
pAlgorithm Configuration: Motivation

Often, finding performance-optimizing parameter configurations of heuristic algorithms
requires considerable effort. In many cases, this task is performed manually in an ad-hoc
way.

Automating this task is of high practical relevance in several contexts:

� Development of complex algorithms - setting the parameters of a heuristic algorithm is

a highly labour-intensive task, and indeed can consume a large fraction of overall development

time. The use of automated algorithm configuration methods can lead to significant time

savings and potentially achieve better results than manual, ad-hoc methods.

� Empirical studies, evaluations, and comparisons of algorithms - a central question

in comparing heuristic algorithms is whether one algorithm outperforms another because it is

fundamentally superior, or because its developers more successfully optimized its parameters.

Automatic algorithm configuration methods can mitigate this problem of unfair comparisons

and thus facilitate more meaningful comparative studies.

� Practical use of algorithms - the ability of complex heuristic algorithms to solve large and

hard problem instances often depends critically on the use of suitable parameter settings. End

users often have little or no knowledge about the impact of an algorithm’s parameter settings

on its performance, and thus simply use default settings. Automatic algorithm configuration

methods can be used to improve performance in a principled and convenient way.

� � � � � � � � � � � � � � � � � �



pAlgorithm Configuration (Parameter Tuning) Problem

Let A denote an algorithm, whose parameters are to be optimized for a probability distribution

of problem instances, D.

D may be given

� implicitly, as through a random instance generator or a distribution over such generators, or

� as the uniform distribution over a finite sample of problem instances.

With each of the algorithm parameters, p1 . . . pk, a domain of possible values is associated and

the parameter configuration space, Θ, is the cross-product of these domains (or a subset thereof).

� We assume that all parameter domains are finite sets.

This assumption can be met by discretizing all numerical parameters to a finite number of

values.

� While parameters may be ordered, we do not exploit such ordering relations =⇒ all parameters

are finite and categorical.

The elements of Θ are called parameter configurations, θi, and A(θ) denotes algorithm A with

parameter configuration θ ∈ Θ.

� � � � � � � � � � � � � � � � � �



pAlgorithm Configuration (Parameter Tuning) Problem

The objective of the parameter configuration (parameter tuning) problem is to find the parameter

configuration θ ∈ Θ resulting in the best performance of A on distribution D.

There are many ways of measuring an algorithm’s performance, denoted as c(A, θ, I, s) – i.e. the

cost of a single run of algorithm A with parameter configuration θ on an instance I , using seed

s in case of randomized algorithm. For example, we might be interested in

� minimizing computational resources consumed by the given algorithm (such as runtime, mem-

ory or communication bandwidth), or

� approximation error, or

� the improvement achieved over an instance-specific reference cost,

� maximizing the quality of the solution found.

� � � � � � � � � � � � � � � � � �



pAlgorithm Configuration (Parameter Tuning) Problem

The behaviour of the algorithms can vary significantly between multiple runs on different instances

or when randomized algorithms are run repeatedly with fixed parameters on a single problem

instance.

Therefore, the goal must be to choose parameter settings that minimize some statistic, c(θ), of the

algorithm’s cost distribution, CD(A, θ,D), over instances and, in case of randomized algorithms,

a distribution over random seeds. For example, we might aim to minimize mean runtime or median

solution cost.

The CD(A, θ,D) is typically unknown, so we can only acquire approximations of their statistics,

c(θ), based on a limited number of samples (i.e. the cost of single executions of A(θ)) – let’s

denote an approximation of c(θ) based on N samples by ĉN(θ).

� For deterministic algorithms, the algorithm A is run on N ≤ M instances (M is the size of

the finite training set of instances).

� For randomized, algorithms, we can run multiple runs with different seeds if M < N .

� � � � � � � � � � � � � � � � � �



pAlgorithm Configuration (Parameter Tuning) Scenario

� � � � � � � � � � � � � � � � � �



pIterated Local Search in Parameter Configuration Space

Manually-executed local search in parameter configuration space

1. begin with some initial parameter configuration;

2. experiment with modifications to single parameter values at a time, accepting new configura-

tions whenever they result in improved performance (iterative first improvement proce-
dure);

3. repeat step 2 until no single-parameter change yields an improvement.

This procedure stops as soon as it reaches a local optimum (a parameter configuration that

cannot be improved by modifying a single parameter value) – straightforward remedy is to employ

iterated local search that builds a chain of local optima by iterating through a main loop

consisting of:

1. a solution perturbation to escape from local optima,

2. a subsidiary local search procedure and

3. an acceptance criterion to decide whether to keep or reject a newly obtained candidate solution.

� � � � � � � � � � � � � � � � � �



pAlgorithm ParamILS

ParamILS(θ0, r, prestart, s)

1. uses a combination of default and random settings for initialization,

θ0 is the initial parameter configuration, and

r is the number of randomly chosen configurations for initialization,

2. uses a one-exchange neighborhood (one parameter is modified in each search step),

3. employs iterative first improvement as a subsidiary local search procedure,

4. uses a fixed number, s, of random moves for perturbation,

5. always accepts better or equally-good parameter configurations,

6. re-initializes the search at random with probability prestart.

Basic variant, BasicILS(N), uses procedure better(θ1, θ2) that compares two cost approxi-

mations ĉN(θ1) and ĉN(θ2) based on exactly N samples from the respective cost distributions

CD(A, θ1,D) and CD(A, θ2,D) – the same N instances are used for all configurations θi.

� � � � � � � � � � � � � � � � � �



pParamILS(N): Algorithm

� � � � � � � � � � � � � � � � � �



pBasicILS(N): Procedure betterN(θ1, θ2)

Procedure betterN(θ1, θ2) simply compares estimates ĉN(θ1) and ĉN(θ2) based on the same N

instances using the same random seeds.

� It updates the best-so-far solution, θinc.

� � � � � � � � � � � � � � � � � �



pOver-Confidence and Over-Tuning

There are two main problems associated with the use of a fixed number of N training samples.

1. Over-confidence – the cost estimated for the best training configuration, θ∗train, underesti-

mates the cost of the same configuration on the test set (i.e. previously unseen samples).

ĉN(θ∗train) = min{ĉN(θ1), . . . , ĉN(θn)} is a biased estimator of c(θ∗),

where θ∗ ∈ arg minθi{c(θ1), . . . , c(θn)}.
It was shown that E[min{ĉN(θ1), . . . , ĉN(θn)}] ≤ E[c(θ∗)] with equality only holding in

pathological cases.

This effect increases with the number of configurations evaluated and the variance of the

cost distributions, and it decreases as N is increased.

2. Over-tuning – the situation where additional tuning actually impairs test performance.

This effect can be suppressed by using large number of runs.

� � � � � � � � � � � � � � � � � �



pOver-Confidence and Over-Tuning

There are two main problems associated with the use of a fixed number of N training samples.

1. Over-confidence – the cost estimated for the best training configuration, θ∗train, underesti-

mates the cost of the same configuration on the test set (i.e. previously unseen samples).

ĉN(θ∗train) = min{ĉN(θ1), . . . , ĉN(θn)} is a biased estimator of c(θ∗),

where θ∗ ∈ arg minθi{c(θ1), . . . , c(θn)}.
It was shown that E[min{ĉN(θ1), . . . , ĉN(θn)}] ≤ E[c(θ∗)] with equality only holding in

pathological cases.

This effect increases with the number of configurations evaluated and the variance of the

cost distributions, and it decreases as N is increased.

2. Over-tuning – the situation where additional tuning actually impairs test performance.

This effect can be suppressed by using large number of runs.

The question is how to choose the optimal number of training instances, N?
� Using too small N leads to good training performance, but poor generalization to previously

unseen test benchmarks.

� On the other hand, we cannot evaluate every parameter configuration on an enormous training

set - if we did, search progress would be unreasonably slow.

� � � � � � � � � � � � � � � � � �



pFocusedILS

ParamILS avoid the problems with over-confidence and over-tuning by adaptively varying the

number of training samples considered from one parameter configuration to another in order to

focus samples on promising configurations.

� N(θ) denotes the number of runs available to estimate the cost statistic c(θ).

The question is how to compare two parameter configurations θ1 and θ2 for which N(θ1) ≤ N(θ2)?

� What if we computed the empirical statistics based on the available number of runs for each

configuration?

� � � � � � � � � � � � � � � � � �



pFocusedILS

ParamILS avoid the problems with over-confidence and over-tuning by adaptively varying the

number of training samples considered from one parameter configuration to another in order to

focus samples on promising configurations.

� N(θ) denotes the number of runs available to estimate the cost statistic c(θ).

The question is how to compare two parameter configurations θ1 and θ2 for which N(θ1) ≤ N(θ2)?

� What if we computed the empirical statistics based on the available number of runs for each

configuration?

Domination: Configuration θ1 dominates θ2 when at least as many runs have been conducted

on θ1 as on θ2, and the performance of A(θ) on the first N(θ1) runs is at least as good as that

of A(θ2) on all of its runs.

θ1 dominates θ2 if and only if N(θ1) ≥ N(θ2) and ĉN(θ2)(θ1) ≤ ĉN(θ2)(θ2).

ParamILS version, called FocusedILS, encodes a comparison strategy based on the domination in

procedure betterFoc(θ1, θ2).

� � � � � � � � � � � � � � � � � �



pFocusedILS: Procedure betterFoc(Θ1,Θ2)

Procedure betterFoc(Θ1,Θ2)

1. first it acquires one additional run for the configuration i having smaller N(θi), or one run for

both configurations if N(θ1) = N(θ2);

2. then, it continues performing runs in this way until one configuration dominates the other.

It returns true if θ1 dominates θ2, and false otherwise.

It keeps track of the total number, B, of configurations evaluated since the last improving step.

� Whenever betterFoc(Θ1,Θ2) returns true, B extra runs are performed for θ1 and B is reset

to 0.

� This way it is ensured that many runs are performed with good configurations =⇒ the error

made in every comparison of two configurations θ1 and θ2 decreases on expectation.

A theoretical analysis of the resulting algorithm proves its convergence to the globally optimal

parameter configuration.

� � � � � � � � � � � � � � � � � �



pFocusedILS: Procedure betterFoc(Θ1,Θ2)

� � � � � � � � � � � � � � � � � �



pAdaptive Capping of Algorithm Runs

Often, the search for a performance-optimizing parameter setting spends a lot of time with eval-

uating a parameter configuration that is much worse than other, previously-seen configurations.

Ex.: Let’s assume a case where parameter configuration θ1 takes a total of 10 seconds to solve

N = 100 instances (i.e. it has a mean time runtime of 0.1 seconds per instance), and another

parameter configuration θ2 takes 100 seconds to solve the first of these instances.

Clearly, when comparing the mean runtimes of θ1 and θ2 based on this set of instances, it is not

necessary to run θ2 on remaining 99 instances. Instead, we can terminate the first run of θ2 after

10 + ε seconds, which is a lower bound on θ2’s mean runtime of 0.1 + ε/100. this lower bound

exceeds the mean runtime of θ1, so we can already be sure that θ2 cannot do better than θ1.

Question is how to determine the cutoff time for each run of the target algorithm, A, in an

automated way?

� � � � � � � � � � � � � � � � � �



pAdaptive Capping of Algorithm Runs

Often, the search for a performance-optimizing parameter setting spends a lot of time with eval-

uating a parameter configuration that is much worse than other, previously-seen configurations.

Ex.: Let’s assume a case where parameter configuration θ1 takes a total of 10 seconds to solve

N = 100 instances (i.e. it has a mean time runtime of 0.1 seconds per instance), and another

parameter configuration θ2 takes 100 seconds to solve the first of these instances.

Clearly, when comparing the mean runtimes of θ1 and θ2 based on this set of instances, it is not

necessary to run θ2 on remaining 99 instances. Instead, we can terminate the first run of θ2 after

10 + ε seconds, which is a lower bound on θ2’s mean runtime of 0.1 + ε/100. this lower bound

exceeds the mean runtime of θ1, so we can already be sure that θ2 cannot do better than θ1.

Question is how to determine the cutoff time for each run of the target algorithm, A, in an

automated way?

Adaptive capping is based on the idea of avoiding unnecessary runs of the algorithm A by

developing bounds on the performance measure to be optimized.

� Trajectory-preserving capping – provably does not change BasicILS’s trajectory, but

can lead to large computational savings.

� Aggressive capping – potentially yielding even better performance.

� � � � � � � � � � � � � � � � � �



pTrajectory-Preserving Capping

Trajectory-Preserving Capping (for the case of optimizing the mean of non-negative cost func-

tion) – implements bounded evaluation of a parameter configuration θ, procedure objective(θ, bound),

based on N runs so that

� it sequentially performs runs for θ and after each run computes a lower bound on ĉN(θ) based

on i ≤ N runs performed so far;

� once the lower bound exceeds the bound passed as an argument, the remaining runs for θ2
are skipped.

Procedure betterN(θ1, θ2) is modified as follows

1 bound←∞
2 ĉN(θ2)← objective(θ2, N, bound)

3 bound← ĉN(θ2)

4 ĉN(θ1)← objective(θ1, N, bound)

5 return ĉN(θ1) ≤ ĉN(θ2)

� � � � � � � � � � � � � � � � � �



pAggressive capping

Aggressive Capping – bounds the evaluation of any configuration by the performance of the

best-so-far (incumbent) configuration, θinc, multiplied by a factor bound multiplier, bm.

� When two configurations θ1 and θ2 are compared and the evaluations both are terminated
preemptively, the configuration having solved more instances within the allowed time
is considered the better one.

Ties are broken to favor moving to a new parameter configuration.

� For bm =∞, this reduces to trajectory-preserving but no savings strategy.

bm = 1 means that once we know the evaluated configuration θ is worse than the θinc, its

evaluation is terminated (recommended setting is bm = 2).

� � � � � � � � � � � � � � � � � �



pRecommended Material

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle: ParamILS: An Auto-

matic Algorithm Configuration Framework. In Journal of Artificial Intelligence Research (JAIR),

volume 36, pp. 267-306, October 2009.

Other papers and SW available at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/

� � � � � � � � � � � � � � � � � �


