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P. Pošı́k c© 2010 A0M33EOA: Evolutionary Optimization Algorithms – 3 / 44

From the lecture on epistasis: xbest = 111 . . . 11, f (xbest) = 40

GA works:

✔ no dependencies

GA fails:

✔ deps. exist

✔ GA not able to work with
them

GA works again:

✔ deps. exist

✔ GA knows about them
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Genetic Algorithms
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select → cross over → mutate approach

Conventional GA operators

✔ are not adaptive, and

✔ cannot (or ususally do not) discover and use
the interactions among solution components.
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select → cross over → mutate approach

Conventional GA operators

✔ are not adaptive, and

✔ cannot (or ususally do not) discover and use
the interactions among solution components.

What does an intearction mean?

✔ we would like to create a new offspring by mutation

✔ we would like the offspring to have better, or at least the same, quality as the parent

✔ if we must modify xi together with xj to reach the desired goal
(if it is not possible to improve the solution by modifying either xi or xj only),
then xi interacts with xj.

The goal of recombination operators:

✔ Intensify the search in areas which contained “good” individuals in previous iterations.

✔ Must be able to take the interactions into account.

✔ Why not directly describe the distribution of “good” individuals???



GA vs EDA
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select → cross over → mutate approach

Algorithm 2: Estimation-of-Distribution Alg.

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Learn a model of their distribution.
6 Sample new individuals.
7 Incorporate offspring into the population.

Select → model → sample approach
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Algorithm 1: Genetic Algorithm

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Cross over the parents, create offspring.
6 Mutate offspring.
7 Incorporate offspring into the population.

Select → cross over → mutate approach

Algorithm 2: Estimation-of-Distribution Alg.

1 begin
2 Initialize the population.
3 while termination criteria are not met do
4 Select parents from the population.
5 Learn a model of their distribution.
6 Sample new individuals.
7 Incorporate offspring into the population.

Select → model → sample approach

Explicit probabilistic model:

✔ principled way of working with dependencies

✔ adaptation ability (different behavior in different stages of evolution)

Names:

EDA Estimation-of-Distribution Algorithm

PMBGA Probabilistic Model-Building Genetic Algorithm

IDEA Iterated Density Estimation Algorithm
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1. EDA for discrete domains (e.g. binary)

✔ Motivation example

✔ Without interactions

✔ Pairwise interactions

✔ Higher order interactions

2. EDA for real domain (vectors of real numbers)

✔ Evolution strategies

✔ Histograms

✔ Gaussian distribution and its mixtures
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5-bit OneMax (CountOnes) problem:

✔ fDx1bitOneMax(x) = ∑
D
d=1 xd

✔ Optimum: 11111, fitness: 5

Algorithm: Univariate Marginal Distribution Algorithm (UMDA)

✔ Population size: 6

✔ Tournament selection: t = 2

✔ Model: vector of probabilities p = (p1, . . . , pD)

✘ each pd is the probability of observing 1 at dth element

✔ Model learning:

✘ compute p from selected individuals

✔ Model sampling:

✘ generate 1 on dth position with probability pd (independently of other
positions)
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Old population:
11001 (3)
00010 (1)
11101 (4)
10111 (4)
00001 (1)
10010 (2)

Tournaments:
11101 (4) vs. 10111 (4)
10111 (4) vs. 11101 (4)
11101 (4) vs. 00001 (1)
10010 (2) vs. 00010 (1)
00010 (1) vs. 00010 (1)
00010 (1) vs. 11001 (3)

Selected parents:
11101 (4)
10111 (4)
11101 (4)
10010 (2)
00010 (1)
11001 (3)

Offspring:
11000 (2)
10100 (2)
11011 (4)
01011 (3)
10101 (3)
10111 (4)

Probability vector:
5
6

3
6

3
6

3
6

4
6
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✔ 1s are better then 0s on average,
selection increases the proportion of
1s

✔ Recombination preserves and
combines 1s, the ratio of 1s increases
over time

✔ If we have many 1s in population,
we cannot miss the optimum

The number of evaluations needed for reliable convergence:

Algorithm Nr. of evaluations

UMDA O(D ln D)
Hill-Climber O(D ln D)
GA with uniform xover approx. O(D ln D)
GA with 1-point xover a bit slower

UMDA behaves similarly to GA with uniform crossover!
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For OneMax function:

✔ UMDA works well, all the bits probably eventually converge to the right value.

Will UMDA be similarly successful for other fitness functions?

✔ Well, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . no. :-(

Problem: Concatanated 5-bit traps

f = ftrap(x1, x2, x3, x4, x5)+

+ ftrap(x6, x7, x8, x9, x10)+

+ . . .

The trap function is defined as

ftrap(x) =

{

5 if u(x) = 5
4 − u(x) otherwise

where u(x) is the so called unity function
and returns the number of 1s in x (it is
actually the One Max function).
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Traps:

✔ Optimum in 111111...1

✔ But ftrap(0 ∗ ∗ ∗ ∗) = 2 while ftrap(1 ∗ ∗ ∗ ∗) = 1.375

✔ 1-dimensional probabilities lead the GA to the wrong way!

✔ Exponentially increasing population size is needed, otherwise GA will not find
optimum reliably.
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The ftrap function is deceptive:

✔ Statistics over 1**** and 0**** do not lead us to the right solution

✔ The same holds for statistics over 11*** and 00***, 111** and 000**, 1111* and
0000*
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The ftrap function is deceptive:

✔ Statistics over 1**** and 0**** do not lead us to the right solution

✔ The same holds for statistics over 11*** and 00***, 111** and 000**, 1111* and
0000*

✔ Harder than the needle-in-the-haystack problem:

✘ regular haystack simply does not provide any information, where to search for
the needle

✘ ftrap-haystack actively lies to you—it points you to the wrong part of the
haystack
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The ftrap function is deceptive:

✔ Statistics over 1**** and 0**** do not lead us to the right solution

✔ The same holds for statistics over 11*** and 00***, 111** and 000**, 1111* and
0000*

✔ Harder than the needle-in-the-haystack problem:

✘ regular haystack simply does not provide any information, where to search for
the needle

✘ ftrap-haystack actively lies to you—it points you to the wrong part of the
haystack

✔ But: ftrap(00000) < ftrap(11111), 11111 will be better than 00000 on average

✔ 5bit statistics should work for 5bit traps in the same way as 1bit statistics work for
OneMax problem!

Model learning:

✔ build model for each 5-tuple of bits

✔ compute p(00000), p(00001), . . . , p(11111),

Model sampling:

✔ Each 5-tuple of bits is generated independently

✔ Generate 00000 with probability p(00000), 00001 with probability p(00001), . . .
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Good statistics work great!
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Algorithm Nr. of evaluations

UMDA with 5bit BB O(D ln D) (WOW!)
Hill-Climber O(Dk ln D), k = 5
GA with uniform xover approx. O(2D)
GA with 1-point xover similar to unif. xover

What shall we do next?

If we were able to

✔ find good statistics with a small overhead,
and

✔ use them in the UMDA framework,

we would be able to solve order-k separable
problems using O(D2) evaluations.

✔ . . . and there are many problems of this type.

The problem solution is closely related to the
so-called linkage learning, i.e. discovering and
using statistical dependencies among variables.
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P. Pošı́k c© 2010 A0M33EOA: Evolutionary Optimization Algorithms – 15 / 44



Discrete EDAs: Overview

Introduction to EDAs

Motivation Example

Discrete EDAs
Discrete EDAs:
Overview

EDAs without
interactions

Pairwise Interactions

Multivariate Interactions

Scalability Analysis

Conclusions
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1. Overview:

(a) Univariate models (without interactions)

(b) Bivariate models (pairwise dependencies)

(c) Multivariate models (higher order interactions)

2. Conclusions
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1. Population-based incremental learning (PBIL)
Baluja, 1994

2. Univariate marginal distribution algorithm (UMDA)
Mühlenbein and Paaß, 1996

3. Compact genetic algorithm (cGA)
Harik, Lobo, Goldberg, 1998

Similarities:

✔ all of them use a vector of
probabilities

Differences:

✔ PBIL and cGA do not use
population (only the vector p);
UMDA does

✔ PBIL and cGA use different rules for
the adaptation of p

Advantages:

✔ Simplicity

✔ Speed

✔ Simple simulation of large
populations

Limitations:

✔ Solves reliably only order-1
decomposable problems
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How to describe two positions together?

✔ Using the joint probability distribution:

A B

Number of free parameters:

p(A, B)

B
0 1

A 0 p(0, 0) p(0, 1)
1 p(1, 0) p(1, 1)

✔ Using statistical dependence:

A B

Number of free parameters:

p(A, B) = p(B|A) · p(A):

p(B = 1|A = 0)
p(B = 1|A = 1)
p(A = 1)

Question: what is the number of parameters in case of the following models?

A B C A B C A B C
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P. Pošı́k c© 2010 A0M33EOA: Evolutionary Optimization Algorithms – 20 / 44

How to describe two positions together?

✔ Using the joint probability distribution:

A B

Number of free parameters: 3

p(A, B)

B
0 1

A 0 p(0, 0) p(0, 1)
1 p(1, 0) p(1, 1)

✔ Using statistical dependence:

A B

Number of free parameters:

p(A, B) = p(B|A) · p(A):

p(B = 1|A = 0)
p(B = 1|A = 1)
p(A = 1)

Question: what is the number of parameters in case of the following models?

A B C A B C A B C
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How to describe two positions together?

✔ Using the joint probability distribution:

A B

Number of free parameters: 3

p(A, B)

B
0 1

A 0 p(0, 0) p(0, 1)
1 p(1, 0) p(1, 1)

✔ Using statistical dependence:

A B

Number of free parameters: 3

p(A, B) = p(B|A) · p(A):

p(B = 1|A = 0)
p(B = 1|A = 1)
p(A = 1)

Question: what is the number of parameters in case of the following models?

A B C A B C A B C
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✔ Nodes: binary variables (loci of chromozome)

✔ Edges: dependencies among variables

✔ Features:

✘ Each node depends at most on 1 other node

✘ Graph does not contain cycles

✘ Graph is connected

Learning the structure of dependency tree:

1. Score the edges using mutual information:

I(X, Y) = ∑
x,y

p(x, y) · log
p(x, y)

p(x)p(y)

2. Use any algorithm to determine the maximum spanning tree of the graph, e.g.
Prim (1957)

(a) Start building the tree from any node

(b) Add such a node that is connected to the tree by the edge with maximum
score
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1. MIMIC (sequences)

✔ Mutual Information
Maximization for Input
Clustering

✔ de Bonet et al., 1996

2. COMIT (trees)

✔ Combining Optimizers with
Mutual Information Trees

✔ Baluja and Davies, 1997

3. BMDA (forrest)

✔ Bivariate Marginal Distribution
Algorithm

✔ Pelikan and Mühlenbein, 1998
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✔ Advantages:

✘ Still simple

✘ Still fast

✘ Can learn something about the structure

✔ Limitations:

✘ Reliably solves only order-2 decomposable problems
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Extended Compact GA, Harik, 1999

Marginal Product Model (MPM)

✔ Variables are treated in groups

✔ Variables in different groups are considered statistically independent

✔ Each group is modeled by its joint probability distribution

✔ The algorithm adaptively searches for the groups during evolution

Problem Ideal group configuration

OneMax [1][2][3][4][5][6][7][8][9][10]

5bitTraps [1 2 3 4 5][6 7 8 9 10]
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P. Pošı́k c© 2010 A0M33EOA: Evolutionary Optimization Algorithms – 27 / 44

Extended Compact GA, Harik, 1999

Marginal Product Model (MPM)

✔ Variables are treated in groups

✔ Variables in different groups are considered statistically independent

✔ Each group is modeled by its joint probability distribution

✔ The algorithm adaptively searches for the groups during evolution

Problem Ideal group configuration

OneMax [1][2][3][4][5][6][7][8][9][10]

5bitTraps [1 2 3 4 5][6 7 8 9 10]

Learning the structure

1. Evaluation metric: Minimum Description Length (MDL)

2. Search procedure: greedy

(a) Start with each variable belonging to its own group

(b) Perform such a join of two groups which improves the score best

(c) Finish if no join improves the score
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Minimum description length:
Minimize the number of bits needed to store the model and the data encoded using the
model

DL(Model, Data) = DLModel + DLData

Model description length:

Each group g has |g| dimensions, i.e. 2|g| − 1 frequencies, each of them can take on
values up to N

DLModel = log N ∑
g∈G

(2|g| − 1)

Data description length using the model:
Defined using the entropy of marginal distributions (Xg is |g|-dimensional random
vector, xg is its realization):

DLData = N ∑
g∈G

h(Xg) = −N ∑
g∈G

∑
xg

p(Xg = xg) log p(Xg = xg)
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Bayesian Optimization Algorithm: Pelikán, Goldberg, Cantù-Paz, 1999

Bayesian network (BN)

✔ Conditional dependencies (instead groups)

✔ Sequence, tree, forrest — special cases of BN

✔ For trap function:

3

1

2

4

5

8

6

7

9

10

✔ The same model used independently in

✘ Estimation of Bayesian Network Alg. (EBNA), Etxeberria et al., 1999

✘ Learning Factorized Density Alg. (LFDA), Mühlenbein et al., 1999
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1. Evaluation metric:

✔ Bayesian-Dirichlet metric, or

✔ Bayesian information criterion (BIC)

2. Search procedure: greedy

(a) Start with graph with no edges (univariate marginal product model)

(b) Perform one of the following operations, choose the one which improves the
score best

✔ Add an edge

✔ Delete an edge

✔ Reverse an edge

(c) Finish if no operation improves the score

BOA solves order-k decomposable problems in less then O(D2) evaluations!

nevals = O(D1.55) to O(D2)
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One Max:

fDx1bitOneMax(x) =
D

∑
d=1

xd

Trap:

fDbitTrap(x) =

{

D if u(x) = D
D − 1 − u(x) otherwise

Equal Pairs:

fDbitEqualPairs(x) = 1 +
D

∑
d=2

fEqualPair(xd−1, xd) fEqualPair(x1, x2) =

{

1 if x1 = x2

0 if x1 6= x2

Sliding XOR:

fDbitSlidingXOR(x) = 1 + fAllEqual(x)+

+
D

∑
d=3

fXOR(xd−2, xd−1, xd)

fAllEqual(x) =







1 if x = (000 . . . 0)
1 if x = (111 . . . 1)
0 otherwise

fXOR(x1, x2, x3) =

{

1 if x1
⊕

x2 = x3

0 otherwise

Concatenated short basis functions:

fNxKbitBasisFunction =
K

∑
k=1

fBasisFunction(xK(k−1)+1, . . . , xKk)
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1. f40x1bitOneMax

✔ order-1 decomposable function, no interactions

2. f1x40bitEqualPairs

✔ non-decomposable function

✔ weak interactions: optimal setting of each bit depends on the value of the preceding bit

3. f8x5bitEqualPairs

✔ order-5 decomposable function

4. f1x40bitSlidingXOR

✔ non-decomposable function

✔ stronger interactions: optimal setting of each bit depends on the value of the 2 preceding bits

5. f8x5bitSlidingXOR

✔ order-5 decomposable function

6. f8x5bitTrap

✔ order-5 decomposable function

✔ interactions in each 5-bit block are very strong, the basis function is deceptive
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Facts:

✔ using small population size, population-based optimizers can solve only easy
problems

✔ increasing the population size, the optimizers can solve increasingly harder
problems

✔ ... but using a too big population is wasting of resources.
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Facts:

✔ using small population size, population-based optimizers can solve only easy
problems

✔ increasing the population size, the optimizers can solve increasingly harder
problems

✔ ... but using a too big population is wasting of resources.

Scalability analysis:

✔ determines the optimal (smallest) population size, with which the algorithm solves
the given problem reliably

✘ reliably: algorithm finds the optimum in 24 out of 25 runs)

✘ for each problem complexity, the optimal population size is determined e.g.
using the bisection method

✔ studies the influence of the problem complexity (dimensionality) on the optimal
population size and on the number of needed evaluations
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During the evolution, the model structure is increasingly precise and at the end of the
evolution, the model structure describes the problem structure exactly.
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During the evolution, the model structure is increasingly precise and at the end of the
evolution, the model structure describes the problem structure exactly.

NO! That’s not true!

Why?

✔ In the beginning, the distribution patterns are not very discernible, models similar
to uniform distributions are used.

✔ In the end, the population converges and contains many copies of the same
individual (or a few individuals). No interactions among variables can be learned.
Model structure is wrong (all bits independent), but the model describes the
position of optimum very precisely.

✔ The model with the best matching structure is found somewhere in the middle of
the evolution.

✔ Even though the right structure is never found during the evolution, the problem
can be solved successfully.
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Models:

✔ Bayesian networks are general models of joint probability

✔ High-dimensional models are hard to train

✔ High-dimensional models are very flexible

Advantages:

✔ Reliably solves problems decomposable to subproblems of bounded order

Limitations:

✔ Does not solve problems decomposable to logarithmic subproblems (hierarchical
problems)
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For simple problems:

✔ PBIL, UMDA, cGA

✔ they behave similarly to simple GAs

For harder problems:

✔ MIMIC, COMIT, BMDA

✔ they are able to account for bivariate dependencies

For hard problems:

✔ BOA, ECGA, EBNA, LFDA

✔ they can take into account more general dependencies, problems with
hierarchichal structures

For even harder problems:

✔ hBOA (hierarchical BOA)
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