PRA|HA
O P P PRA|GUE
PRA|GA

A PRA|G

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

EVROPSKA UNIE

Ceské vysoké udéeni technické v Praze

Fakulta elektrotechnicka

Cutting trees

Jakub Boksansky

boksajak@fel.cvut.cz
29.11.2012

« What is cutting tree and why should | care?
— Solves planar range searching problem

— Query can be answered in logarithmic time using
cutting tree

« Example of usage: Counting points in desired
area on a map

— Query = area in which we are counting

* Query can be polygonal area
— Not just axis aligned rectangle or circle

2 of 27

Planar range query example

« How many citizens ..

10500 []
=

live In this area? s
. 22500 P ™ reit L DRl
ry L |
28500 > B A 8 " - ' ﬂ v | : - .. .
34500 B ey _ . i
40500 R b .
46500 P AN L . T
= ™ B L I3
52500 b 3 = o . " _
58500 e R TR 1 F TR -4 . "
64500 y of Pl e TR LR .
a gl g nll - v P 2 = (]
70500 (S " ’ 2 o . l. L] o
- 4 Ii » [} E -] o e I -
76500(>) b \%a &) douw n" B : .
E .:? s -] - l . " L™ o . m v "
- S A [] >] = - . - s ® = - f
S ", ST AP R
o
' . " ow Ll : " A = % .
= -.. L A "] - Sl
1.Berlin(3426354) s .' - :‘;’.1' B A = .
2.Hamburg(1739117) X "as""a l: e s - . " :
3.Muenchen(1260391) _ o = " ..’w 73 -
aK sty ~ %8 - .
oeln(963395) gt ., B B L s s s]
5.Frankfurt am Main(650000) ,"' an PR
6.Essen(593085) » = ;ﬂ:-’ l. 3 " 7 " 3
. = .
7.Stuttgart(589793) X 2B o o .'u SN
8.Dortmund(588462) Lo NN pe =2y
| SEE - =" L B g.
9.Dusseldorf(573057) T . g " g N . ®
o -
10.Bremen(546501) o £ whe g ™ %

Image source: http://www.populationlabs.com/

3 of 27

Planar range query example

Germany Population Map (www.populationiabs.com)

« How many citizens ..

live in this area? - P o
28500 :L. a A" _.,‘? d = -

1. Triangluate query — om H g N
2. Query each Isssn _=-... . _".. -:.'5.-.: ..;'. ..' v --_!l : . "

64500

triangle - ko IRRESL L
Separately ;‘E .-.._- .. NN 2
ra . . G S\ [f SN

3. Sum up results. T e

Handle properly e 22 00gl " 0 - 2 o0

4.Koeln(963395) ety

points on borders e Xl s s
of triangles! i AL -
10.Bremen (546501) S r Sl ol L

Image source: http://www.populationlabs.com/

4 of 27

ldea of algorithm 1- half-plane search

* First, we simplify triangluar range searching problem
to half-plane range searching problem

* Triangle is intersection of three half-planes
« We will convert it back to triangular range searching later
« Half-plane range

searching problem Boundary line

— Simply count points
below a boundary
line of half plane

2D plane

5 of 27

ldea of algorithm 2 — dual plane

« To achieve better than O(y/n) query time (partition tree)
we cannot use simplical partitions

« We solve half-plane range search in dual plane

* Duality transform:
— Maps points in primal plane to lines in dual plane

— Points has 2 parameters (X and Y position), line has also two
parameters (Slope and intersection with Y axis)

— Several mappings exist

— Our case: property of such transformation must preserve order in
a way that if points in primal plane lie above query line, then they
(transormed to lines) lie below query point in dual plane.

 We count lines lying below query point in dual plane

6 of 27

ldea of algorithm 2 — dual plane

Simple duality transform: Transform point [p,, p,] to line
expressed in slope—interceptformy =k xx + q

Y = Px *X — Dy

Primal plane Dual plane

y ¢
Pa® P3

P2

P1

Image source [Berg]

7 of 27

ldea of algorithm 3 — counting lines quickly

1. We construct % cutting of lines in plane

. % cutting: set of triangles that together cover

the plane with property: No triangle is crossed
by more than ~ lines.
2. We preprocess it for lines counting — we store number
of lines below (above) in each triangle.
« We only need to count lines in triangle containing

our query point
* From previous we know that we need to

n,.
count - lines at max

8 of 27

ldea of algorithm 3 — counting lines quickly

« 1/r cutting example of 6 lines, chosenr = 2. No

. . n=6 ,.
triangle is crossed by more than — lines.

Thin lines:
lines we are counting

Thick lines: H
created 1/r cutting | ‘

Image source [Berg]

9 of 27

ldea of algorithm 3 — counting lines quickly

« 1/r cutting example of 6 lines, chosenr = 2. No
triangle is crossed by more than S lines.

Thin lines:
lines we are counting

Thick lines: 2
created 1/r cutting | ‘
N
V

N

A‘i!'gvf 0

0 s
0 NA8)
Preprocessed for counting /’
_ 0 0
Image source [Berg]

10 of 27

ldea of algorithm 3 — counting lines quickly

« 1/r cutting example of 6 lines, chosenr = 2. No
triangle is crossed by more than S lines.

Thin lines:
lines we are counting

Thick lines: 2
created 1/r cutting | ‘
N
V

N

A‘i!'gvf 0

0 s
0 NA8)
Preprocessed for counting /’
_ 0 0
Image source [Berg]

11 of 27

ldea of algorithm 3 — counting lines quickly

« 1/r cutting example of 6 lines, chosenr = 2. No
triangle is crossed by more than n—=§ lines.

r:
Thin lines:
lines we are counting \
Thick lines:

created 1/r cutting | A
\ T
V

A‘i!'gvf 0

0 s
0 NA8)
Preprocessed for counting /’
_ 0 0
Image source [Berg]

12 of 27

ldea of algorithm 4 — counting lines in log(n)

« We construct a tree of 1/r — cuttings.... a cutting tree.
« Construct 1/r — cutting of whole plane. Created
triangles are children of root
« Take triangles which cross more than 1 line and
construct 1/r cutting within them. Triangles in this
second level cutting become children of corresponding
triangle
« Continue until all leaves cross only one line
* In such a structure we
1. find triangle (one of root’s children) which contains our
query,
2. Inlog(n) time we traverse to corresponding leaf and
sum points lying below these triangles
3. test only one line within that leaf.

13 of 27

ldea of algorithm 4 — counting lines in log(n)

14 of 27

ldea of algorithm 4 — counting lines in log(n)

1/r cutting constructed

15 of 27

ldea of algorithm 4 — counting lines in log(n)

This triangle is crossed by more than 1 line

77

16 of 27

ldea of algorithm 4 — counting lines in log(n)

1/r cutting constructed within this triangle.

S

17 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {

int count = 0;
if (cuttingTree.isSingleleaf ()) {
if (,line in leaf is below query point"™) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

}

- count += nextCuttingTree.belowLines +
Recursion is here -> countBelowLines (nextCuttingTree, queryPoint);

}

return count;

18 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {
int count = 0;
if (cuttingTree.isSingleleaf ()) {
if (,line in leaf is below query point"™) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

<- We are here

}

count += nextCuttingTree.belowlLines +
countBelowLines(nextCutghigTree, ?le yP 1nt
}

return count;

Count=0

19 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {

int count = 0;
if (cuttingTree.isSingleleaf ()) {
if (,line in leaf is below query point"™) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

}

count += nextCuttingTree.belowlLines +
\We are here -> countBelowLines (nextCuttingTree, gqueryPoint);

Go to child
containg query

}

return count;

Count =7
Increment count by 7

20 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {
int count = 0;
if (cuttingTree.isSingleleaf ()) {
if (,line in leaf is below query point"™) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

<- We are here

}

count += nextCuttingTree.belowlLines +
countBelowLines (nextCuttingTree, queryPoint);

}

return count;

[s this leaf?

Count =7

21 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {

int count = 0;
if (cuttingTree.isSingleleaf ()) {
if (,line in leaf is below query point"™) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

}

count += nextCuttingTree.belowlLines +
We are here -> countBelowLines (nextCuttingTree, queryﬁlﬁyt)

}

return count;

ontaing query

Count =11
Increment count by 4

22 of 27

Conclusion - query algorithm

countBelowlLines (cuttingTree, queryPoint) {

int count = 0;
if (cuttingTree.isSingleleaf ()) {
We are here if (,line in leaf is below query point“) count++;
} else {
for each (,child of root in cuttingTree“) {
nextCuttingTree= ,child that contains queryPoint";

}

count += nextCuttingTree.belowlLines +
countBelowLines (nextCuttingTree, queryPoint);

}

return count;

Is this leaf?

Count =11

Check line and increment if below

23 of 27

Efficiency of cutting tree

* Time complexity
- O(log(n))
« Space complexity
- 0?8 Vve>0
 We achieve better time complexity than partition tree

— Problem with partition tree is that we cannot create simplical partitions with less
than 0 (y/r) crossing number

 In each level of cutting tree our query intersects only one
triangle, so we recursively visit only one child. (As opposed
to partition tree, where line can intersect many triangles)

24 of 27

How to query triangle instead of half-plane

 Each node of our tree contains information about lines
below It — we call these lines a canonical subset

 The information that we store about a canonical subset
does not have to be a single number, like its cardinality.
We can also store the elements of the canonical subset
In another cutting tree

* Doing three levels of cutting trees in each node — we can
guery three times in a row — once for each half-plane
of triangle.

 Each query reduces set of possibly reported points,
similiar to branch and bound algorithms.

* After three queries we have selected a set of points of
gueried triangle

« We report numbert of these points
« Drawing on blackboard?

25 of 27

[Berg] Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars:
Computational Geometry: Algorithms and Applications, Springer-
Verlag, 3rd rev. ed. 2008. 386 pages, 370 fig. ISBN: 978-3-540-
77973-5, Chapters 3 and 9, http://www.cs.uu.nl/geobook/

26 of 27

Any guestions?

27 of 27

PRA|HA
O P P PRA|GUE
PRA|GA

A PRA|G

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

EVROPSKA UNIE

