
Parameter Control in Evolutionary Algorithms

Jǐŕı Kubaĺık
Department of Cybernetics, CTU Prague

http://cw.felk.cvut.cz/doku.php/courses/a0m33eoa/start

pParameter Control in Evolutionary Algorithms

An EA is a metaheuristic whose components need to be instantiated and properly tuned in order

to yield a fully functioning algorithm:

� components – representation, selection and replacement strategy, recombination and mutation

operators, ...

� strategy parameters – population size, probability of crossover and mutation, parameter of

selection, etc.

The values of these algorithms greatly determine whether the algorithm will find an optimal (or

near-optimal) solution, and whether it will find such a solution effectively.

Two major forms of setting the parameter values

� Parameter tuning – finding good values for the parameters before the run of the algorithm,

and then running the algorithm with these values, which remain fixed during the run.

� Parameter control – starts a run with initial parameter values that change during the run.

� Parameter Control

pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� Parameter Control

pParameter Tuning

Typically done by experimenting with different values and selecting the ones that give the best

results on the test problems at hand.

Technical drawbacks to parameter tuning:

� Parameters are not independent, but trying all different combinations systematically is practi-

cally impossible.

� It is heavily based on personal experience and is guided by a mixture of rules of thumb.

� The process of parameter tuning is time consuming, even if parameters are optimised one by

one, regardless of their interactions.

� For a given problem the selected parameter values are not necessarily optimal, even if the

effort made for setting them was significant.

� There are no generally good parameter settings since specific problems require specific setups

for satisfactory performance.

� A run of an EA is an intrinsically dynamic, adaptive process. Thus, different values of param-

eters might be optimal at different stages of the evolutionary process.

Ex.: Large mutation steps can be good in the early generations, helping the exploration.

Small mutation steps do better in the late generations fine-tuning the suboptimal solution.

� Parameter Control

pParameter Tuning: F-Race

F-Race [Birattari02] – procedure that empirically evaluates a set of candidate configurations by

discarding bad ones as soon as statistically sufficient evidence is gathered against them.

� The process starts from a given finite pool of candidate configurations.

� If sufficient evidence is gathered that some candidate is inferior to at least another one, such

a candidate is dropped from the pool and the procedure is iterated over the remaining ones.

The methodology can be applied to repetitive problems – problems where many similar instances

appear over time.

� Parameter Control

pF-Race: Formal Definition of the Configuration Problem

� Θ is the finite set of candidate configurations.

� I is the possibly infinite set of instances.

� PI is a probability measure over the set I of instances – indicates the probability that the

instance i is selected for being solved.

� t : I → R is a function associating to every instance the comput. time that is allocated to

it.

� c(θ, i) = c(θ, i, t(i)) is a random variable representing the cost of the best solution found by

running configuration θ on instance i for t(i) seconds.

� C ⊂ R is the range of c, that is, the possible values for the cost of the best solution found

in a run of a configuration θ ∈ Θ on an instance i ∈ I .

� PC is a probability measure over the set C: PC(c|θ, i) indicates the probability that c is the

cost of the best solution found by running for t(i) seconds configuration θ on instance i.

� C(θ) = C(θ|Θ, I, PI , PC, t) is the criterion that needs to be optimized with respect to θ.

� Parameter Control

pF-Race: Formal Definition of the Configuration Problem

The configuration problem is formally described by the 6-tuple < Θ, I, PI , PC, t, C >.

The solution of this problem is the configuration θ∗ such that:

θ∗ = argminCθ(θ)

Here, the optimization of the expected value of the cost c(θ, i) is considered:

C(θ) = EI,C [c(θ, i)] =

∫
I

∫
C

c(θ, i)dPC(c|θ, i)dPI(i)

where the expectation is considered with respect to both PI and PC .

� Parameter Control

pF-Race: Formal Definition of the Configuration Problem

The configuration problem is formally described by the 6-tuple < Θ, I, PI , PC, t, C >.

The solution of this problem is the configuration θ∗ such that:

θ∗ = argminCθ(θ)

Here, the optimization of the expected value of the cost c(θ, i) is considered:

C(θ) = EI,C [c(θ, i)] =

∫
I

∫
C

c(θ, i)dPC(c|θ, i)dPI(i)

where the expectation is considered with respect to both PI and PC .

� The analytical solution of the integrals is not possible since the measures of PI and PC are

not explicitly available.

� The integrals will be estimated in a Monte Carlo fashion on the basis of a training set of

instances.

� Parameter Control

pIdea of Racing Algorithms

Brute force approach – estimate the quantities PC and PI by means of a sufficiently large

number of runs of each candidate on a sufficiently large set of training instances.

� The training set must be defined prior the computation

– how large?

� How many runs of each configuration on each instance

should be performed?

� The same computational resources are allocated to

each configuration – wasting time on poor configs!

Racing algorithm – provides a better allocation of computational resources among candidate

configurations and allows for a clean solution to the problems with fixing the number of instances

and the number of runs to be considered.

� Sequentially evaluates candidate configs and discards poor ones as soon as statistically suffi-

cient evidence is gathered against them.

� Elimination of the inferior candidates speeds up the procedure and allows to evaluate the

promising ones on more instances.

� As the evaluation proceeds, the race focuses more and more on the promising configurations.

� Parameter Control

pF-Race: Algorithm

� k is the current step of the race process and n = |Θk−1| configurations are still in the race.

� i is a random sequence of training instances; ik is drawn from I according to PI , independently

for each k.

� ck(θ, i) is an array of k terms; c(θ, il) is the cost of the best solution found by configuration

θ on instance il.

For a given θ, the array ck of length k can be obtained from ck−1 by appending the cost

concerning the k-th instance in i.

� A block is n-variate random variable

(ck(θ1, il),ck(θ2, il),. . . ,ck(θn, il)) that cor-

responds to the computational results on

instance il for each configuration in the race

at step k.

� Null hypothesis – all possible rankings of the candidates within each block are equally likely.

� Parameter Control

pF-Race: Algorithm

The optimization problem is tackled by generating a sequence Θ0 = Θ ⊇ Θ1 ⊇ Θ2 ⊇ . . .

The step from a set Θk−1 to Θk is realized as follows

1. At step k, a new instance ik is considered; each candidate θ ∈ Θk−1 still in the race is executed

on ik and each observed cost c(θ, ik) is appended to its ck−1(θ, i).

2. An aggregate comparison of the arrays ck(θ, i) for all θ ∈ Θk−1 is carried out by a statistical

test – non-parametric Friedman 2-way analysis of variance by ranks.

The null hypothesis being that all possible rankings of the candidates within each block are

equally likely.

3. If the null hypothesis is rejected, pairwise comparisons between the best candidate and each

other one are carried out by means of the t-test. All candidates that result significantly worse

than the best one are discarded.

Otherwise, all candidates in Θk−1 pass to Θk.

� Parameter Control

pClassification of Control Techniques

The main criteria for classifying methods controlling the EA’s strategy parameters are

� What component/parameter is changed – representation, evaluation function, variation oper-

ators, selection, replacement, etc.

� How is the change made

− deterministic heuristic – the strategy parameter is modified in a fixed way without using

any feedback from the search. Typically, a time-varying rule is used that is activated at

predefined generations.

− feedback-based heuristic – some form of feedback from the search is used to trigger the

change of the strategy parameter and to specify the direction and magnitude of the change.

The updating mechanism is externally supplied. Example is the covariance matrix adapta-

tion in CMA-ES.

− self-adaptive – based on the idea of the evolution of evolution. The parameters to be

adapted are encoded in the chromosomes and are subject to crossover and mutation.

Example is the self-adaptation of mutation parameters in Evolution Strategies.

� Which evidence is used to make the change – monitoring performance of operators, diversity

of the population, etc.

� Parameter Control

pWhat Component/Parameter is Changed: Representation

Variable representation scheme in Delta coding GA – the idea is to maintain a good balance

between fast search and sustaining diversity. Based on multiple restarts.

� The first run is used to find an interim solution.

� Subsequent runs decode the genes as distances (delta values) from the last interim solution.

� Each restart forms a new hypercube with the interim solution as its origin.

� The search expands or contracts by altering the resolution of the delta values (by changing

the number of coding bits).

� The restarts are triggered when the population converges (convergence measured by the Ham-

ming distance).

� Parameter Control

pDelta Coding GA

c©Eiben, A.E. et al.: Parameter Control in Evolutionary Algorithms

� Parameter Control

pWhat Component/Parameter is Changed: Mutation

Evolution strategies

� Real-valued search spaces,

� 1/5 success rule – adaptive mutation step size control

− The ratio of successful mutations to all mutations should be 1/5.

− Mutation operator m modifies all components of the object parameter xt according to

x
′t = xt + N0(σt)

while the σt variances are dynamically adjusted (all at the same time) according to

σt+n = cd · σt , if pts < 1/5

ci · σt , if pts > 1/5

σt , if pts = 1/5

where pts is the frequency of successful mutations, measured over 10n trials and recom-

mended values of the increase/decrease step sizes are cd = 0.82 and ci = 1/cd.

Covariance Matrix Adaptation Evolution Strategy – the covariance matrix is adapted

based on the current population and the past adaptation steps.

� Parameter Control

pWhat Component/Parameter is Changed: Mutation

Self-adaptive mutation rate control – for GAs with binary representation.

� Extra bits for encoding the individual’s own mutation rate pm

� Fixed learning rate α – a probability of applying bitwise mutation to the encoded mutation

rate.

� The mutation works as follows:

1. Mutate the bits that encode pm with mutation probability α

2. Decode these bits to p
′
m

3. Mutate the bits that encode the solution with mutation probability p
′
m

� Parameter Control

pWhat Component/Parameter is Changed: Evaluation Function

Penalty function constraint-handling approach in EAs – the penalty fitness function of

the following form

ψ(x) = f (x) + rg ×
m+p∑
i=1

Gi(x)2

� Ideally, the value(s) rg is adapted based on the current stage of the search process.

Stepwise adaptation of weights mechanism (SAW) – the idea is that constraints that are

not satisfied after a certain number of fitness evaluations (steps) are considered difficult and as

such must be given a high weight.

� The best individual in the population is periodically checked and the weights of those con-

straints that it violates are raised.

Facets of SAW – the weights reflect the difficulty of constraints

� for the given algorithm,

� given problem instance in

� the given stage of the search.

� Parameter Control

pWhat Component/Parameter is Changed: Crossover

Adaptive operator selection – EAs that uses multiple crossover operators simultaneously

within the same generation.

� Credit assignment mechanism – associates to each operator a reward, modeling its impact on

the progress of evolution.

The credit of an operator is calculated based on the improvement of the fitness of the newborn

offspring over some reference fitness value – that of the individual parents, of the current best

or median individuals.

� Selection rule – determines the operator to be used at each time step, depending on the

operator rewards.

The selection rules attach a probability to each operator and use a roulette wheel-like process

to select the operator to be applied, based on these probabilities.

� Exploration/exploitation tradeoff in the operator landscape must be ensured – typically, if

the reward provides an instant feedback, modeling the immediate benefits of applying the

operator, then the selection rule must ensure that operators with low current benefits can still

be explored at a later stage of evolution.

� Parameter Control

pWhat Component/Parameter is Changed: Davis’s Adaptive Operator
Fitness

Credit assignment

� k crossover operators are used.

� Each operator has its local delta value di – represents the strength of the operator measured

by the advantage of the child with respect to the best individual in the population.

� The values di are updated after every use of operator i.

Selection rule

� Each crossover operator has its own crossover rate pc(i).

� The crossover rates are recalculated every K generations. The idea is to redistribute 15% of

the probabilities biased by the accumulated operator strengths (di).

1. di values are normalised to dnormi so that
∑k

i=1 d
norm
i = 15.

2. The new value for each pc(i) is calculated according to

pc(i) = 0.85 · pc(i) + dnormi

Note: The crossover rates of all of the operators sums up to 1, thus the shift up in the

crossover rate of one operator is at the cost of other operators.

� Parameter Control

pWhat Component/Parameter is Changed: Extreme Value Based AOS

Credit assignment – The idea is that attention should be payed to extreme, rather than average,

events. If the average fitness reward was considered then an operator bringing frequent small

improvements would dominate over an operator bringing rare large improvements.

1. When operator o is applied on the individual x, the fitness of the offspring is evaluated and

the current improvement

(f (o(x))− f (x))+

is calculated and added to the window (FIFO structure) of size W .

2. The operator reward p̂t at time t is set to the maximal fitness improvement in this window

p̂t = argmax{δ(ti), i = 1 . . .W}

where δ(ti) denotes the fitness improvement observed at time t.

� Parameter Control

pWhat Component/Parameter is Changed: Extreme Value Based AOS

Let k denote the number of variation operators, (si,t)i=1,k a probability vector and p̂i,t an estimate

of the current operator reward.

At each time t:

1. operator i is selected with probability si,t

2. the corresponding reward rt is computed using the credit assignment at hand

3. the reward estimate p̂i,t of the selected operator is updated after rt, using an additive relaxation

mechanism with learning rate α (0 < α = 1)

p̂i,t+1 = (1− α) · p̂i,t + α · rt

Probability matching – aims to making si,t proportional to p̂i,t, while enforcing a minimal

amount of exploration.

� Let pmin denote the minimal probability of selection of nay operator, then

si,t+1 = pmin + (1− k · pmin)
p̂i,t+1∑k
j=1 p̂j,t+1

� If some operator gets no reward (respectively the maximal reward) for some time, its expected

reward will go very slowly to pmin (resp. 1− k · pmin).

Even irrelevant operators keep being selected.

� Parameter Control

pWhat Component/Parameter is Changed: Extreme Value Based AOS

Adaptive Pursuit – follows a winner-take-all strategy, selecting at each time step the operator

i∗t with maximal reward, and accordingly increasing its selection probability:

1. i∗ = argmax{p̂i,t, i = 1, . . . , k}

2. si∗,t+1 = si∗,t + β(1− (k − 1)pmin − si∗,t), β > 0

3. si,t+1 = si,t + β(pmin − si,t), for i 6= i∗

where learning rate β controls the greediness of the winner-take-all strategy.

� Parameter Control

pWhat Component/Parameter is Changed: Selection

Adapting the selection pressure based on the so-called Boltzmann selection mechanism that

changes the selection pressure according to a predefined cooling schedule.

Inspiration taken from condensed matted physics, where a minimal energy level is sought by state

transitions. Being in a state i the chance of accepting state j is

P [accept j] = 1 if Ei ≥ Ej,

exp(
Ei−Ej

Kb·T
) if Ei < Ej

where Ei, Ej are the energy levels, Kb is the Boltzmann constant, and T is the temperature.

� The more is the solution j inferior to solution i the smaller is the probability of accepting the

inferior solution j.

� The smaller is the temperature T the smaller is the probability of accepting inferior solutions.

Memetic algorithm – Boltzmann acceptance used in the local search part, with the temperature

inversely related to the fitness diversity of the population:

� Highly diversified population – the temperature is low, so only fitter solutions found by local

search are likely to be accepted.

� Converged population – the temperature is high, making it more likely that an inferior solution

will be accepted. This way a diversity is reintroduced into the population.

� Parameter Control

pParameter-less Genetic Algorithm: Motivation

Motivation – to make the EA an algorithm that is robust, efficient and easy-to-use.

� Typically, the EAs require quite a bit of expertise in order to make them work well for a

particular application.

� The user is not interested in tuning and fiddling the EA’s parameters for each single application.

He would be happy if he could get around somehow.

Parameter-less GA [Harik99] eliminates the following parameters when applying the algorithm

to a particular problem:

� population size,

� selection rate s – the amount of bias towards better individuals; usually expressed by a ratio

of sampling rates of individuals with the best and average fitness in the population.

� crossover probability pc – the amount of mixing.

� Parameter Control

pParameter-less GA: Getting Rid of Selection Rate and Crossover Prob.

� Schema S – a template, which defines set of solutions from the search space with certain

specific similarities. The schema consists of 0s, 1s and wildcard symbols * (any value).

Schema properties – defining length, order, and fitness.

Example: schema S ={11*0*} covers strings 11000, 11001, 11100, and 11101

� A simplified growth ratio of schema S at generation t, considering only φ(S, t) the

effect of the selection operator on schema S at generation t and ε(S, t) the disruption factor

on schema S due to the crossover operator is

φ(S, t) · [1− ε(S, t)]

Under the conservative hypothesis that a schema is destroyed during the crossover we get

s(1− pc)

� Schema theorem: Short, low-order, above-average schemata receive exponentially increas-

ing trials in subsequent generations of a genetic algorithm.

We just need to ensure that the GA will obey the schema theorem and the growth ratio of building

blocks will be greater than 1.

� Setting s = 4 and pc = 0.5 gives a net growth ratio of 2.

� Parameter Control

pStandard GA: Population Sizing

Whether the building blocks will mix efficiently in a single optimal solution is now a matter of

having an adequate population size

There are theoretical models for population sizing concluding that the population size should

be proportional to problem length and building blocks’s signal-to-noise ratios.

� For compact building blocks the required population size is reasonable.

� If the building blocks are not compact, then the population sizing requirements can be ex-

tremely large.

The models are difficult to apply in practice because they rely on parameters that are usually

unknown and are hard to estimate for real world problems.

Effects of improperly set population size

� Too small population size⇒ quality penalty:

The GA will converge to sub-optimal solu-

tions.

� Too large population size ⇒ time penalty:

The GA will spend unnecessary computa-

tional resources.

� Parameter Control

pParameter-less GA: Getting Rid of Population Sizing

The idea is to let the algorithm do the experimentation with population sizes automatically by

establishing a race among multiple populations of various sizes in a single GA’s run:

� Each population k > 1 is twice as large as the population k − 1.

� The smaller populations are given more function evaluations, thus the different populations

are at different stages of evolution.

� As time goes on, The smaller populations are eliminated and larger populations are created

automatically based on observed average average fitness of the populations.

If at any point in time, a larger population has an average fitness greater than that of a smaller

population, then the smaller population is destroyed.

− The rational for doing this is that in this situation it is very unlikely that the smaller

population will produce a fitter individual than the larger one.

� The coordination of the array of populations is implemented with a counter of base m, which

determines the proportion of fitness evaluations given to each of the simulated runs.

� Parameter Control

pParameter-less GA: Coordination of Populations

� At each generation, the counter of base m =

4 is incremented, and the position of the

most significant digit changed during the in-

crement operation is noted. That position

indicates which population should be run.

� Since each population k is on the one hand

half as large as the population k + 1 and on

the other hand is allowed 4 times more gener-

ations than population k + 1 the population

k is allowed to spend twice the number of

fitness evaluations of population k + 1.

� When some population converges or its av-

erage fitness is less than the average fitness

of a larger population (due to a genetic drift

– a population does not converges due to an

insufficient selection pressure), it is removed

together with all of the smaller populations.

The counter is reset.

� Parameter Control

pRecommended Reading

[Eiben07] Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.: Parameter Control

in Evolutionary Algorithms, In: Parameter Setting in Evolutionary Algorithms

Studies in Computational Intelligence (54), Springer Verlag , pp. 19–46,

2007.
http://www.cs.vu.nl/ gusz/papers/2007-eib-mich-schoen-smit-chap.pdf

[Birattari02] Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm

for Configuring Metaheuristics, In GECCO 2002, pp. 11–18, 2002
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.3223&rep=rep1&type=pdf

[Harik99] Harik, G.R., Lobo. F.G.: A Parameter-Less Genetic Algorithm, IEEE Trans-

actions on Evolutionary Computation, pp. 523–528, 1999
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.5188

� Parameter Control

