OPPA European Social Fund Prague \& EU: We invest in your future.

PLÁNOVÁNÍ A HRY - CV 1

kopriva@agents.felk.cvut.cz

Course Preparation / Recap

\square Algorithm Properties
\square Searches
\square Logics
\square Satisfiability Problem

Algorithm Properties

\square Soundness
\square The result returned by the algorithm is a solution to the problem
\square Completeness
\square If a solution exists, the algorithm finds it
\square Admissibility
\square It is guaranteed that the algorithm finds the optimal solution
\square Optimality has to be defined

Search Space

\square Search Space S is a set of states, where the goal is to find the states that satisfy the condition g.
\square Formally the problem is defined as a tuple (s_{0}, g, O), where:
$\square \mathrm{s}_{0}$ is the initial state
$\square g$ is the goal condition
$\square O$ is a set of state - transition operators

Breadth - First Search

\square Is complete
\square Complexity
\square Time O(bd)
\square Space $O\left(b^{d}\right)$

$\square \boldsymbol{b}$ is the number of siblings of each node
$\square \mathbf{d}$ is the depth of the search space

Depth-First Search

\square Is complete
\square if no endless paths are present
\square Complexity
\square Time depends on the way of the search
\square Space $O(d)$
$\square \mathbf{d}$ is the depth of the search space
$\square \mathbf{f}^{\prime}(\mathbf{n})=\mathbf{g}(\mathbf{n})+h^{\prime}(\mathbf{n})$
$\square \mathbf{g}(\mathbf{n})$ - total distance it has taken to get from the starting position to the current location
$\square \mathbf{h}^{\prime}(\mathbf{n})$ - the estimated distance from the current position to the goal destination/state. A heuristic function is used to create this estimate on how far away it will take to reach the goal state.

First-order logic

\square Whereas propositional logic assumes the world contains facts,
\square first-order logic (like natural language) assumes the world contains
\square Objects: people, houses, numbers, colors, baseball games, wars, ...
\square Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
\square Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

\square Constants KingJohn, 2, NUS,...
\square Predicates Brother, $>$,...
\square Functions Sqrt, LeftLegOf,...
\square Variables x, y, a, b, \ldots
\square Connectives

$$
\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow
$$

\square Equality
$=$
\square Quantifiers $\quad \forall, \exists$

Atomic sentences

$$
\left.\begin{array}{ll}
\text { Atomic sentence }= & \left.\begin{array}{l}
\text { predicate }\left(\text { term }_{1}, \ldots, \text { term }_{n}\right) \\
\text { or term }
\end{array}\right) \\
\text { Term } \quad \text { term }_{2}
\end{array}\right] \begin{aligned}
& \text { function }\left(\text { term } \text { or }_{1}, \ldots, \text { term }_{n}\right) \\
& \text { or constant or variable }
\end{aligned}
$$

\square E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

\square Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn,Richard) \Rightarrow

Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Models for FOL: Example

Universal quantification

$\square \quad \forall<$ variables $>$ <sentence>
\square Everyone at NUS is smart: $\forall x \operatorname{At}(x, C V U T) \Rightarrow \operatorname{Smart}(x)$
$\square \forall x P$ is true in a model m iff P is true with x being each possible object in the model
\square Roughly speaking, equivalent to the conjunction of instantiations of P

A common mistake to avoid

\square Typically, \Rightarrow is the main connective with \forall
\square Common mistake: using \wedge as the main connective with \forall :
$\forall \mathrm{xAt}(\mathrm{x}, \mathrm{CVUT}) \wedge \operatorname{Smart}(\mathrm{x})$
means "Everyone is at CVUT and everyone is smart"

Existential quantification

$\square \exists<$ variables> <sentence>
\square Someone at CVUT is smart:
$\square \exists x \operatorname{At}(x, C V U T) \wedge \operatorname{Smart}(x$
$\square \exists x P$ is true in a model m iff P is true with x being some possible object in the model
\square Roughly speaking, equivalent to the disjunction of instantiations of P

Another common mistake to avoid

\square Typically, \wedge is the main connective with \exists
\square Common mistake: using \Rightarrow as the main connective with \exists :
$\square \exists x \operatorname{At}(\mathrm{x}, \mathrm{CVUT}) \Rightarrow \operatorname{Smart}(\mathrm{x})$
\square is true if there is anyone who is not at CVUT!

Equality

\square term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term ${ }_{1}$ and term ${ }_{2}$ refer to the same object
\square E.g., definition of Sibling in terms of Parent:
$\square \forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge \operatorname{Parent}(m, x)$ $\wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

Satisfiability

\square Model of the formula is a set of assignments of the true/false values to the variables in a way that the formula is evaluated to be true.
$\square \neg p$ is true iff p is false
$\square p \wedge q$ is true iff p is true and q is true
\square Satisfiability problem (SAT) is a problem of evaluating, whether a model for the given formula exists.

3-SAT problem

\square Conjunctive normal form
$\square 3-C N F$
\square First known NP-complete problem
$\square\left(x_{11}\right.$ OR x_{12} OR $\left.x_{13}\right)$ AND
$\left(x_{21} O R x_{22} O R x_{23}\right)$ AND
$\left(x_{31}\right.$ OR x_{32} OR x_{33}) AND

OPPA European Social Fund Prague \& EU: We invest in your future.

