- Rectification Homographies

Cameras $\left(\mathbf{P}_{1}, \mathbf{P}_{2}\right)$ are rectified by a homography pair $\left(\mathbf{H}_{1}, \mathbf{H}_{2}\right)$ ：

$$
\mathbf{P}_{i}^{*}=\mathbf{H}_{i} \mathbf{P}_{i}=\mathbf{H}_{i} \mathbf{K}_{i} \mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], \quad i=1,2
$$

rectified entities： $\mathbf{F}^{*}, l_{2}^{*}, l_{1}^{*}$ ，etc：
 corresponding epipolar lines must be：

1．parallel to image rows \Rightarrow epipoles become $e_{1}^{*}=e_{2}^{*}=(1,0,0)$
2．equivalent $l_{2}^{*}=l_{1}^{*} \Rightarrow \underline{l}_{2}^{*} \simeq \underline{\mathbf{l}}_{1}^{*} \simeq \underline{\mathbf{e}}_{1}^{*} \times \underline{\mathbf{m}}_{1}=\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times} \underline{\mathbf{m}}_{1}=\mathbf{F}^{*} \underline{\mathbf{m}}_{1}$
both conditions together give the rectified fundamental matrix

$$
\mathbf{F}^{*} \simeq\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \quad \quad \mu_{1}=\mu_{2}
$$

A two－step rectification procedure
1．Find some pair of primitive rectification homographies $\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$
2．Upgrade them to a pair of optimal rectification homographies from the class preserving \mathbf{F}^{*} ．

Geometric Interpretation of Linear Rectification

What pair of physical cameras is compatible with \mathbf{F}^{*} ?

- we know that $\mathbf{F}=\left(\mathbf{Q}_{1} \mathbf{Q}_{2}^{-1}\right)^{\top}\left[\underline{\mathbf{e}}_{1}\right]_{\times}$
- we choose $\mathbf{Q}_{1}^{*}=\mathbf{K}_{1}^{*}, \mathbf{Q}_{2}^{*}=\mathbf{K}_{2}^{*} \mathbf{R}^{*}$; then

$$
\left(\mathbf{Q}_{1}^{*} \mathbf{Q}_{2}^{*-1}\right)^{\top}\left[\underline{\mathbf{e}}_{1}^{*}\right]_{\times}=\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}
$$

- we look for $\mathbf{R}^{*}, \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*}$ compatible with

$$
\left(\mathbf{K}_{1}^{*} \mathbf{R}^{* \top} \mathbf{K}_{2}^{*-1}\right)^{\top} \mathbf{F}^{*}=\lambda \mathbf{F}^{*}, \quad \mathbf{R}^{*} \mathbf{R}^{* \top}=\mathbf{I}, \quad \mathbf{K}_{1}^{*}, \mathbf{K}_{2}^{*} \text { upper triangular }
$$

- we also want \mathbf{b}^{*} from $\underline{\mathbf{e}}_{1}^{*} \simeq \mathbf{P}_{1}^{*} \underline{\mathbf{C}}_{2}^{*}=\mathbf{K}_{1}^{*} \mathbf{b}^{*}$
b^{*} in cam. 1 frame
- result:

$$
\mathbf{R}^{*}=\mathbf{I}, \quad \mathbf{b}^{*}=\left[\begin{array}{l}
b \tag{29}\\
0 \\
0
\end{array}\right], \quad \mathbf{K}_{1}^{*}=\left[\begin{array}{ccc}
k_{11} & k_{12} & k_{13} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad \mathbf{K}_{2}^{*}=\left[\begin{array}{ccc}
k_{21} & k_{22} & k_{23} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- rectified cameras are in canonical position with respect to each other not rotated, canonical baseline
- rectified calibration matrices can differ in the first row only
- when $\mathbf{K}_{1}^{*}=\mathbf{K}_{2}^{*}$ then the rectified pair is called the standard stereo pair and the homographies standard rectification homographies

cont'd

- rectification is a homography (per image)
\Rightarrow rectified camera centers are equal to the original ones
- standard rectified cameras are in canonical orientation
\Rightarrow rectified image projection planes are coplanar

- standard rectification guarantees equal rectified calibration matrices
\Rightarrow rectified image projection planes are equal
standard rectification homographies reproject onto a common image plane parallel to the baseline

Corollary

- the standard rectified stereo pair has vanishing disparity for 3D points at infinity
- but known \mathbf{F} alone does not give any constraints to obtain standard rectification homographies
- for that we need either of these:

1. projection matrices, or
2. calibrated cameras, or
3. a few points at infinity calibrating $k_{1 i}, k_{2 i}, i=1,2,3$ in (29)

-Primitive Rectification

Goal: Given fundamental matrix \mathbf{F}, derive some simple rectification homographies $\mathbf{H}_{1}, \mathbf{H}_{2}$

1. Let the SVD of \mathbf{F} be $\mathbf{U D V}^{\top}=\mathbf{F}$, where $\mathbf{D}=\operatorname{diag}\left(1, d^{2}, 0\right), \quad 1 \geq d^{2}>0$
2. decompose $\mathbf{D}=\mathbf{A}^{\top} \mathbf{F}^{*} \mathbf{B}$, where
(\mathbf{F}^{*} is given \rightarrow Slide 151)

$$
\underline{m}_{2}^{\top} F \underline{m}_{1}=0
$$

$m_{2}^{\prime} \hat{H}_{2}^{\top} F^{*} \hat{H}_{1} m_{1}^{\prime}=0$
3. then

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & d & 0 \\
1 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & -d & 0
\end{array}\right] \\
\mathbf{F}=\mathbf{U D V}^{\top}=\underbrace{\mathbf{U A}^{\top} \mathbf{F}^{*}}_{\hat{\mathbf{H}}_{2}^{\top}} \underbrace{\mathbf{B V}^{\top}}_{\hat{\mathbf{H}}_{1}}
\end{gathered}
$$

and the primitive rectification homographies are

$$
\hat{\mathbf{H}}_{2}=\mathbf{A U}^{\top}, \quad \hat{\mathbf{H}}_{1}=\mathbf{B V}^{\top}
$$

* P1; 1pt: derive some \mathbf{A}, \mathbf{B} from the admissible class
- rectification homographies do exist
- there are other primitive rectification homographies, these suggested are just simple to obtain

Primitive Rectification Suffices for Calibrated Cameras

Obs: calibrated cameras: $d=1 \Rightarrow \hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}$ are orthogonal

1. determine primitive rectification homographies $\left(\hat{\mathbf{H}}_{1}, \hat{\mathbf{H}}_{2}\right)$ from the essential matrix
2. choose a suitable common calibration matrix \mathbf{K}, e.g.

$$
\mathbf{K}=\left[\begin{array}{ccc}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right], \quad f=\frac{1}{2}\left(f^{1}+f^{2}\right), \quad u_{0}=\frac{1}{2}\left(u_{0}^{1}+u_{0}^{2}\right), \quad \text { etc. }
$$

3. the final rectification homographies are

$$
\mathbf{H}_{1}=\mathbf{K} \hat{\mathbf{H}}_{1}, \quad \mathbf{H}_{2}=\mathbf{K} \hat{\mathbf{H}}_{2}
$$

- we got a standard camera pair and non-negative disparity

$$
\begin{aligned}
\mathbf{P}_{i}^{+} \stackrel{\text { def }}{=} \widetilde{\mathbf{K}}_{i}^{-1} \mathbf{P}_{i}=\mathbf{R}_{i}\left[\begin{array}{ll}
\mathbf{I} & -\mathbf{C}_{i}
\end{array}\right], & i=1,2
\end{aligned} \quad \text { note we started from } \mathbf{E}, \text { not } \mathbf{F} .
$$

- one can prove that $\mathbf{B V}{ }^{\top} \mathbf{R}_{1}=\mathbf{A} \mathbf{U}^{\top} \mathbf{R}_{2}$ with the help of (11)
- points at infinity project to $\mathbf{K} \mathbf{R}^{*}$ in both images \Rightarrow they have zero disparity

-The Degrees of Freedom in Epipolar Rectification

Proposition 1 Homographies \mathbf{A}_{1} and \mathbf{A}_{2} are rectification-preserving if the images stay rectified, i.e. if $\mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1} \simeq \mathbf{F}^{*}$, which gives

$$
\mathbf{A}_{1}=\left[\begin{array}{ccc}
l_{1} & l_{2} & l_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right], \quad \mathbf{A}_{2}=\left[\begin{array}{ccc}
r_{1} & r_{2} & r_{3} \\
0 & s_{v} & t_{v} \\
0 & q & 1
\end{array}\right]
$$

where $s \neq 0, u_{0}, l_{1}, l_{2} \neq 0, l_{3}, r_{1}, r_{2} \neq 0, r_{3}, q$ are 9 free parameters.

genera	transformation		canonical	type
l_{1}, r_{1}	horizontal scales	$-\square$	$l_{1}=r_{1}$	algebraic
l_{2}, r_{2}	horizontal skews		$l_{2}=r_{2}$	algebraic
l_{3}, r_{3}	horizontal shifts		$l_{3}=r_{3}$	algebraic
q	common special projective		Ric R	geometric
s_{v}	common vertical scale		-	geometric
t_{v}	common vertical shift			algebraic
9 DoF			$9-3=6 \mathrm{DoF}^{-}$	

- q is rotation about the baseline
proof: find a rotation \mathbf{G} that brings \mathbf{K} to upper triangular form via $R Q$ decomposition: $\mathbf{A}_{1} \mathbf{K}_{1}^{*}=\hat{\mathbf{K}}_{1} \mathbf{G}$ and $\mathbf{A}_{2} \mathbf{K}_{2}^{*}=\hat{\mathbf{K}}_{2} \mathbf{G}$
- s_{v} changes the focal length

The Rectification Group

Corollary for Proposition 1 Let $\overline{\mathbf{H}}_{1}$ and $\overline{\mathbf{H}}_{2}$ be (primitive or other) rectification homographies. Then $\mathbf{H}_{1}=\mathbf{A}_{1} \overline{\mathbf{H}}_{1}, \quad \mathbf{H}_{2}=\mathbf{A}_{2} \overline{\mathbf{H}}_{2}$ are also rectification homographies.

Proposition 2 Pairs of rectification-preserving homographies $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ form a group with group operation $\left(\mathbf{A}_{1}^{\prime}, \mathbf{A}_{2}^{\prime}\right) \circ\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)=\left(\mathbf{A}_{1}^{\prime} \mathbf{A}_{1}, \mathbf{A}_{2}^{\prime} \mathbf{A}_{2}\right)$.
Proof:

- closure by Proposition 1
- associativity by matrix multiplication
- identity belongs to the set
- inverse element belongs to the set by $\mathbf{A}_{2}^{\top} \mathbf{F}^{*} \mathbf{A}_{1} \simeq \mathbf{F}^{*} \Leftrightarrow \mathbf{F}^{*} \simeq \mathbf{A}_{2}^{-\top} \mathbf{F}^{*} \mathbf{A}_{1}^{-1}$

Optimal and Non-linear Rectification

Optimal choice for the free parameters

- by minimization of residual image distortion, eg. [Gluckman \& Nayar 2001]

$$
\mathbf{A}_{1}^{*}=\arg \min _{\mathbf{A}_{1}} \iint_{\Omega}\left(\operatorname{det} J\left(\mathbf{A}_{1} \hat{\mathbf{H}}_{1} \mathbf{x}\right)-1\right)^{2} d \mathbf{x}
$$

- by minimization of image information loss [Matoušek, ICIG 2004]
- non-linear rectification suitable for forward motion [Pollefeys et al. 1999], [Geyer \& Daniilidis 2003]

－Binocular Disparity in Standard Stereo Pair

－Assumptions：single image line，standard camera pair

$$
\begin{aligned}
b & =z \cot \alpha_{1}-z \cot \alpha_{2} \\
u_{1} & =f \cot \alpha_{1} \\
b & =\frac{b}{2}+x-z \cot \alpha_{2} \\
X=(x, z) & \text { from disparity } d=u_{2}-u_{2}:
\end{aligned}
$$

$$
z=\frac{b f}{d}, \quad x=\frac{b}{d} \frac{u_{1}+u_{2}}{2}, \quad y=\frac{b v}{d}
$$

$$
z^{\prime}=b f / 2 \quad f, d, u, v \text { in pixels, } b, x, y, z \text { in meters }
$$

Observations

－constant disparity surface is a frontoparallel plane
－distant points have small disparity
－relative error in z is large for small disparity

$$
\frac{1}{z} \frac{d z}{d d}=-\frac{1}{d}
$$

－increasing baseline increases disparity and reduces the error

Understanding Basic Occlusion Types

assumplich: opeque objects

half occlusion
(m_{1}, m_{2}^{\prime}) forbidden whunfixing (m_{1}, $1 m_{2}$ oce

- surface point at the intersection of rays l and r_{1} occludes a world point at the intersection $\left(l, r_{3}\right)$ and implies the world point $\left(l, r_{2}\right)$ is transparent, therefore

$$
\left(l, r_{3}\right) \text { and }\left(l, r_{2}\right) \text { are excluded by }\left(l, r_{1}\right)
$$

- in half-occlusion, every world point such as X_{1} or X_{2} is excluded by a binocularly visible surface point
\Rightarrow decisions on correspondences are not independent
- in mutual occlusion this is no longer the case: any X in the yellow zone is not excluded
\Rightarrow decisions in the zone are independent on the rest

Matching Table

Based on the observation on mutual exclusion we expect each pixel to match at most once.

matching table

- rows and columns represent optical rays
- nodes: possible correspondence pairs
- full nodes: correspondences
- numerical values associated with nodes: descriptor similarities

Image Point Descriptors And Their Similarity

Descriptors: Tag image points by their (viewpoint-invariant) physical properties:

- texture window
[Moravec 77]
- reflectance profile under a moving illuminant
- photometric ratios
- dual photometric stereo
[Wolff \& Angelopoulou 93-94]
[Ikeuchi 87]
- polarization signature
- ...
- similar points are more likely to match
- we will compute image similarity for all 'match candidates' and get the matching table

video

Thank You

