
OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

Cutting trees

Jakub Bokšanský

České vysoké učení technické v Praze

Fakulta elektrotechnická

boksajak@fel.cvut.cz

29.11.2012

Motivation

• What is cutting tree and why should I care?
– Solves planar range searching problem

– Query can be answered in logarithmic time using
cutting tree

• Example of usage: Counting points in desired
area on a map
– Query = area in which we are counting

• Query can be polygonal area
– Not just axis aligned rectangle or circle

2 of 27

Planar range query example

• How many citizens

live in this area?

Image source: http://www.populationlabs.com/

Query area

3 of 27

Planar range query example

• How many citizens

live in this area?

1. Triangluate query

2. Query each

triangle

separately

3. Sum up results.

Handle properly

points on borders

of triangles!

Image source: http://www.populationlabs.com/

Query area

4 of 27

Idea of algorithm 1- half-plane search

• First, we simplify triangluar range searching problem

to half-plane range searching problem

• Triangle is intersection of three half-planes

• We will convert it back to triangular range searching later

• Half-plane range

 searching problem

– Simply count points

 below a boundary

 line of half plane

5 of 27

Idea of algorithm 2 – dual plane

6 of 27

Idea of algorithm 2 – dual plane

Primal plane Dual plane

Image source [Berg]

7 of 27

Idea of algorithm 3 – counting lines quickly

8 of 27

Idea of algorithm 3 – counting lines quickly

Image source [Berg]

Thin lines:

lines we are counting

Thick lines:

created 1/r cutting

9 of 27

Idea of algorithm 3 – counting lines quickly

Image source [Berg]

Thin lines:

lines we are counting

Thick lines:

created 1/r cutting

Preprocessed for counting

0

0

0

0

0 1
1

2 3

2

10 of 27

Idea of algorithm 3 – counting lines quickly

Image source [Berg]

Thin lines:

lines we are counting

Thick lines:

created 1/r cutting

Preprocessed for counting

0

0

0

0

0 1
1

2 3

2

Query point

11 of 27

Idea of algorithm 3 – counting lines quickly

Image source [Berg]

Thin lines:

lines we are counting

Thick lines:

created 1/r cutting

Preprocessed for counting

0

0

0

0

0 1
1

2 3

2

Query point

12 of 27

Idea of algorithm 4 – counting lines in log(n)

• We construct a tree of 1/r – cuttings.... a cutting tree.

• Construct 1/r – cutting of whole plane. Created

triangles are children of root

• Take triangles which cross more than 1 line and

construct 1/r cutting within them. Triangles in this

second level cutting become children of corresponding

triangle

• Continue until all leaves cross only one line

• In such a structure we

1. find triangle (one of root’s children) which contains our

query,

2. in log(n) time we traverse to corresponding leaf and

sum points lying below these triangles

3. test only one line within that leaf.

13 of 27

Idea of algorithm 4 – counting lines in log(n)

14 of 27

Idea of algorithm 4 – counting lines in log(n)

1/r cutting constructed

15 of 27

Idea of algorithm 4 – counting lines in log(n)

This triangle is crossed by more than 1 line

16 of 27

Idea of algorithm 4 – counting lines in log(n)

1/r cutting constructed within this triangle.

17 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

Recursion is here ->

18 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

<- We are here

19 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

 We are here ->

20 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

<- We are here

21 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

 We are here ->

22 of 27

Conclusion - query algorithm
countBelowLines(cuttingTree, queryPoint) {

 int count = 0;

 if (cuttingTree.isSingleLeaf()) {

 if („line in leaf is below query point“) count++;

 } else {

 for each („child of root in cuttingTree“) {

 nextCuttingTree= „child that contains queryPoint“;

 }

 count += nextCuttingTree.belowLines +

 countBelowLines(nextCuttingTree, queryPoint);

 }

 return count;

}

 We are here

23 of 27

Efficiency of cutting tree

• In each level of cutting tree our query intersects only one

triangle, so we recursively visit only one child. (As opposed

to partition tree, where line can intersect many triangles)

24 of 27

How to query triangle instead of half-plane

• Each node of our tree contains information about lines
below it – we call these lines a canonical subset

• The information that we store about a canonical subset
does not have to be a single number, like its cardinality.
We can also store the elements of the canonical subset
in another cutting tree

• Doing three levels of cutting trees in each node – we can
query three times in a row – once for each half-plane
of triangle.

• Each query reduces set of possibly reported points,
similiar to branch and bound algorithms.

• After three queries we have selected a set of points of
queried triangle

• We report numbert of these points

• Drawing on blackboard?

25 of 27

Literature

26 of 27

Any questions?

27 of 27

OI-OPPA. European Social Fund
Prague & EU: We invest in your future.

