

:: Applications

� control,

� engineering design,

� image processing,

� planning & scheduling,

� VLSI circuit design,

� network optimization & routing problems,

� optimal resource allocation,

� marketing,

� credit scoring & risk assessment,

� and many others.

� �Evolutionary Algorithms: Introduction

pMultiple Traveling Salesmen Problem

:: Rescue operations planning

� Given N cities and K agents, find an opti-

mal tour for each agent so that every city is

visited exactly once.

� A typical criterion to be optimized is the

overall time spent by the squad (i.e., the

slowest team member) during the task ex-

ecution.

� �Evolutionary Algorithms: Introduction

pArtificial Ant Problem

:: Santa Fe trail

� 32× 32 grid with 89 food pieces.

� Obstacles

− 1×, 2× strait,

− 1×, 2×, 3× right/left.

:: Ant capabilities

� detects the food right in front of

him in direction he faces.

� actions observable from outside

− MOVE – makes a step and eats

a food piece if there is some,

− LEFT – turns left,

− RIGHT – turns right,

− NO-OP – no operation.

:: Goal is to find a strategy that would navigate an ant through the grid so that it finds all the

food pieces in the given time (600 time steps).

� �Evolutionary Algorithms: Introduction

pArtificial Ant Problem: GA Approach

:: Collins a Jefferson 1991, standard GA using binary representation

:: Representation

� strategy represented by finite state machine,

� table of transitions coded as binary chromosomes of fixed length.

Example: 4-state FSM, 32-bit long chromosomes

� �Evolutionary Algorithms: Introduction

pArtificial Ant Problem: Example cont.

:: Ant behavior

� What happens if the ant hits an obstacle?

� What is strange with transition from state 01

to the initial state 00?

� When does the ant succeed?

� Is the number of states sufficient to solve the

problem?

� Do all of the possible 32-bit chromosomes

represent a feasible solution?

� �Evolutionary Algorithms: Introduction

pArtificial Ant Problem: GA result

:: Representation

� 32 states,

� 453 = 64× 7 + 5 bits !!!

:: Population size: 65.536 !!!

:: Number of generations: 200

:: Total number of samples tried: 13× 106 !!!

� �Evolutionary Algorithms: Introduction

pWhy and How Evolutionary Algorithms Work?

:: Schema theory – tries to analyze effect of selection, crossover and mutation in order to

answer the above questions. In its original form it assumes:

� binary representation,

� proportionate roulette wheel selection,

� 1-point crossover and bit-flip mutation.

� �Evolutionary Algorithms: Introduction

pSchema theory

:: Schema – a template, which defines set of solutions from the search space with certain specific

similarities.

� consists of 0s, 1s (fixed values) and wildcard symbols * (any value),

� covers 2r strings, where r is a number of ∗ used in the schema.

Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

:: Schema properties

� Defining length δ(S) (compactness) – distance between first and last non-* in a schema

(= number of positions where 1-point crossover can disrupt it).

� Order o(S) (specificity) – a number of non-*’s (= number of positions where simple bit

swapping mutation can disrupt it).

− Chromosomes are order l schemata, where l is length of chromosome (in bits or loci).

− Chromosomes are instances (or members) of lower-order schemata.

− How many schemata is matched by a string of length l?

� Fitness f (S) (quality) – average fitness computed over all covered strings.

Example: S ={**1*01*0**}: δ(S) = 5, o(S) = 4

� �Evolutionary Algorithms: Introduction

pSchema Properties: Example

:: 8-bit Count Ones problem – maximize a number of ones in 8-bit string.

string fitness string fitness

00000000 0 11011111 7

00000001 1 . . . 10111111 7

00000010 1 01111111 7

00000100 1 11111111 8

Assume schema Sa ={1*1**10*} vs. Sb ={*0*0****}:
� defining length: δ(Sa) = 7− 1 = 6, δ(Sb) = 4− 2 = 2

� order: o(Sa) = 4, o(Sb) = 2

� fitness of Sa: Sa covers 24 strings in total

1 string of fitness 3

4 string of fitness 4 f (Sa) = (1 · 3 + 4 · 4 + 6 · 5 + 4 · 6 + 1 · 7)/16

6 string of fitness 5 f (Sa) = 80/16 = 5

4 string of fitness 6

1 string of fitness 7

fitness of Sb: Sb = (1 · 0 + 6 · 1 + 15 · 2 + 20 · 3 + 15 · 4 + 6 · 5 + 1 · 6)/26 = 192/64 = 3

Question: What would be a fitness of S ={*0*1****} compared to Sb?

� �Evolutionary Algorithms: Introduction

pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.

� �Evolutionary Algorithms: Introduction

pSchema Theorem Derivation: Effect of Reproduction

Let m(S, t) be number of instances (strings) of schema S in population of size n at time t.

Question: How do schemata propagate? What is a lower bound on change in sampling rate of

a single schema from generation t to t + 1?

Effect of fitness-proportionate roulette wheel selection

A string ai is copied according to its fitness; it gets selected with probability

pi =
fi∑
fj
.

After picking n strings with replacement from the population at time t, we expect to have

m(S, t + 1) representatives of the schema S in the population at time t + 1 as given by the

equation

m(S, t + 1) = m(S, t) · n · f (S)∑
fj
,

where f (S) is the fitness of schema S at time t.

The formula can be rewritten as

m(S, t + 1) = m(S, t) · f (S)

favg
,

where favg is the average fitness of the population.

� �Evolutionary Algorithms: Introduction

pSchema Theorem Derivation: Effect of Crossover and Mutation

Effect of 1-point Crossover

� Survival probability ps – let’s make a conservative assumption that crossover within the defining

length of S is always disruptive to S, and ignore gains.

� Crossover probability pc – fraction of population that undergoes crossover.

ps ≥ (1− pc · δ(S)/(L− 1))

Example: Compare survival probability of S = (11 ∗ ∗ ∗ ∗) and S = (1 ∗ ∗ ∗ ∗0).

Effect of Mutation

Each fixed bit of schema (o(S) of them) changes with probability pm, so they all stay unchanged

with probability

ps = (1− pm)o(S)

that can be approximated as

ps = (1− o(S) · pm)

assuming pm � 1.

� �Evolutionary Algorithms: Introduction

pSchema Theorem Derivation (cont.)

:: Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)

favg
· [1− pc ·

δ(S)

L− 1
− o(S) · pm].

What does it tell us?

� �Evolutionary Algorithms: Introduction

pSchema Theorem Derivation (cont.)

:: Finally, we get a ”classical” form of the reproductive schema growth equation:

m(S, t + 1) ≥ m(S, t) · f (S)

favg
· [1− pc ·

δ(S)

L− 1
− o(S) · pm].

What does it tell us?

:: Schema theorem: Short, low-order, above-average schemata receive exponentially increasing

trials in subsequent generations of a genetic algorithm.

:: Building Block Hypothesis: A genetic algorithm seeks near-optimal performance through

the juxtaposition of short, low-order, high-performance schemata, called the building blocks.

David Goldberg: ”Short, low-order, and highly fit schemata are sampled, recombined, and resam-

pled to form strings of potentially higher fitness. . . we construct better and better strings from

the best partial solutions of the past samplings.”

:: Y. Davidor: ”The whole GA theory is based on the assumption that one can state something

about the whole only by knowing its parts.”

Corollary: The problem of coding for a GA is critical for its performance, and that such a coding

should satisfy the idea of short building blocks.

� �Evolutionary Algorithms: Introduction

pEA Materials: Reading, Demos, Software

:: Reading

� D. E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, 1989.

� Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs, Springer, 1998.

� Z. Michalewicz: How to solve it? Modern heuristics. 2nd ed. Springer, 2004.

:: Demos

� M. Obitko: Introduction to genetic algorithms with java applets,

http://cs.felk.cvut.cz/ xobitko/ga/

:: Software

� ECJ 16 – A Java-based Evolutionary Computation Research System

http://cs.gmu.edu/ eclab/projects/ecj/

� PISA – A Platform and Programming Language Independent Interface for Search Algorithms

http://www.tik.ee.ethz.ch/sop/pisa/?page=selvar.php

� �Evolutionary Algorithms: Introduction

