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Evolutionary Algorithms

 Evolutionary Algorithms are general-purpose stochastic optimization algorithms.

 Problem solution can be represented as binary string, real-valued string, string of 
symbols, tree or graph.

 Optimized objective function can be continuous/discrete, multimodal,  nonlinear, 
multidimensional,  noisy.

The problem can involve multiple optimization objectives as well.

 A typical evolutionary model:

Population

Parents

Offspring

Selection

Replacement

Crossover 

+ 

Mutation

Evaluation
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Genetic Programming (GP)

GP shares with GA the philosophy of survival and reproduction of the fittest and the 
analogy of naturally occurring genetic operators.

GP differs from GA in a representation, genetic operators and a scope of applications.

Structures evolved in GP are trees of dynamically varying size and shape representing 
hierarchical computer programs.

GA chromosome of fixed length:

GP trees:
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GP: Application Domains

Applications

 learning programs,

 learning decision trees,

 learning rules,

 learning strategies,

 . . .

Arithmetic expressions

Logical expressions

Artificial ant strategy
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GP: Trigonometric Identity

An illustrative example of GP in action (one of many interesting examples from) 
 Koza, J.: Genetic Programming: vol. 1 , On the programming of computers by means of 

natural selection, MIT Press, 1992

GP used to find an equivalent expression to cos(2x).

GP implementation:

 Terminal set T = {x, 1.0}

 Function set F = {+, –, , %, sin}

 Training cases: 20 pairs (xi, yi), where xi are values evenly 
distributed in interval (0, 2).

 Fitness: Sum of absolute differences between desired yi and the values returned 
by generated expressions.

 Stopping criterion: A solution found that gives the error less than 0.01.
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GP: Trigonometric Identity

1. run, 13th generation

(– (– 1 ( (sin x) (sin x))) ( (sin x) (sin x)))

which equals (after editing) to 1-2sin2x.

2. run, 34th generation

(– 1 ( ( (sin x) (sin x)) 2))

which is just another way of writing the same expression.
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GP: Trigonometric Identity

1. run, 13th generation

(– (– 1 ( (sin x) (sin x))) ( (sin x) (sin x)))

which equals (after editing) to 1-2sin2x.

2. run, 34th generation

(– 1 ( ( (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (– (– 2 ( x 2))

(sin (sin (sin (sin (sin (sin ( (sin (sin 1))

(sin (sin 1))

))))))))) 
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GP: Trigonometric Identity

1. run, 13th generation

(– (– 1 ( (sin x) (sin x))) ( (sin x) (sin x)))

which equals (after editing) to 1-2sin2x.

2. run, 34th generation

(– 1 ( ( (sin x) (sin x)) 2))

which is just another way of writing the same expression.

3. run, 30th generation

(sin (– (– 2 ( x 2))

(sin (sin (sin (sin (sin (sin ( (sin (sin 1))

(sin (sin 1))

))))))))) 

2 minus the expression on the 2nd and 3rd rows is almost /2, so the discovered 
identity is cos(2x) = sin(/2 – 2x).
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Human-Competitive Results

 John R. Koza, Martin A. Keane, Matthew J. Streeter: What's AI Done for Me Lately? 
Genetic Programming's Human-Competitive Results. IEEE Intelligent Systems 18(3): 
25-31 (2003)

http://www.genetic-programming.com/humancompetitive.html

http://www.cs.bham.ac.uk/~wbl/biblio/cache/http___www.genetic-programming.com_jkpdf_ieee2003intelligent.pdf

 The automated problem-solving technique of genetic programming has generated 
at least 36 human-competitive results (21 of which duplicate previously patented 
inventions, 6 of which duplicate functionality of inventions patented after 
January 1 2000). 

 It also covers two automatically synthesized controllers for which the authors have 
applied for a patent and includes examples of an automatically synthesized 
antenna, classifier program, and mathematical algorithm.

More recent survey on human-competitive results produced by GP:

http://www.springerlink.com/content/92n753376213655k/fulltext.pdf

http://www.genetic-programming.com/humancompetitive.html
http://www.cs.bham.ac.uk/~wbl/biblio/cache/http___www.genetic-programming.com_jkpdf_ieee2003intelligent.pdf
http://www.springerlink.com/content/92n753376213655k/fulltext.pdf
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Criteria of Human-Competitive Results

 We say that an automatically created result is “human-competitive” if it satisfies one 
or more of the eight criteria below. 

1. The result was patented as an invention in the past, is an improvement over a 
patented invention, or would qualify today as a patentable new invention.

2. The result is equal to or better than a result that was accepted as a new scientific 
result at the time when it was published in a peer-reviewed scientific journal. 

3. The result is equal to or better than a result that was placed into a database or archive 
of results maintained by an internationally recognized panel of scientific experts. 

4. The result is publishable in its own right as a new scientific result independent of the 
fact that the result was mechanically created. 

5. The result is equal to or better than the most recent human-created solution to a long-
standing problem for which there has been a succession of increasingly better 
human-created solutions. 

6. The result is equal to or better than a result that was considered an achievement in its 
field at the time it was first discovered. 

7. The result solves a problem of indisputable difficulty in its field. 

8. The result holds its own or wins a regulated competition involving human 
contestants (in the form of either live human players or human-written computer 
programs).
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Human-Competitive Results

John R. Koza et al.: What's AI Done for 
Me Lately? Genetic Programming's 
Human-Competitive Results.
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Six Post-2000 patented analog circuits

 John R. Koza et al.: What's AI Done for Me Lately? Genetic Programming's Human-Competitive 
Results.
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Automated Design of Electrical Circuits

Automated “What You Want Is What You Get” process for circuit synthesis.

 Genetic programming used to synthesize both

 the structure/topology, and

 sizing (numerical component values)

for circuits that duplicate the patented inventions’ functionality.

 Method

 Starts from a high-level statement of a circuit’s desired behavior and 
characteristics and only minimal knowledge about analogue electrical circuits.

Then, a fitness measure is created that reflects the invention’s performance and 
characteristics – it specifies the desired time- or frequency-domain outputs, 
given various inputs.

 Employs a circuit simulator for analyzing candidate circuits, but does not rely 
on domain expertise or knowledge concerning the synthesis of circuits.
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Automated Design of Electrical Circuits

 Method

 For each problem, a test fixture consisting of appropriate hard-wired 
components (such as a source resistor or load resistor) connected to the input 
ports and desired output ports is used.

Test fixture
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WYWIWYG: Embryonic Electrical Circuit

The Mapping between Program Trees and Electrical Circuits

 The growth process used for electrical circuits begins with a very simple embryonic 
electrical circuit and builds a more complex circuit by progressively executing the 
functions in a circuit-constructing program tree. 

 The embryonic circuit used on a particular problem depends on the number of input 
signals and the number of output signals.

 The result of this process is 

 the topology of the circuit, 

 the choice of the types of components that are situated 
at each location within the topology, 

 and the sizing of the components.
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WYWIWYG: Fitness Assignment

 Circuit-constructing program tree evaluation in the population begins with its 
execution. 

 This execution applies the functions in the program tree to the very simple 
embryonic circuit, thereby developing the embryonic circuit into a fully 
developed circuit.

 A netlist that identifies each component of the circuit, the nodes to which that 
component is connected, and the value of that component is then created.

 Circuit is then simulated using SPICE (an acronym for Simulation Program with 
Integrated Circuit Emphasis) to determine its behavior.

 Fitness measure may incorporate many characteristic or combination of 
characteristics of the circuit, including 

 the circuit's behavior in the time domain, 

 its behavior in the frequency domain, 

 its power consumption, 

 or the number, cost, or surface area of its components.
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GP Control Parameters Setup

 Population size: 640,000

 Pcrossover = 89%

 Pmutation = 1%

 Preproduction = 10%

 Maximum 200 nodes for each value-producing branch

 Parallel Parsytec computer system

 64 x 80 MHz Power PC 601 processors arranged in a toroidal mesh

 Parallel GA

 deme size: 10,000

 64 demes

 Migration rate: 2% 

Note, this is far from 
being a brute force 
search.
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Low-Voltage Balun Circuit

 A balun (balance/unbalance) circuit’s purpose is to produce two outputs from a 
single input

 each having half of the input’s amplitude;

 one output should be in phase with the input while the other should be 180
degrees out of phase with the input, and both should have the same DC offset.

 The fitness measure was based on 

 a frequency sweep analysis designed to measure the magnitude and phase of the 
circuit’s two outputs and

 a Fourier analysis designed to measure harmonic distortion.
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Genetically Evolved Low-Voltage Balun 
Circuit

 Evolved circuit is roughly a fourfold improvement over the patented circuit  
in terms of the fitness measure.

 It is superior both in terms of its frequency response and harmonic distortion.

Test fixture Evolved balun circuit

John R. Koza et al.: What's AI Done for Me Lately? Genetic 

Programming's Human-Competitive Results.
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Voltage-Current Conversion Circuit

 Voltage-current conversion circuit’s purpose is to take two voltages as input and to 
produce as output a stable current whose magnitude is proportional to the difference 
between the voltages.

 Fitness measure is based on four time-domain input signals.

 Genetically evolved circuit (entirely different than the patented circuit)

 has roughly 62 percent of the average (weighted) error of the patented circuit 
and

 outperformed the patented circuit on additional previously unseen test cases.

John R. Koza et al.: What's AI Done for Me Lately? Genetic 

Programming's Human-Competitive Results.
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Mixed Analog-Digital Register-Controlled 
Variable Capacitor

 Mixed analog-digital variable capacitor circuit has a capacitance controlled by the 
value stored in a digital register.

 Fitness measure was based on the error accumulated by 16 combinations of time-
domain test signals ranging over all eight possible values of a 3-bit digital register for 
two different analog input signals.

 The evolved circuit performs as well as the patented circuit.

Evolved circuit Patented circuit

John R. Koza et al.: What's AI Done for Me Lately? Genetic Programming's Human-Competitive Results.



Applications of Evolutionary Algorithms

HUMIES

 Annual “HUMIES” awards for human-competitive results 
produced by genetic and evolutionary computation held at 
the Genetic and Evolutionary Computation Conference 
(GECCO)

 Entries present human-competitive results that have been produced by any form of 
genetic and evolutionary computation (including, but not limited to genetic 
algorithms, genetic programming, evolution strategies, evolutionary programming, 
learning classifier systems, grammatical evolution, gene expression programming, 
differential evolution, etc.) and that have been published in the open literature.

 Human-competitive results awarded in areas:
- Analog circuit design - Game strategies
- Quantum circuit design - Image processing
- Physics - Antenna design
- Digital circuits/programs - Classical optimization
- Chemistry - …

http://www.genetic-programming.org/combined.html
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2004 Human-Competitive Awards 
in Genetic and Evolutionary Computation 

 http://www.genetic-programming.org/gecco2004hc.html

 $1500 – Gold

 Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: An Evolved Antenna for 
Deployment on NASA's Space Technology 5 Mission

 Lee Spector: Automatic Quantum Computer Programming: A Genetic 
Programming Approach

 $500 – Silver

 Alex Fukunaga: Evolving Local Search Heuristics for SAT Using GP

 Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking 
Evolutionary Design Against 19th Century Kinematic Synthesis

 Bijan Khosraviani, Raymond E. Levitt, John R. Koza: Organization Design 
Optimization Using Genetic Programming

 $500 – Bronze

 Adrian Stoica, Ricardo Zebulum, Didier Keymeulen, Michael Ian Ferguson, Vu 
Duong, Xin Guo: Taking evolutionary circuit design from experimentation to 
implementation: some useful techniques and a silicon demonstration
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The winner of Humies 2004

• Three nanosats (20in diameter).
• Measure effect of solar activity on 

the Earth's magnetosphere.

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson



Applications of Evolutionary Algorithms

Evolved Antennas for Deployment on NASA’s
Space Technology 5 Mission

 Original ST5 Antenna Requirements

 Transmit:  8470 MHz

 Receive: 7209.125 MHz

 Gain:

>= 0dBic, 40 to 80 degrees

>= 2dBic, 80 degrees

>= 4dBic, 90 degrees

 50 Ohm impedance

 Voltage Standing Wave Ratio (VSWR):

< 1.2 at Transmit Freq

< 1.5 at Receive Freq

 Fit inside a 6” cylinder

 ST5 Quadrifilar Helical Antenna

 designed by a team of human 
designers

 won the contract

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive 
Results: Evolved Antennas for Deployment on NASA’s ST5 Misson
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Evolved Antenna 
for Space Technology 5 mission

 Branching EA: Antenna Genotype 

 Genotype is a tree-structured encoding that specifies the construction of a wire 
form

 Genotype specifies design of 1 arm in 3D-space:

rx f

f

f f

rz rx

f

2.5cm

5.0cm

Feed 

Wire

 Branching in genotype results in branching 
in wire form

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson



Applications of Evolutionary Algorithms

Evolved Antenna 
for Space Technology 5 mission

 Branching EA: Antenna Construction Commands 

 forward(length radius)

 rotate_x(angle)

 rotate_y(angle)

 rotate_z(angle)

Forward() command can have 0,1,2, or 3 children.

Rotate_x/y/z() commands have exactly 1 child (always non-terminal).

 Fitness function (to be minimized):

F = VSWR_Score * Gain_Score * Penalty_Score

rx f

f

f f

rz rx

f
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Evolved Antenna 
for Space Technology 5 mission

 1st Set of Genetically Evolved Antennas

Non-branching:

ST5-4W-03

Branching:

ST5-3-10

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antenna 
for Space Technology 5 mission

 2nd Set of genetically evolved antennas for new mission requirements

EA 1 – Vector of Parameters EA 2 – Constructive Process

© Jason D. Lohn, Gregory S. Hornby, Derek S. Linden: Human-Competitive Results: Evolved Antennas for Deployment on NASA’s Space Technology 5 Misson
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Evolved Antenna 
for Space Technology 5 mission

 Conclusion

 Meets mission requirements

 Better than conventional design

 Successfully passed space qualification

 First Evolved Hardware in Space when mission launched in 2005

 Direct competition: The antenna designed by the contracting team of human 
designers for the Space Technology 5 mission - which won the bid against several 
competing organizations to supply the antenna - did not meet the mission 
requirements while the evolved antennas did meet these requirements.

 Evolutionary design:

 Fast design cycles save time/money (4 weeks from start-to-first-hardware)

 Fast design cycles allow iterative “what-if”

 Can rapidly respond to changing requirements

 Can produce new types of designs

 May be able to produce designs of previously unachievable performance
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How to Draw a Straight Line Using a GP

 Hod Lipson: How to Draw a Straight Line Using a GP: Benchmarking Evolutionary
Design Against 19th Century Kinematic Synthesis

 This entry presents the application of genetic programming to the synthesis of 
compound 2D kinematic mechanisms, and benchmarks the results against one of 
the classical kinematic challenges of 19th century mechanical design.

 Test Case: The Straight Line Problem

 The straight-line problem seeks a kinematic mechanism that traces a straight line 
without reference to an existing straight line. 

 For example, a circle is easy, a line is a challenge!

line circle
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How to Draw a Straight Line Using a GP

 Some key straight-line mechanisms

See
http://kmoddl.library.cornell.edu

Silverster-Kempe’s
(1877)

Chebyshev
(1867)

Chebyshev
(1867)

Chebyshev-Evans 
(1907)

Peaucelier
(1873)

Robert
(1841)
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Example: A tree that constructs this 1-
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How to Draw a Straight Line Using a GP
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 Comparison of mechanisms can be difficult
 Equivalent mechanisms may appear very different
 Masked by excess and redundant topology

 Two transformations allow moving in “neutral pathways” of mechanisms
 Rigid diagonal swap
 Redundant dyad removal/addition

 

Delete 
excess 
dyad 

 Swap 
diagonal  

Delete 
dyad  

How to Draw a Straight Line Using a GP
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 Used GP with Top-down tree encoding and 2-bar or 4-bar embryo
 Population size: 100
 Crossover 90%
 Mutation 10% (Node positions, Operator types)

 Selection: Stochastic Universal Sampling

 Evaluation of an evolved straight-line mechanism
 The mechanism is actuated at an arbitrary handle and the aspect ratios of bounding boxes of 

node trajectories are measured. 

 One node of the evolved machine on the left traces a curve that is linear to 1:5300 accuracy. 

 The evolved mechanism on the right traces a curve that is linear to 1:28340 accuracy 

How to Draw a Straight Line Using a GP
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 A typical run – each dot represents an evaluated individual

How to Draw a Straight Line Using a GP
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Some results
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Linearity 1:4979 
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Some results

 

Infringes on Robert’s Linkage (1841) 
Published: Kempe A. B., (1877), How To Draw A Straight Line, London

Linearity 1:5300 
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Some results
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Some results

 

Linearity 1:28340
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2005 Human-Competitive Awards in 
Genetic and Evolutionary Computation cont. 

 $1000 – Silver

 Richard J. Terrile et al.: 

 Evolutionary Computation Technologies for the Automatic Design of 
Space Systems,

 Evolutionary Computation applied to the Tuning of MEMS gyroscopes,

 Multi-Objective Evolutionary Algorithms for Low-Thrust Orbit Transfer 
Optimization

 $500 – Bronze

 Moshe Sipper et al.: Attaining Human-Competitive Game Playing with 
Genetic Programming (Backgammon Players, Robocode Players, Chess 
Endgame)
Moshe Sipper: Evolved to win 
(http://www.moshesipper.com/evolved-to-win.html)

 Uli Grasemann, Risto Miikkulainen: Effective Image Compression using 
Evolved Wavelets

http://www.moshesipper.com/evolved-to-win.html
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Moshe Sipper: Evolved to Win 

Board games

 Checkers

 Chess endgames

 Backgammon 

Simulation games

 Robocode

 Robot Auto Racing Simulator

Puzzles

 Rush hour

 FreeCell
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GP used to evolve heuristics to guide staged deepening 
search for the hard game of FreeCell.

Trained and tested on 32,000 problems—known as 
Microsoft 32K—all solvable but one.

FreeCell requires an enormous amount of search, due 
both to long solutions and to large branching factors. 

Source: Elyasaf, A. at all.: Evolutionary Design of FreeCell Solvers. 2013

Learning Game Strategies: 
FreeCell

It remains out of reach for optimal heuristic search algorithms, such as variants of A*.

FreeCell remains intractable even when powerful enhancement techniques are employed, 
such as transposition tables and macro moves.

The previous top gun is the Heineman’s FreeCell solver

 Heineman’s staged deepening algorithm, based on a hybrid A* / hillclimbing search

 Heineman’s heuristic

solved 96% of Microsoft 32K.
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Evolutionary Design of Single-Mode 
Microstructured Polymer Optical Fibres

 Steven Manos, Leon Poladian, Maryanne Large: Evolutionary Design of 
Microstructured Polymer Optical Fibres using an Artificial Embryogeny 
Representation
reference: http://www.genetic-programming.org/hc2007/cfe2007.html

 Applications of optical fibres

 Long distance telecommunications

 Computer networks

 Automotive and aeronautical

 Electrical current measurement

 Temperature and strain sensing

 Medical (lasers and endoscopy)

 The behaviour of light depends on this 
internal structure

New functionality = more complex designs?

http://www.genetic-programming.org/hc2007/cfe2007.html
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Single-moded fibres

First mode (confined) Second mode (leaky)

 Single-moded fibres support the propagation of only the fundamental mode.

 These fibres are important in applications such as high-bandwidth communications, 
temperature sensing and strain sensing.

 By discovering fibres that don’t have a typical hexagonal design, we can start doing more 
interesting things with them. 

Typical hexagonal design

Single-moded operation

Standard design since 

the early 1990’s
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Evolved single-mode designs

All designs have confined fundamental modes with lc,1  10-1 dB/m, with losses more 
typically being lc,1  10-3 dB/m. 

The loss of the second mode lc,2>104 dB/m in all cases.

All single-moded, yet phenotypically different.
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Manufactured single-mode MPOF

 Evolved designs are simpler than previous designs, and easier to manufacture.

 Provided us with a rich set of never before seen single-moded microstructured fibre 
designs to investigate further.
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A different fitness function

 Highly multi-moded fibres designed for use in LANs and other short-distance high-
bandwidth applications.

‘GIMP 1’

‘GIMP 3’

Hand-designed fibre

Patented GA-designed
fewer holes, easier to 
manufacture.
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Automatically Finding Patches Using GP

Fully automated GP-based method for locating and repairing bugs in software

 Set of testcases consists of both 

 a set of negative testcases – that characterize a fault

 A set of positive testcases that encode functionality requirements.

 Special GP representation of evolved repaired programs.

 An abstract syntax tree (AST) including all of the statements in the program 
(CIL toolkit for manipulating C programs)

 A weighted path through the program – a list of pairs [statement, weight] 
where the weight is based on that statement’s occurences in the tescases.

 Genetic operators are restricted to AST nodes visited when executing the 
negative testcases.

 Genetic operators realize insertion, deletion, and swapping program 
statements and control flow.
Insertions based on the existing program structures are favored. 

 After a primary repair that passes all negative and positive testcases has been 
found, it is further minimized w.r.t. the number of differences between the 
original and repair program.
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Automatically Finding Patches Using GP

 Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program
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Automatically Finding Patches Using GP

 Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program Primary repair

generated given the bias towards modifying lines that are involved in producing the 
faults and the preference for insertions similar to existing code.
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Automatically Finding Patches Using GP

 Example: Euclid’s greatest common divisor
Weimer, W. et al.: Automatically Finding Patches Using Genetic Programming

Original program Primary repair

generated given the bias towards modifying lines that are involved in producing the 
faults and the preference for insertions similar to existing code.

After repair minimization
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Automatically Finding Patches Using GP

 10 different C programs of different size totaling 63,000 lines of code (LOC)

Weimer W. et al.: Automatically Finding Patches Using Genetic Programming
Forrest S. et al.: A Genetic Programming Approach to Automated Software Repair, GECCO 2009



Automatically Designing DT 
Algorithms

Hyper-heuristic  Evolutionary Algorithm for Designing DT algorithms (HEAD-DT)

 automatically seeks for the best combination of the DT components

 Split

 Criterion – index of one of 15 splitting criteria (information gain, Gini, Mantaras, 
DCSCM, … )

 Binary split - indicates whether the splits of a DT are only binary or multi-way

 Stopping criteria

 Criterion – index of one of 5 strategies

 Parameter of the selected strategy

 Missing values

 Split criterion evaluation – 4 strategies

 Distribution – 7 strategies

 Classification – 3 strategies

 Pruning

 Method – 5 strategies

 Parameter

Barros, R. C. et al.: A hyper-heuristic evolutionary algorithm for automatically designing decision-tree algorithms. 
GECCO 2012, 1237-1244.



Automatically Designing DT 
Algorithms

Evolutionary Algorithm

 Population size: 100, Generations: 100, Tournament selection: t = 2, 1-point crossover: pc = 
0.9, Uniform mutation: pm = 0.1, Elitism: 10

Example - algorithm designed for the Semeion data set – 1593 inst., 265 att.

CART C4.5 HEAD-DT

Accuracy 0.94 ± 0.01 0.95 ± 0.02 1.0 ± 0.0

F-measure 0.93 ± 0.01 0.95 ± 0.02 1.0 ± 0.0

Tree size 34 ± 12.3 55 ± 8.27 19 ± 0.0 Very rare
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Multiple Traveling Salesman Problem

MTSP – rescue operations planning

 Given N cities and K agents, 
find an optimal tour for each 
agent so that every city is visited 
exactly once.

 The optimization objective is to 
minimize the overall time spent 
by the squad (i.e. the slowest 
team member) during the 
environment exploration.

VIDEO
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Evolutionaty Algorithms for Dynamic Opt.

Dynamic optimizations - a class of problems whose specifications commonly termed

 optimization objectives, and/or

 problem-specific constraints, and/or

 environmental parameters and problem settings

change over time, resulting in continuously moving optima.

Ex.: Scheduling, manufacturing, trading with stochastic arrival of new tasks, machine 
faults, climatic change, market fluctuation, economic and financial factors.

The goal of optimization in dynamic environment is to

 continuously track the optimum, or

 find robust solutions that perform satisfactorily even when the environmental 
parameters change.
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Evolutionaty Algorithms for Dynamic Opt.

VIDEO



Applications of Evolutionary Algorithms

 Problem: Floorplanning also known as 2D rectangle packing problem.

 Given: A set of N unoriented blocks (rectangles) with fixed dimensions.

 Goal: To place all blocks on a plane so that there is no overlap between any pair 
of rectangles and the bounding rectangular area is minimal (or the dead space is 
minimal).

 Prototype solution (floorplan) 

is encoded by B*-Tree non-slicing

representation.

Each tree is expressed by a linear 
string of symbols in a prefix not.

Optimization works on linear structs.

Ex.: Blocks {a, b, c, d, e, f} should be placed in a rectangular 
area so that the bounding rectangular area is minimal     
(or the dead space, shown in gray, is minimal).

floorplan B*-tree representation
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 Actions (variation operators used as building blocks of the action sequences)

 Flip – rotates a block of the specified tree node.

 Mirror – swaps the left and right child of the specified tree node.

 Rotate – recursively flips and mirrors child nodes of the specific node.

 ExchangeNodes – exchanges blocks between two specified tree nodes.

 ExchangeSubtrees – exchanges sub-trees rooted in two specified tree nodes.

 MoveSubtree – places a specified node with its sub-tree to a new position in the 
tree.

 Compared algorithms

 CompaSS - commercially available program.

 B*-Tree/l , B*-Tree/SA – approaches using the same B*-tree representation 
searching the space of all possible floorplans by means of local search algorithm 
and simulated annealing, respectively.

 Main achievements

 POEMS generates floorplans comparable and better than the ones generated by 
B*-Tree/l and B-Tree/SA algorithms.

 POEMS clearly outperforms CompaSS algorithm w.r.t. the quality of the 
generated floorplans.



Applications of Evolutionary Algorithms

 Examples of results obtained for 300 blocks.

Hordějčuk, V.: Optimisation of Rectangular Shapes Placement by Means of Evolutionary Algorithms. Master thesis, Czech Technical 
University in Prague, Faculty of Electrical Engineering, 2011.

3.8% dead space 4.6% dead space



Applications of Evolutionary Algorithms

Visualization of a POEMS run on data with 300 blocks.

By V. Hordějčuk.

VIDEO



Applications of Evolutionary Algorithms

 Design of an effective and efficient evolutionary-based system for 
automated generating of modular robot gaits:

 robots composed of a number of simple cubic-shaped robotic blocks,

 each block is endowed with slots (three of them on the main body and one is 
on the movable arm) that enable them to connect to each other and form 
more complex robots,

 Approaches:

 Co-evolution of a single leg motion pattern and a coordination strategy

 HyperGP – neuroevolutionary-based approach

 GP with automatically defined functions

Černý, J. and Kubalík, J.:Analysis of Co-evolutionary Approach for Robotic Gait Generation. In ECTA 2013.
Černý, J. and Kubalík, J.:Co-evolutionary Approach to Design of Robotic Gait. In EvoRobot 2013.
Blovský, T.: Robustní genetické programování pro návrh řídící strategie robotu. Diploma Thesis, ČVUT FEL, 2013
Dvorský, J.: Neuroevolutionary design of control strategy of a multi-legged robot. Bachelor Thesis, ČVUT FEL, 2013

Evolution of Modular Robot Gaits



Applications of Evolutionary Algorithms

 Design of an effective and efficient evolutionary-based system for 

automated generating of modular robot gaits:

Evolution of Modular Robot Gaits



1-DoF pendulum swing-up
 A weight of mass m attached to an actuated link that rotates 

in a vertical plane. 
The available torque is insufficient to push the pendulum up 
in a single rotation from the majority of initial states. 
It needs to be swung back and forth to gather energy, prior to 
being pushed up and stabilized. 

 State vector is [𝛼,  𝛼] – position and angular velocity
Angle 𝛼 varies in [-, ]
Control action u is limited to [-2, 2] V

 The continuous-time model of the pendulum dynamics is

 𝛼 =
1

𝐽
∙ 𝑚𝑔𝑙 sin(𝛼) − 𝑏  𝛼 −

𝐾2

𝑅
 𝛼 +

𝐾

𝑅
𝑢

where

𝐽 = 1.91 ∙ 10−4 kgm2 , 𝑚 = 0.055 kg, 𝑔 = 9.81 ms-2, 𝑙 = 0.042 m

𝑏 = 3 ∙ 10−6 Nms/rad, 𝐾 = 0.0536 Nm/A, 𝑅 = 9.5 

The sampling period is Ts = 0.01 second.
The discrete-time transitions are obtained by numerically integrating the continuous-time 
dynamics using the fourth-order Runge-Kutta method.

The control goal is to stabilize the pendulum in the unstable equilibrium
𝜶 =  𝜶 = 𝟎

GP for RL: Benchmark



Task: Finding a symbolic model from a set of discrete samples of known numerical 
approximation of the V and policy functions.

GP for RL: V function, policy

Symbolic V function

vs.

Numerical approximation Symbolic policy

vs.



GP for RL: Learning V function



GP for RL: Learning V function



GP for RL: Fitting Transition 
Model



Applications of Evolutionary Algorithms

Evolutionary design of image filters

Can EA design an image filter which exhibits better filtering properties and lower 

implementation cost w.r.t. conventional solutions?

Target domain: filters suppressing shot noise, Gaussian noise, burst noise, edge 

detectors,  …



Applications of Evolutionary Algorithms

Image filter in CGP 

9 x 8bits 1 x 8bits

• Array of programmable. 
elements (PE).

• No feedbacks.

• All I/O and connections on 
8 bits.

• PE over 8 bits:

• Minimum

• Maximum

• Average

• Constants

• logic operators

• shift

Sekanina L.: EvoAISP 2002



Applications of Evolutionary Algorithms

AMF

CWMF

PWMAD

Image corrupted by 
5% impulse bursts 
noise.

evolved

VAŠÍČEK, BIDLO, SEKANINA: Evolution of efficient real-time non-linear image filters for FPGAs. Soft Computing. 17(11), 2013

Burst Noise Filtering



GP for CNN Architectures 
Design

Cartesian genetic programming (CGP) for automatic construction of CNN architectures 
for an image classification.

High-level functional modules as the SNGP nodes

 ConvBlock consists of standard convolution processing with a stride of 1 followed by batch 
normalization and rectified linear units (ReLU)

 ResBlock is composed of a convolution processing, batch normalization, ReLU, and tensor 
summation

 max and average poolings

 concatenation function concatenates two feature maps in the channel dimension

 summation performs the element-wise addition of two feature maps, channel by channel

Output node represents the softmax function with the number of classes.

Source: Suganuma, N. at all.: A Genetic Programming Approach to Designing Convolutional Neural Network Architectures. 2017



GP for CNN Architectures 
Design

Outline of the method

 CNN architecture are trained on training set

 and assigned the validation accuracy of the trained model as the fitness

Source: Suganuma, N. at all.: A Genetic Programming Approach to Designing Convolutional Neural Network Architectures. 2017



GP for CNN Design: Examples

Source: Suganuma, N. at all.: A Genetic Programming Approach to Designing Convolutional Neural Network Architectures. 2017

CGP-CNN (ConvSet) CGP-CNN (ResSet)



Applications of Evolutionary Algorithms

Elbow Walking, Cully et al. (2015)

 an algorithm that enables damaged robots to successfully adapt to damage

 how the evolution solves the case where all six feet touch the ground 0% of the time

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018

Surprising Creativity of Digital 
Evolution



Applications of Evolutionary Algorithms

Evolution of Muscles and Bones, Cheney et al. [68]

 evolution to discover from scratch the benefit of complementary (opposing) muscle groups, 
similar to such muscle pairs in humans, e.g. biceps and triceps – and also to place them in a 
functional way

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018

Surprising Creativity of Digital 
Evolution



Applications of Evolutionary Algorithms

Re-enabling Disabled Appendenges, Ecarlat and colleagues [85]

 The goal was to accumulate a wide variety of controllers, to move the cube onto the table, to grasp 
the cube, to launch it into a basket in front of the robot, …

 Then the robot’s gripper was crippled, preventing it from opening and closing, …

Source: Lehman, J. at all.: The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary 

Computation and Artificial Life Research Communities. 2018

Surprising Creativity of Digital 
Evolution


