Warning
This page is located in archive.

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
courses:be5b33kui:lectures:start [2019/05/20 12:33]
hoffmmat
courses:be5b33kui:lectures:start [2019/05/20 12:33] (current)
hoffmmat
Line 22: Line 22:
 | 06.05.2019 | 12 | Bayesian classification and decisions. {{ :​courses:​be5b33kui:​lectures:​10_bayes_withnotes.pdf |}} | | 06.05.2019 | 12 | Bayesian classification and decisions. {{ :​courses:​be5b33kui:​lectures:​10_bayes_withnotes.pdf |}} |
 | 13.05.2019 | 13 | Bayesian classification,​ ROC characteristics,​ k-nn and relationship to Bayesian classifier. ​ {{ :​courses:​be5b33kui:​lectures:​11_recog_a_withnotes.pdf |}} {{ :​courses:​be5b33kui:​lectures:​11_recog_b_withnotes.pdf |}}   | | 13.05.2019 | 13 | Bayesian classification,​ ROC characteristics,​ k-nn and relationship to Bayesian classifier. ​ {{ :​courses:​be5b33kui:​lectures:​11_recog_a_withnotes.pdf |}} {{ :​courses:​be5b33kui:​lectures:​11_recog_b_withnotes.pdf |}}   |
-| 20.05.2019 | 14 | Classification in feature space. Discriminant functions. Linear separability. Nearest neighbor classification. Perceptron algorithm. {{ :​courses:​be5b33kui:​lectures:​11_recog_b_withnotes.pdf |}}. Maximum likelihood estimation - very brief intro (15 min.), not for exam. {{ :​courses:​be5b33kui:​lectures:​12_mle_withnotes.pdf |}} |+| 20.05.2019 | 14 | Classification in feature space. Discriminant functions. Linear separability. Nearest neighbor classification. Perceptron algorithm. {{ :​courses:​be5b33kui:​lectures:​11_recog_b_withnotes.pdf |}}. Maximum likelihood estimation - very brief intro (15 min.), not for exam. |
  
  
  
courses/be5b33kui/lectures/start.txt ยท Last modified: 2019/05/20 12:33 by hoffmmat