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2. Empirical analysis and comparisons
of stochastic optimization algorithms

Petr Pošı́k

Substantial part of this material is based on slides provided with the book
’Stochastic Local Search: Foundations and Applications’

by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004)
See www.sls-book.net for further information.

www.sls-book.net
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■ No-Free-Lunch Theorem

■ What is so hard about the comparison of stochastic methods?

■ Simple statistical comparisons

■ Comparisons based on running length distributions
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“There is no such thing as a free lunch.”
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“There is no such thing as a free lunch.”

■ Refers to the nineteenth century practice in American bars of offering a “free lunch”
with drinks.
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■ Refers to the nineteenth century practice in American bars of offering a “free lunch”
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■ The meaning of the adage: It is impossible to get something for nothing.
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“There is no such thing as a free lunch.”

■ Refers to the nineteenth century practice in American bars of offering a “free lunch”
with drinks.

■ The meaning of the adage: It is impossible to get something for nothing.

■ If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.
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“There is no such thing as a free lunch.”

■ Refers to the nineteenth century practice in American bars of offering a “free lunch”
with drinks.

■ The meaning of the adage: It is impossible to get something for nothing.

■ If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

■ Informally, for discrete spaces: “Any two algorithms are equivalent when their
performance is averaged across all possible problems.”
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■ Informally, for discrete spaces: “Any two algorithms are equivalent when their
performance is averaged across all possible problems.”

■ For a particular problem (or a particular class of problems), different search
algorithms may obtain different results.
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P. Pošı́k c© 2014 A6M33SSL: Statistika a spolehlivost v lékařstvı́ – 4 / 30

“There is no such thing as a free lunch.”

■ Refers to the nineteenth century practice in American bars of offering a “free lunch”
with drinks.

■ The meaning of the adage: It is impossible to get something for nothing.

■ If something appears to be free, there is always a cost to the person or to society as a
whole even though that cost may be hidden or distributed.

No-Free-Lunch theorem in search and optimization [WM97]

■ Informally, for discrete spaces: “Any two algorithms are equivalent when their
performance is averaged across all possible problems.”

■ For a particular problem (or a particular class of problems), different search
algorithms may obtain different results.

■ If an algorithm achieves superior results on some problems, it must pay with
inferiority on other problems.

It makes sense to study which algorithms are suitable for which kinds of problems!!!

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE Trans. on Evolutionary Computation, 1(1):67–82,
1997.
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EOA belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):
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■ Monte Carlo algorithm: It always stops and provides a solution, but the solution
may not be correct. The solution quality is a random variable.
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■ Las Vegas algorithm: It always produces a correct solution, but needs a priori
unknown time to find it. The running time is a random variable.
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■ LVA can be turned to MCA by bounding the allowed running time.
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EOA belong to the class of Monte Carlo or Las Vegas algorithms (LVAs):

■ Monte Carlo algorithm: It always stops and provides a solution, but the solution
may not be correct. The solution quality is a random variable.

■ Las Vegas algorithm: It always produces a correct solution, but needs a priori
unknown time to find it. The running time is a random variable.

■ LVA can be turned to MCA by bounding the allowed running time.

■ MCA can be turned to LVA by restarting the algorithm from randomly chosen states.
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Las Vegas algorithms:

■ An algorithm A for a decision problem class Π is a Las Vegas algorithm iff it has the
following properties:

■ If A terminates for certain π ∈ Π and returns a solution s, then s is guaranteed to
be a correct solution of π.

■ For any given instance π ∈ Π, the runtime of A applied to π, RTA,π , is a random
variable.
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Las Vegas algorithms:

■ An algorithm A for a decision problem class Π is a Las Vegas algorithm iff it has the
following properties:

■ If A terminates for certain π ∈ Π and returns a solution s, then s is guaranteed to
be a correct solution of π.

■ For any given instance π ∈ Π, the runtime of A applied to π, RTA,π , is a random
variable.

■ An algorithm A for an optimization problem class Π is an optimization Las Vegas
algorithm iff it has the following properties:

■ For any given instance π ∈ Π, the runtime of A applied to π needed to find a
solution with certain quality q, RTA,π(q), is a random variable.

■ For any given instance π ∈ Π, the solution quality achieved by A applied to π

after certain time t, SQA,π(t), is a random variable.



Las Vegas algorithms

Motivation
• No-Free-Lunch
Theorem
• Monte Carlo vs. Las
Vegas Algorithms

• Las Vegas
algorithms

• Runtime Behaviour
for Decision Problems
• Runtime Behaviour
for Optimization
Problems

• Some Tweaks
• Theoretical vs.
Empirical Analysis of
LVAs
• Application
Scenarios and
Evaluation Criteria

Empirical Algorithm
Comparison

Analysis based on
runtime distribution

Summary
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Las Vegas algorithms:

■ An algorithm A for a decision problem class Π is a Las Vegas algorithm iff it has the
following properties:

■ If A terminates for certain π ∈ Π and returns a solution s, then s is guaranteed to
be a correct solution of π.

■ For any given instance π ∈ Π, the runtime of A applied to π, RTA,π , is a random
variable.

■ An algorithm A for an optimization problem class Π is an optimization Las Vegas
algorithm iff it has the following properties:

■ For any given instance π ∈ Π, the runtime of A applied to π needed to find a
solution with certain quality q, RTA,π(q), is a random variable.

■ For any given instance π ∈ Π, the solution quality achieved by A applied to π

after certain time t, SQA,π(t), is a random variable.

■ LVAs are typically incomplete or at most asymptotically complete.
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Definitions:

■ A is an algorithm for a class Π of decision problems.

■ Ps (RTA,π ≤ t) is a probability that A finds a solution for a problem instance π ∈ Π in
time less than or equal to t.
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Definitions:

■ A is an algorithm for a class Π of decision problems.

■ Ps (RTA,π ≤ t) is a probability that A finds a solution for a problem instance π ∈ Π in
time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax) = 1. (1)
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Definitions:

■ A is an algorithm for a class Π of decision problems.

■ Ps (RTA,π ≤ t) is a probability that A finds a solution for a problem instance π ∈ Π in
time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax) = 1. (1)

Asymptotically complete algorithm A can solve any solvable problem instance π ∈ Π

with arbitrarily high probability when allowed to run long enough, i.e. A is asymptotically
complete if and only if

∀π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t) = 1. (2)
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Definitions:

■ A is an algorithm for a class Π of decision problems.

■ Ps (RTA,π ≤ t) is a probability that A finds a solution for a problem instance π ∈ Π in
time less than or equal to t.

Complete algorithm A can provably solve any solvable decision problem instance π ∈ Π

after a finite time, i.e. A is complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax) = 1. (1)

Asymptotically complete algorithm A can solve any solvable problem instance π ∈ Π

with arbitrarily high probability when allowed to run long enough, i.e. A is asymptotically
complete if and only if

∀π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t) = 1. (2)

Incomplete algorithm A cannot be guaranteed to find the solution even if allowed to run
indefinitely long, i.e. if it is not asymptotically complete, i.e. A is incomplete if and only if

∃ solvable π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t) < 1. (3)
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Simple generalization based on transforming the optimization problem to related decision
problem by setting the solution quality bound to q = r · q∗(π):

■ A is an algorithm for a class Π of optimization problems.

■ Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a solution of quality better
than or equal to q for a solvable problem instance π ∈ Π in time less than or equal to
t.

■ q∗(π) is the quality of optimal solution to problem π.

■ r ≥ 1, q > 0.
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Simple generalization based on transforming the optimization problem to related decision
problem by setting the solution quality bound to q = r · q∗(π):

■ A is an algorithm for a class Π of optimization problems.

■ Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a solution of quality better
than or equal to q for a solvable problem instance π ∈ Π in time less than or equal to
t.

■ q∗(π) is the quality of optimal solution to problem π.

■ r ≥ 1, q > 0.

Algorithm A is r-complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax, SQA,π ≤ r · q∗(π)) = 1. (4)
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Simple generalization based on transforming the optimization problem to related decision
problem by setting the solution quality bound to q = r · q∗(π):

■ A is an algorithm for a class Π of optimization problems.

■ Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a solution of quality better
than or equal to q for a solvable problem instance π ∈ Π in time less than or equal to
t.

■ q∗(π) is the quality of optimal solution to problem π.

■ r ≥ 1, q > 0.

Algorithm A is r-complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax, SQA,π ≤ r · q∗(π)) = 1. (4)

Algorithm A is asymptotically r-complete if and only if

∀π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t, SQA,π ≤ r · q∗(π)) = 1. (5)
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Simple generalization based on transforming the optimization problem to related decision
problem by setting the solution quality bound to q = r · q∗(π):

■ A is an algorithm for a class Π of optimization problems.

■ Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a solution of quality better
than or equal to q for a solvable problem instance π ∈ Π in time less than or equal to
t.

■ q∗(π) is the quality of optimal solution to problem π.

■ r ≥ 1, q > 0.

Algorithm A is r-complete if and only if

∀π ∈ Π, ∃tmax : Ps (RTA,π ≤ tmax, SQA,π ≤ r · q∗(π)) = 1. (4)

Algorithm A is asymptotically r-complete if and only if

∀π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t, SQA,π ≤ r · q∗(π)) = 1. (5)

Algorithm A is r-incomplete if and only if

∃ solvable π ∈ Π : lim
t→∞

Ps (RTA,π ≤ t, SQA,π ≤ r · q∗(π)) < 1. (6)
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■ Incompleteness of many LVAs is typically caused by their inability to escape from
attractive local minima regions of the search space.

■ Remedy: use diversification mechanisms such as random restart, random walk,
tabu, . . .

■ In many cases, these can render algorithms provably asymptotically complete,
but effectiveness in practice can vary widely.

■ Completeness can be achived by restarting an incomplete method from a solution
generated by a complete (exhaustive) algorithm.

■ Typically very ineffective due to large size of the search space.
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■ Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically. (Algorithms are often non-deterministic.)
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■ Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically. (Algorithms are often non-deterministic.)

■ Cases in which theoretical results are available are often of limited practical
relevance, because they

■ rely on idealised assumptions that do not apply to practical situations,
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P. Pošı́k c© 2014 A6M33SSL: Statistika a spolehlivost v lékařstvı́ – 10 / 30
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■ Cases in which theoretical results are available are often of limited practical
relevance, because they

■ rely on idealised assumptions that do not apply to practical situations,

■ apply to worst-case or highly idealised average-case behaviour only, or

■ capture only asymptotic behaviour and do not reflect actual behaviour with
sufficient accuracy.
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■ Practically relevant Las Vegas algorithms are typically difficult to analyse
theoretically. (Algorithms are often non-deterministic.)

■ Cases in which theoretical results are available are often of limited practical
relevance, because they

■ rely on idealised assumptions that do not apply to practical situations,

■ apply to worst-case or highly idealised average-case behaviour only, or

■ capture only asymptotic behaviour and do not reflect actual behaviour with
sufficient accuracy.

Therefore, analyse the behaviour of LVAs using empirical methodology, ideally based
on the scientific method:

■ make observations

■ formulate hypothesis/hypotheses (model)

■ While not satisfied with model (and deadline not exceeded):

1. design computational experiment to test model

2. conduct computational experiment

3. analyse experimental results

4. revise model based on results
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Type 1: Hard time limit tmax for finding solution; solutions found later are useless
(real-time environments with strict deadlines, e.g., dynamic task scheduling or on-line
robot control).

⇒ Evaluation criterion:

■ dec. prob.: solution probability at time tmax, Ps (RT ≤ tmax)

■ opt. prob.: expected quality of the solution found at time tmax, E(SQ(tmax))

o
b

j.
fu

n
ct

io
n

timetmax

avg( ftmax )
var( ftmax )

■ Possible problem: What does “The expected solution quality of algorithm A is 2
times better than for algorithm B” actually mean?
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Type 2: No time limits given, algorithm can be run until a solution is found (off-line
computations, non-realtime environments, e.g., configuration of production facility).

⇒ Evaluation criterion:

■ dec. prob.: expected runtime to solve a problem

■ opt. prob.: expected runtime to reach solution of certain quality

o
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j.
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ct

io
n

time

ftarget

avg(t ftarget
)

var(t ftarget
)

■ Is there any problem with “The expected runtime of algorithm A is 2 times larger
than for algorithm B”?
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Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

■ dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

■ opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t
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Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

■ dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

■ opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing
time diminishes the final payoff according to U(t) = max{u0 − c · t, 0} (constant
discounting).
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Type 3: Utility of solutions depends in more complex ways on the time required to find
them; characterised by a utility function U:

■ dec. prob.: U : R+ 7→ 〈0, 1〉, where U(t) = utility of solution found at time t

■ opt. prob.: U : R+ × R+ 7→ 〈0, 1〉, where U(t, q) = utility of solution with quality q
found at time t

Example: The direct benefit of a solution is invariant over time, but the cost of computing
time diminishes the final payoff according to U(t) = max{u0 − c · t, 0} (constant
discounting).

⇒ Evaluation criterion: utility-weighted solution probability

■ dec. prob.: U(t) · Ps (RT ≤ t), or

■ opt. prob.: U(t, q) · Ps (RT ≤ t, SQ ≤ q)

requires detailed knowledge of Ps (. . .) for arbitrary t (and arbitrary q).
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Remark: Is it better to measure the time in seconds or e.g. in function evaluations?

■ Results of experiments should be comparable.

■ Wall-clock time depends on the machine configuration, computer language, and on
the operating system used to run the experiments.

■ Since the objective function is often the most time-consuming operation in the
optimization cycle, many authors use the number of objective function evaluations as the
primary measure of “time”.
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P. Pošı́k c© 2014 A6M33SSL: Statistika a spolehlivost v lékařstvı́ – 16 / 30

■ Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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■ Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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■ For tmax,1, blue algorithm is better than red.
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■ Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)
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■ For tmax,1, blue algorithm is better than red.

■ For tmax,2, blue algorithm is worse than red.

■ WARNING! The figure can change when tmax changes!!!
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■ Let them run for certain time tmax and compare the average quality of returned
solution, ave(SQ)

o
b

j.
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n

timetmax,1 tmax,2

■ For tmax,1, blue algorithm is better than red.

■ For tmax,2, blue algorithm is worse than red.

■ WARNING! The figure can change when tmax changes!!!

■ Can our claims be false? What is the probability that our claims are wrong?
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Independent two-sample t-test:

■ Statistical method used to test if the means of 2 normally distributed populations are
equal.

■ The larger the difference between means, the higher the probability the means are
different.

■ The lower the variance inside the populations, the higher the probability the means
are different.

■ For details, see e.g. [Luk09, sec. 11.1.2].

■ Implemented in most mathematical and statistical software, e.g. in MATLAB.

■ Can be easily implemented in any language.

Assumptions:

■ Both populations should have normal distribution.

■ Almost never fulfilled with the populations of solution qualities.

Remedy: a non-parametric test!

[Luk09] Sean Luke. Essentials of Metaheuristics. 2009. available at http://cs.gmu.edu/∼sean/book/metaheuristics/.
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Non-parametric test assessing whether two independent samples of observations have
equally large values.

■ Virtually identical to:

■ combine both samples (for each observation, remember its original group),

■ sort the values,

■ replace the values by ranks,

■ use the ranks with ordinary parametric two-sample t-test.

■ The measurements must be at least ordinal:

■ We must be able to sort them.

■ This allows us to merge results from runs which reached the target level with the
results of runs which did not.
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■ Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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■ Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)

o
b

j.
fu

n
ct

io
n

time

ftarget

■ For ftarget,1, blue algorithm is better than red.
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■ Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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ftarget,1

ftarget,2

■ For ftarget,1, blue algorithm is better than red.

■ For ftarget,2, blue algorithm still seems to better than red (if it finds the solution, it
finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less
sure that blue is better).

■ WARNING! The figure can change when ftarget changes!!!
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■ Let them run until they find a solution of certain quality ftarget and compare the
average runtime, ave(RT)
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■ For ftarget,1, blue algorithm is better than red.

■ For ftarget,2, blue algorithm still seems to better than red (if it finds the solution, it
finds it faster), but 2 blue runs did not reach the target level yet, i.e. (we are much less
sure that blue is better).

■ WARNING! The figure can change when ftarget changes!!!

■ The same statistical tests as for scenario 1 can be used.
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■ Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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■ RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?
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■ Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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■ RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?

■ The situation when the algorithm reaches ftarget is better than when it reaches tmax.
We can still sort the values.

■ We can use the Mann-Whitney U-test.
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■ Let them run until they find a solution of certain quality ftarget or until they use all
the allowed time tmax.
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■ RT is measured in seconds or function evaluations, SQ is measured in something
different; now, how can we test if one algorithm is better than the other?

■ The situation when the algorithm reaches ftarget is better than when it reaches tmax.
We can still sort the values.

■ We can use the Mann-Whitney U-test.

■ WARNING! Again, if we change ftarget and/or tmax, the figure can change!!!
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LVAs are often designed and evaluated without apriori knowledge of the application
scenario:

■ Assume the most general scenario — type 3 with a utility function (which is often,
however, unknown as well).

■ Evaluate based on solution probabilities Ps (RT ≤ t, SQ ≤ q) for arbitrary runtimes t
and solution qualities q.

Study distributions of random variables characterising runtime and solution quality of
an algorithm for the given problem instance.
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Given a Las Vegas alg. A for optimization problem π:

■ The success probability Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a
solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.
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Given a Las Vegas alg. A for optimization problem π:

■ The success probability Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a
solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

■ The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).
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Given a Las Vegas alg. A for optimization problem π:

■ The success probability Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a
solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

■ The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).

■ The runtime distribution function rtd : R+ × R+ → [0, 1], defined as
rtd(t, q) = Ps (RTA,π ≤ t, SQA,π ≤ q), completely characterises the RTD of A on π.
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Given a Las Vegas alg. A for optimization problem π:

■ The success probability Ps (RTA,π ≤ t, SQA,π ≤ q) is the probability that A finds a
solution for a solvable instance π ∈ Π of quality ≤ q in time ≤ t.

■ The run-time distribution (RTD) of A on π is the probability distribution of the
bivariate random variable (RTA,π , SQA,π).

■ The runtime distribution function rtd : R+ × R+ → [0, 1], defined as
rtd(t, q) = Ps (RTA,π ≤ t, SQA,π ≤ q), completely characterises the RTD of A on π.
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We can study the RTD using cross-sections:
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We can study the RTD using cross-sections:

Horizontal cross-sections reveal the
dependence of SQon RT:

■ The lines represent various quantiles;
e.g. for 75%-quantile we can expect
that 75% of runs will return a better
combination of SQ and RT.
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P. Pošı́k c© 2014 A6M33SSL: Statistika a spolehlivost v lékařstvı́ – 26 / 30

Empirical estimation of Ps (RT ≤ t, SQ ≤ q):

■ Perform N independent runs of A on problem π.

■ For nth run, n ∈ 1, . . . , N, store the so-called solution quality trace, i.e. tn,i and qn,i each
time the quality is improved.

■ Ps(t, q) = nS(t,q)
N , where nS(t, q) is the number of runs which provided at least one

solution with ti ≤ t and qi ≤ q.

Empirical RTDs are approximations of an algorithm’s true RTD:

■ The larger the N, the better the approximation.
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms
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E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms
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This way we can aggregate RTDs of an
algorithm A not only

■ over various ftarget levels, but also
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P. Pošı́k c© 2014 A6M33SSL: Statistika a spolehlivost v lékařstvı́ – 27 / 30

E.g. type 2 application scenario: set ftarget and compare RTDs of the algorithms

. . . and add another ftarget level . . .
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This way we can aggregate RTDs of an
algorithm A not only

■ over various ftarget levels, but also

■ over different problems π ∈ Π (!!!), of
course with certain loss of
information.
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Workshop on black-box optimization benchmarking (BBOB) at GECCO conference:
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■ No-free-lunch: all algorithms behave equally on average.

■ Comparison of optimization algorithms

■ makes sense only on a well-defined class of problems,

■ is not easy since the chosen measures of algorithm quality are often random
variables,

■ is often inconclusive unless the application scenario (utility function) is known.

■ The most common scenario is

■ fix available runtime tmax,

■ perform several runs and measure the solution quality at the end of each,

■ compare the algorithms based on median (or average) solution quality returned,
and

■ asses statistical significance of the difference using Mann-Whitney U test.

■ All measures for comparison can be derived from rtd(t, q).
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