
Constraint-Handling in Evolutionary Algorithms

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

Substantial part of this material is based on slides for tutorial
’Constraint-Handling Techniques used with Evolutionary Algorithms’

presented at GECCO 2011 by Carlos A. Coello Coello and
the technical report Carlos A. Coello Coello: A Survey of Constraint Handling Techniques used with Evolutionary Algorithms.

See http://dl.acm.org/citation.cfm?doid=2001858.2002130 and
http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.43.9288&rep=rep1&type=pdf

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start

pMotivation

The general nonlinear programming problem (NLP) can be formulated as solving the

objective function

Minimize f (x), x = [x1, . . . , xn]T ;

subject to gi(x) ≤ 0, i = 1, 2, ...,m;

hj(x) = 0, j = 1, 2, ..., p;

where

� x is a vector of n decision variables,

� each xi, i = 1, . . . , n is bounded by lower and upper limits

x
(L)
i ≤ xi ≤ x

(U)
i , which define the search space S,

� F ⊆ S is the feasible region defined by m inequality and p equality constraints.

When solving NLP with EAs, equality constraints are usually transformed into inequality con-

straints of the form:

|hj(x)| − ε ≤ 0

where ε is the tolerance allowed.

� �

� � � � � � �

Constraint-Handling

pStandard Evolutionary Algorithm

Evolutionary Algorithms (EAs) have been found successful in solving a wide variety of optimization

problems.

However, EAs are unconstrained search techniques. Therefore, it is necessary to incorporate

constraints into components of the EA (i.e. the fitness function and genetic operators).

� �

� � � � � � �

Constraint-Handling

pTaxonomy of Constraint-Handling Approaches

� Penalty functions.

� Special representations and operators.

� Repair algorithms.

� Multiobjective optimization techniques.

� �

� � � � � � �

Constraint-Handling

pGeneral Form of Fitness Function with Penalty Function

The idea of penalty functions is to transform a constrained optimization problem into
unconstrained one by adding certain value to the objective function based on the

amount of constraint violation present in the solution:

ψ(x) = f (x) +

m∑
i=1

ri ×Gi +

p∑
j=1

rj ×Hj

where ψ(x) is the new objective function referred to as the fitness function, Gi and Hj are

functions of the constraints violation (gi(x) and hj(x)), and ri and rj are positive constants called

penalty coefficients or penalty factors.

A common form of Gi:

Gi =max(0, gi(x))

A common form of Hj:

Hj = |hj(x)|

or

Hj =max(0, gj(x)), for gj ≡ |hj(x)| − ε ≤ 0

� �

� � � � � � �

Constraint-Handling

pTypes of Penalty Functions used with EAs

Two kinds of penalty functions w.r.t. to the search strategy they imply:

� Exterior – starting from an infeasible solution the search moves towards a feasible region.

� Interior – the penalty term is chosen such that its value will be small at points far away from

the constraint boundaries and will tend to infinity as the constraint boundaries are approached.

Starting from a feasible solution, the subsequent points will always lie within the feasible

region.

Constraint boundaries act as barriers preventing the search to leave the feasible region

This seems nice, but represents a severe drawback indeed.

Four categories of penalty functions based on the way its parameters are being determined:

� Death penalty.

� Static penalty.

� Dynamic penalty.

� Adaptive penalty.

� �

� � � � � � �

Constraint-Handling

pDeath Penalty

The rejection of infeasible individuals is probably the easiest way to handle constraints and

it is also computationally efficient, because when a certain solution violates a constraint, it is

rejected and generated again.

� The approach is to iterate, generating a new point at each iteration, until a feasible solution

is found.

Thus, no further calculations are necessary to estimate the degree of infeasibility of such a solution.

� �

� � � � � � �

Constraint-Handling

pDeath Penalty

The rejection of infeasible individuals is probably the easiest way to handle constraints and

it is also computationally efficient, because when a certain solution violates a constraint, it is

rejected and generated again.

� The approach is to iterate, generating a new point at each iteration, until a feasible solution

is found.

Thus, no further calculations are necessary to estimate the degree of infeasibility of such a solution.

Criticism:

� Not advisable, except in the case of problems in which the proportion of feasible region in the

whole search space is fairly large.

� No exploitation of the information from infeasible solutions.

� Search may ”stagnate” in the presence of very small feasible regions.

� A variation that assigns a zero (or very bad) fitness to infeasible solutions may work better in

practice.

� �

� � � � � � �

Constraint-Handling

pDeath Penalty: Relaxed

Fitness of an individual is determined using:

f (x) if the solution is feasible

fitnessi(x) =

K(1− s
m+p) otherwise

where

� s is the number of constraints satisfied, and

� K is a large constant.

If an individual is infeasible,

� its fitness is always worse than a fitness of any other feasible individual and

� its fitness is the same as the fitness of all the individuals that violate the same number of

constraints.

� �

� � � � � � �

Constraint-Handling

pStatic Penalty

Approaches in which the penalty coefficients do not depend on the current generation

number, they remain constant during the entire evolution.

The approach proposed in [Homaifar94] defines levels of violation of the constraints (and penalty

coefficients associated to them):

fitness(x) = f (x) +

m∑
i=1

(Rk,i × (max[0, gi(x)])2)

where Rk,i are the penalty coefficients used, m is the total number of constraints, f (x) is the

objective function, and k = 1, 2, . . . , l, where l is the number of levels of violation defined by the

user.

� �

� � � � � � �

Constraint-Handling

pStatic Penalty

Approaches in which the penalty coefficients do not depend on the current generation

number, they remain constant during the entire evolution.

The approach proposed in [Homaifar94] defines levels of violation of the constraints (and penalty

coefficients associated to them):

fitness(x) = f (x) +

m∑
i=1

(Rk,i × (max[0, gi(x)])2)

where Rk,i are the penalty coefficients used, m is the total number of constraints, f (x) is the

objective function, and k = 1, 2, . . . , l, where l is the number of levels of violation defined by the

user.

Criticism:

� The weakness of the method is the high number of parameters: for m constraints and l levels

of violation for each, the method requires m(2l + 1) parameters in total.

For m = 5 and l = 4, we need 45 parameters!!!

Clearly, the results are heavily parameter dependent.

� Presented method requires prior knowledge of the degree of constraint violation present in the

problem (to define the levels of violation), which might not be easy to obtain in real-world

� �

� � � � � � �

Constraint-Handling

applications.

� Penalty coefficients are difficult to generalize as they are, in general, problem-dependent.

� Anyway, it is not a good idea to keep the same penalty coefficient along the entire evolution.

The population evolves, so why should the coefficients that bias the search direction be static?

� �

� � � � � � �

Constraint-Handling

pDynamic Penalty

Penalty functions in which the current generation number is involved in the computation
of the corresponding penalty coefficients.

Typically, the penalty coefficients are defined in such a way that they increase over time
pushing the search towards the feasible region.

The approach from [Joines94] evaluates individuals as follows:

fitness(x) = f (x) + (C × t)α × SV C(β, x)

where C, α and β are user-defined constants; recommended values are C = 0.5 or 0.05, α = 1

or 2, and β = 1 or 2.

SV C(β, x) is defined as:

SV C(β, x) =

m∑
i=1

Gβ
i (x) +

p∑
j=1

Hj(x)

where Gi(x) and Hj(x) are functions of the constraints violation (gi(x) and hj(x)).

Step-wise non-stationary penalty function increases the penalty proportionally to the generation

number. The goal is to allow the GA to explore more of the search space before confining it to

the feasible region.

� �

� � � � � � �

Constraint-Handling

pDynamic Penalty: Criticism

� It is difficult to derive good dynamic penalty functions in practice.

The presented approach is sensitive to changes in values of α, β and C and there are no

guidelines for choosing proper values for particular problem.

� If a bad penalty coefficient is chosen, the EA may converge to either non-optimal feasible

solutions (if the penalty is too high) or to infeasible solutions (if the penalty is too low).

� No constraint normalization technique is used, thus certain constraint may undesirably domi-

nate the whole penalty value.

� �

� � � � � � �

Constraint-Handling

pAnnealing Penalties

Variable Fitness GA – the fitness function of an individual is computed using

fitnessi(x) = α(M,T) · f (x)

where the objective function f (x) is to be maximized and

α(M,T) = e−M/T

is an attenuation factor based on the principle of simulated annealing that depends on

� temperature, T , a function of the running time, t, that tends to 0 as execution proceeds;

It uses the following temperature updating schedule

T = O(1/
√
t)

� extend of constraint violation, M ≥ 0.

Remarks: Definition of the starting a final values of M strongly determine overall performance of

the algorithm:

� When the GA begins, we want the penalty for constraint violation to be small (α ≈ 1), in

order to utilize infeasible states as needed;

Toward the end of execution we want α to be zero or nearly zero since infeasible solutions are

unacceptable.

� �

� � � � � � �

Constraint-Handling

� The starting temperature should be of the same order of magnitude as the mean constraint

violation M .

The final temperature to be on the order of one-hundredth of the mean constraint violation

M .

� Alternatively, we can compare the progression of the best observed fitness with the best

observed feasible solution during a run. When these two match, it means the penalty imposition

has driven the algorithm out of the infeasible region whereupon the temperature is sufficiently

low. This is the desirable condition.

If runs are ending with a difference between the best fitness solution and best feasible solution,

then the final temperature should be taken lower.

� �

� � � � � � �

Constraint-Handling

pAdaptive Penalty: Motivation

Let’s assume the penalty fitness function of the

following form:

ψ(x) = f (x) + rg ×
m+p∑
i=1

Gi(x)2

Deciding on an optimal (or near-optimal) value

rg is a difficult optimization problem itself.

� If rg is too small, an infeasible solution may not be penalized enough. Hence, infeasible

solutions may be evolved by an EA.

� If rg is too large, a feasible solution is very likely to be found, but could be of very poor quality.

A large rg discourages the exploration of infeasible regions.

This is inefficient for problems where feasible regions in the whole search space are disjoint

and/or the constraint optimum lies close to the boundary of the feasible domain.

Reasonable exploration of infeasible regions may act as bridges connecting feasible regions.

How much exploration of infeasible regions (rg =?) is reasonable?

� It is problem dependent.

� Even for the same problem, different stages of evol. search may require different rg values.

� �

� � � � � � �

Constraint-Handling

pAdaptive Penalty

� GA with non-linear penalty function.

� Adaptive Segregational Constraint Handling EA (ASCHEA).

� Stochastic Ranking.

� �

� � � � � � �

Constraint-Handling

pGA with Non-linear Penalty Function

The method introduced in [Hadj-Alouane92] uses adaptive penalty function that takes a feedback

from the search process

fitnessi(x) = fi(x) + rg(t)

m+p∑
j=1

Gi(x)2

where rg(t) is updated every generation according to the following rule:

(1/β1) · rg(t), if case #1

rg(t + 1) = β2 · rg(t), if case #2

rg(t), otherwise,

where

� case #1 – the situation where the best individual in the last k generations was always feasible;

� case #2 – the situation where the best individual in the last k generations was never feasible;

� β1, β2 > 1, and β1 6= β2 (to avoid cycling).

Remarks:

� The penalty component for the generation t+1 is decreased if the feasible region was effectively

sampled within last k generations;

� �

� � � � � � �

Constraint-Handling

� The penalty component for the generation t + 1 is increased if the feasible region was not
effectively sampled within last k generations;

� It tries to avoid having either an all-feasible or an all-infeasible population.

� The problem is how to choose a proper generational gap (k) and the values of β2 and β1.

� �

� � � � � � �

Constraint-Handling

pAdaptive Segregational Constraint Handling EA - ASCHEA

The main idea in ASCHEA [Hamida00] is to maintain both feasible and infeasible individuals in

the population, at least when it seems necessary.

It proposes adaptive mechanisms at the population level for constraint optimization based on three

main components:

1. An adaptive penalty function – takes care of the penalty coefficients according to the proportion

of feasible individuals in the current population.

2. A constraint-driven mate selection – used to mate feasible individuals with infeasible ones and

thus explore the region around the boundary of the feasible domain.

3. A so-called segregational replacement strategy – used to favor a given number of feasible

individuals in the population.

� �

� � � � � � �

Constraint-Handling

pASCHEA: Adaptive Penalty

Let’s assume the penalty function of the following form:

penal(x) = α

m+p∑
i=1

Gi(x)

The penalty coefficient α is adapted based on the desired proportion of feasible solutions in the

population τtarget and the current proportion at generation t τt:

if(τt > τtarget) α(t + 1) = α(t)/fact

otherwise α(t + 1) = α(t) ∗ fact

where fact > 1 is a user-defined parameter, a recommended value is around 1.1.

A recommended value of τtarget is around 0.6.

� �

� � � � � � �

Constraint-Handling

pASCHEA: Constraint-driven Mate Selection

Selection mechanism chooses the mate of feasible individuals to be infeasible.

� Only applied when too few (w.r.t τtarget) feasible individuals are present in the population.

More precisely, to select the mate x2 for a first parent x1:

if(0 < τt < τtarget)and(x1 is feasible) select x2 among infeasible solutions only

otherwise select x2 according to fitness

� �

� � � � � � �

Constraint-Handling

pASCHEA: Segregational Replacement

Deterministic replacement mechanism used in ES-like scheme that should further enhance the

chances of survival of feasible individuals.

Assume a population of µ parents, from which λ offspring are generated. Depending on the

replacement scheme

� µ individuals out of λ offspring in case of the (µ, λ)-ES, or

� µ individuals out of λ offspring plus µ parents in case of the (µ + λ)-ES

are selected to the new population in the following way:

1. First, feasible solutions are selected without replacement based on their fitness, until τselect ∗µ
have been selected, or no more feasible solution is available.

2. The population is then filled in using standard deterministic selection on the remaining indi-

viduals, based on the penalized fitness.

Thus, a user-defined proportion of τselect feasible solutions is considered superior to all infeasible

solutions.

A recommended value of τselect is around 0.3.

� �

� � � � � � �

Constraint-Handling

pASCHEA: Niching

Niching – helps to better handle multimodal functions.

� a niche defined as a hypersphere around a good individual

� a niche has its capacity, nichecapacity, defining the maximal number of leaders in a niche

(including its central individual)

� other individuals falling within the niche, called followers, are discarded from further selections

input: population sorted in descending manner (from the best to the worst ind.)

1. for i = 1 to µ

2. if −→xi 6∈ followers
3. add −→xi to leaders

4. nbLeaders = 1

5. for j = i + 1 to µ

6. if −→xj 6∈ followers and distance(−→xi ,−→xj) < r

7. if nbLeaders < nichecapacity
8. nbLeaders + +

9. else
10. add −→xj to followers

� �

� � � � � � �

Constraint-Handling

pASCHEA: Niching

Niching is used in segregational replacement

� it is first applied on the leaders,

� then on the followers, if necessary.

� �

� � � � � � �

Constraint-Handling

pASCHEA: Niching

Adaptation of the niche radius r

� τclear is a desired proportion of leaders (or followers) in the population

usually τclear = 0.4

� τleaders and τfollowers are the proportions of leaders and followers in the population.

if(τleaders > τclear) r(t + 1) = r(t) ∗ fact
else if (τfollowers > τclear) r(t + 1) = r(t)/fact

� �

� � � � � � �

Constraint-Handling

pASCHEA: Conclusions

� Feasibility elitism – as soon as a feasible individual appears, it can only disappear from

the population by being replaced by a better feasible solution, even if the penalty coefficient

reaches very small value.

� Constraint-driven mate selection accelerates the movement toward the feasible region

of infeasible individuals, and helps to explore the region close to the boundary of the feasible

domain.

� Adaptability – the penalty adaptation as well as the constraint-driven mate selection are

activated based on the actual proportion of feasible solutions in the population.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

Let’s assume the penalty fitness function of the following form:

ψ(x) = f (x) + rg ×
m+p∑
i=1

Gi(x)2

For a given penalty coefficient rg > 0, let the ranking of λ individuals be

ψ(x1) ≤ ψ(x2) ≤ · · · ≤ ψ(xλ), (1)

For any given adjacent pair i and i + 1 in the ranked order

fi + rgGi ≤ fi+1 + rgGi+1 where fi = f (xi) and Gi = G(xi) (2)

we define so called critical penalty coefficient

ři = (fi+1 − fi)/(Gi −Gi+1) for Gi 6= Gi+1 (3)

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

For given choice of rg ≥ 0, there are three different cases which may give rise to inequality (2):

1. fi ≤ fi+1 and Gi ≥ Gi+1: Objective function plays a dominant role in determining the

inequality and the value of rg should be 0 < rg < ři.

2. fi ≥ fi+1 and Gi < Gi+1: Penalty function plays a dominant role in determining the inequality

and the value of rg should be 0 < ři < rg.

3. fi < fi+1 and Gi < Gi+1: The comparison is nondominated and ři < 0. Neither the objective

nor the penalty function can determine the inequality by itself.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

For given choice of rg ≥ 0, there are three different cases which may give rise to inequality (2):

1. fi ≤ fi+1 and Gi ≥ Gi+1: Objective function plays a dominant role in determining the

inequality and the value of rg should be 0 < rg < ři.

Ex.:
fi = 10, Gi = 7

fi+1 = 20 Gi+1 = 5

ři = (20− 10)/(7− 5) = 5 =⇒ 0 < rg < 5

rg = 4 : 38 ≤ 40 the inequality (2) holds

rg = 6 : 52 � 50 the inequality (2) does not hold

2. fi ≥ fi+1 and Gi < Gi+1: Penalty function plays a dominant role in determining the inequality

and the value of rg should be 0 < ři < rg.

3. fi < fi+1 and Gi < Gi+1: The comparison is nondominated and ři < 0. Neither the objective

nor the penalty function can determine the inequality by itself.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

For given choice of rg ≥ 0, there are three different cases which may give rise to inequality (2):

1. fi ≤ fi+1 and Gi ≥ Gi+1: Objective function plays a dominant role in determining the

inequality and the value of rg should be 0 < rg < ři.

2. fi ≥ fi+1 and Gi < Gi+1: Penalty function plays a dominant role in determining the inequality

and the value of rg should be 0 < ři < rg.

Ex.:
fi = 20, Gi = 5

fi+1 = 10 Gi+1 = 7

ři = (10− 20)/(5− 7) = 5 =⇒ 5 < rg
rg = 4 : 40 � 38 the inequality (2) does not hold

rg = 6 : 50 ≤ 52 the inequality (2) holds

3. fi < fi+1 and Gi < Gi+1: The comparison is nondominated and ři < 0. Neither the objective

nor the penalty function can determine the inequality by itself.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

For given choice of rg ≥ 0, there are three different cases which may give rise to inequality (2):

1. fi ≤ fi+1 and Gi ≥ Gi+1: Objective function plays a dominant role in determining the

inequality and the value of rg should be 0 < rg < ři.

2. fi ≥ fi+1 and Gi < Gi+1: Penalty function plays a dominant role in determining the inequality

and the value of rg should be 0 < ři < rg.

3. fi < fi+1 and Gi < Gi+1: The comparison is nondominated and ři < 0. Neither the objective

nor the penalty function can determine the inequality by itself.

Ex.:
fi = 10, Gi = 5

fi+1 = 20 Gi+1 = 7

ři = (20− 10)/(5− 7) = −5 =⇒ the inequality (2) holds for all rg > 0

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: What Penalty Methods Do?

The value of rg has no impact on the inequality (2) when nondominant and feasible individuals

are compared.

The value of rg is critical in the first two cases. It has to be within a certain range rg < rg < rg

1. rg is the minimum critical penalty coefficient computed from adjacent individuals ranked only

according to the objective function.

2. rg is the maximum critical penalty coefficient computed from adjacent individuals ranked only

according to the penalty function.

Both bounds are problem dependent and may vary from generation to generation.

There are three categories of rg values

1. rg < rg: Underpenalization – All comparisons are based only on the fitness function.

2. rg > rg: Overpenalization – All comparisons are based only on the penalty function.

3. rg < rg < rg: All comparisons are based on a combination of objective and penalty functions.

This is what a good constraint-handling technique should do – to balance between preserving

feasible individuals and rejecting infeasible ones.

But the optimal rg is hard to determine.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: Realization

Stochastic Ranking [Runarsson00] characteristics:

� The idea of this approach is that the balance between objective and penalty functions
is achieved directly and explicitly.

� It does not require explicit definition of the penalty coefficient rg value.

Instead, it requires a user-defined parameter Pf , which determines the balance be-

tween the objective function and the penalty function.

Stochastic ranking realization: Bubble-sort-like procedure

� The population is sorted using an algorithm similar to bubble-sort.

� Parameter Pf specifies a probability of using only the objective function for comparisons of

infeasible solutions.

If both individuals are feasible then the probability of comparing them according to the objective

function is 1. Otherwise, it is Pf .

The reminder of the comparisons are realized based on the sum of constraint violation.

Recommended range of Pf values is (0.4, 0.5)

The Pf introduces the stochastic component to the ranking process, so that some solutions may

get a good rank even if they are infeasible.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: Bubble-sort-like Procedure

c©Runarsson, T. P. and Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimization.

� �

� � � � � � �

Constraint-Handling

pStochastic Ranking: Conclusions

� Does not use any specialized variation operators.

� Does not require a priori knowledge about a problem since it does not use any penalty coeffi-

cient rg in a penalty function.

� The approach is easy to implement.

� �

� � � � � � �

Constraint-Handling

pSpecial Representation and Operators

Random keys – a representation for representing permutations, it is an efficient method for

encoding ordering and scheduling problems.

� A random key vector of length l consists of l random values (keys) that are floating numbers

between zero and one.

Ex.: −→r 5 = (0.17, 0.92, 0.63, 0.75, 0.29)

� Of importance for the interpretation of the random key vector is the position of the keys.

The positions of the keys in the vector are ordered according to their values in ascending or

descending order which gives a permutation of l numbers.

Ex.: Random key vector −→r 5 can be interpreted as the sequence −→r s
5 = 2→ 4→ 3→ 5→ 1

Properties of the encoding:
� A valid sequence −→r s

l can always be created from the random key vector as long as there are

no two keys ri and rj with the same values.

� There are many possibilities for the construction of each particular sequence (permutation).

� Locality of the random keys is high – a small change in the genotype (the vector −→r l) leads

to a small change in the phenotype (the sequence −→r s
l).

� When using EAs with random keys, all kinds of standard crossover and mutation operators

can be used that always produce only valid solutions (i.e. the interpreted permutations).

� �

� � � � � � �

Constraint-Handling

pRandom Keys for the Network Design Problems

Network Design Problem

� A tree network is defined as a connected graph with n nodes and n−1

links (there are no loops in the tree).

� Between any two nodes there exists exactly one possible path for the

flow.

� The goal is to minimize the overall cost for constructing and main-

taining the tree network that is calculated by summing-up the cost of

all links.

Encoding tree networks with Network Random Keys (NetKeys) [Rothlauf02]

� The real-valued NetKeys are interpreted as the importance of the link. The higher the value

of the allele, the higher the probability that the link is used for the tree.

� Every NetKey vector represents a valid network structure.

� �

� � � � � � �

Constraint-Handling

pRandom Keys for the Network Design Problems

Constructing the tree network from the NetKey vector

1. Let i = 0, G be an empty graph with n nodes, and−→r s
l the sequence with length l = n(n−1)/2

that could be constructed from the NetKey vector −→r l. All possible links of G are numbered

from 1 to l.

2. Let j be the number at the ith position of −→r s
l .

3. If the insertion of the link with number j in G would not create a cycle, then insert the link

with number j in G.

4. Stop, if there are n− 1 links in G.

5. Incrementi and continue with step 2.

Ex.:

position 1 2 3 4 5 6 7 8 9 10

NetKey 0.55 0.73 0.09 0.23 0.40 0.82 0.65 0.85 0.75 0.90

link A-B A-C A-D A-E B-C B-D B-E C-D C-E D-E

� �

� � � � � � �

Constraint-Handling

pApproaches based on Evolutionary Multiobjective Optimization

General form of multi-objective optimization problem

Minimize/maximize fm(x), m = 1, 2, ...,M ;

subject to gj(x) ≥ 0, j = 1, 2, ..., J ;

hk(x) = 0, k = 1, 2, ..., K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, ..., n.

� x is a vector of n decision variables: x = (x1, x2, ..., xn)T ;

� gj, hk are inequality and equality constraints, respectively.

� Conflicting objectives

− A solution that is extreme with respect to one objective

requires a compromise in other objectives.

− A sacrifice in one objective is related to the gain in other

objective(s).

Motivation example: Buying a car

− two extreme hypothetical cars 1 and 2,

− cars with a trade-off between cost and comfort – A, B,

and C.

� �

� � � � � � �

Constraint-Handling

pMultiobjective Techniques: Using Pareto Schemes

c©Kalyanmoy Deb: Multi-Objective Optimization using Evolutionary Algorithms.

Pareto dominance: A solution x(1) is said to dominate the other solution x(2), x(1) � x(2),

if x(1) is no worse than x(2) in all objectives and x(1) is strictly better than x(2) in at least one

objective.

Solutions A, B, C, D are non-dominated solutions (Pareto-optimal solutions)

Solution E is dominated by C and B (E is non-optimal).

� �

� � � � � � �

Constraint-Handling

pApproaches based on Evolutionary Multiobjective Optimization

Two ways the NLP is transformed into a multiobjective optimization problem

� NLP −→ Unconstrained Bi-objective Optimization (BOP): Transforms the NLP into

an unconstrained bi-objective optimization problem with the objectives being (1) the original

objective function and (2) the sum of constraint violation.

� NLP −→ Unconstrained Multiobjective optimization (MOP): Transforms the NLP

into an unconstrained multiobjective optimization problem where the original objective function

and each constraint are treated as separate objectives.

� �

� � � � � � �

Constraint-Handling

pBi-objective Optimization Techniques

[Venkatraman05] – approach divided in two phases:

1. The population is ranked based only on the sum of constraint violation

– the goal is to find some feasible solutions.

2. Both objectives are taken into account.

� Nondominated sorting is used to rank the population.

� Niching scheme based on distance to the nearest neighbors is ap-

plied to promote a diversity of the population.

Disadvantage: The way the feasible region is approached is mostly at random because the quality

is not considered in the first phase.

� �

� � � � � � �

Constraint-Handling

pMultiobjective Techniques: Using Non-Pareto Schemes

[Coello00] – MOP approach based on VEGA’s idea, where the population is divided into sub-

populations, and each sub-population focuses on optimization of one objective.

� m + 1 sub-populations.

− One sub-population handles the objective function of the problem and the individuals are

selected based on the unconstrained objective function value.

− Each of the m remaining sub-populations take one constraint as their fitness function.

− The aim is that each of the sub-populations tries to reach the feasible region corresponding

to one individual constraint.

By combining these sub-populations, the approach will reach the feasible region where all

of the constraints are satisfied.

� The main drawback is that the number of sub-populations increases linearly with the number

of constraints.

� �

� � � � � � �

Constraint-Handling

pMultiobjective Techniques: NPGA-based Approach

[Coello02] – based on the Niched-Pareto Genetic Algorithm that uses binary tournament selection

based on Pareto non-dominance.
� Parameter Sr, which indicates the minimum number of individuals that will be selected through

dominance-based tournament selection.

The remainder will be selected using a purely probabilistic approach. In other words, (1−Sr)
individuals in the population are probabilistically selected.

− Tournament selection – three possible situations when comparing two candidates

1. Both are feasible. In this case, the candidate with a better fitness value wins.

2. One is infeasible, and the other is feasible. The feasible candidate wins, regardless of its

fitness function value.

3. Both are infeasible.

(a) Check both candidates whether they are dominated by ind. from the comparison set.

(b) If one is dominated by the comparison set, and the other is not dominated then the

non-dominated candidate wins.

Otherwise, the candidate with the lowest amount of constraint violation wins, regard-

less of its fitness function value.

− Probabilistic selection – Each candidate has a probability of 50% of being selected.

� Robust, efficient and effective approach.

� �

� � � � � � �

Constraint-Handling

pMultiobjective Techniques: Conclusions

� The most popular are the MOP approaches.

� The use of diversity mechanisms is found in most approaches.

� The use of explicit local search mechanisms is still scarce.

� �

� � � � � � �

Constraint-Handling

pRecommended Reading

[Homaifar94] Homaifar, A., Lai, S.H.Y., Qi, X.: Constrained optimization via

genetic algorithms, Simulation 62 (4), pp. 242–254, 1994.

[Joines94] Joines, J., Houck, C.: On the use of non-stationary penalty

functions to solve nonlinear constrained optimization problems

with GAs, in: D. Fogel (Ed.), Proceedings of the First IEEE

Conference on Evolutionary Computation, IEEE Press, Orlando,

FL, pp. 579–584, 1994.

[Runarsson00] Runarsson, T. P. and Yao, X.: Stochastic Ranking for Con-

strained Evolutionary Optimization, IEEE Transactions on Evo-

lutionary Computation, 4(3):284–294, September 2000.

[Farmani03] Farmani, R. and Wright, J. A.: Self-Adaptive Fitness Formula-

tion for Constrained Optimization, IEEE TRANSACTIONS ON

EVOLUTIONARY COMPUTATION, VOL. 7, NO. 5, 2003.

[Hamida00] Hamida, S.B. and Schoenauer, M.: An Adaptive Algorithm for

Constrained Optimization Problems, Parallel Problem Solving

from Nature PPSN VI, 2000, pp. 529-538, 2000.

� �

� � � � � � �

Constraint-Handling

pRecommended Reading

[Zhou03] Zhou, Y., Li, Y., He, J., Kang, L.: Multi-objective and MGG

Evolutionary Algorithm for Constrained Optimization. In: Pro-

ceedings of the Congress on Evolutionary Computation 2003

(CEC’2003). Volume 1., Piscataway, New Jersey, Canberra,

Australia, IEEE Service Center (2003) 1–5.

[Hadj-Alouane92] Hadj-Alouane, A.B., Bean, J.C.: A Genetic ALGORITHM FOR

THE Multiple-choice Integer Program. Technical Report TR

92-50, Department of Industrial and Operations Engineering,

The University of Michigan, 1992.

[Rothlauf02] Rothlauf, F., Goldberg, D.E., and Heinzl, A.: Network random

keys — A tree network representation scheme for genetic and

evolutionary algorithms, Evolutionary Computation, vol. 10, no.

1, pp.75 - 97 , 2002.

[Venkatraman05] Venkatraman, S., Yen, G.G.: A Generic Framework for Con-

strained Optimization Using Genetic Algorithms. IEEE Trans-

actions on Evolutionary Computation 9(4) (2005).

� �

� � � � � � �

Constraint-Handling

pRecommended Reading

[Coello00] Coello, C.A.: Treating Constraints as Objectives for Single-

Objective Evolutionary Optimization. Engineering Optimization

32(3) (2000) 275–308.

[Coello02] Coello, C.A.C., Mezura-Montes, E.: Handling Constraints in

Genetic Algorithms Using Dominance-Based Tournaments. In

Parmee, I., ed.: Proceedings of ACDM’2002. Volume 5., Uni-

versity of Exeter, Devon, UK, Springer-Verlag (2002) 273–284.

� �

� � � � � � �

Constraint-Handling

