» The Full Problem of Matching and Fundamental Matrix Estimation

Problem: Given two sets of image points X = {z;};2; and Y = {y;}7—; and their
descriptors D, find the most probable
1. inliers Sy C X, Sy CY
2. one-to-one perfect matching M: SX — Sy perfect matching: 1-factor of the bipartite graph
3. fundamental matrix F' such that rank F = 2
4. such that for each x; € Sx and y; = M(x;) it is probable that
a. the image descriptor D(x;) is similar to D(y;), and
b. the total geometric error 3, . e?j (F) is small note a slight change in notation: e ;
5. inlier-outlier and outlier-outlier matches are improbable

M: Y
12345678
1
2 []=0
3
x 3 0=t
5
6
(M",F") = argmax p(M, F | X,Y, D) (17)
e probabilistic model: an efficient language for task formulation
e the (17) is a p.d.f. for all the involved variables (there is a constant number of variables!)

e binary matching table M;; € {0,1} of fixed size m x n
® each row/column contains at most one unity
e zero rows/columns correspond to unmatched point x; /y;
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Deriving A Robust Matching Model by Marginalization

For algorithmic efficiency, instead of (M™,F") = arg 111\1/1a13‘<p(]\1, F | X,Y, D) we will solve
F* = argm}gxp(F | X,Y, D) (18)

by marginalization of p(M,F | X,Y, D) over M this simplification changes the problem!

assuming correspondence-wise independence:

m

m n n
y def
p(X,Y,D,M | F) =[] [[ p(zi,v5, D,mis | F) = [ ] peleis, digymi; | F)

i=1j=1 i=1j=1
® ¢;; represents geometric error for match z; < y;: ej(wq,y; | F)

e d;; represents descriptor similarity for match z; <> y;: d;; = ||d(z;) — d(y;)||
Marginalization: m n
> Y XD 8 = Y Y 3 T Tt 1) =

m11€{0,1} mi2 Mmn mi1 mi2 Mmn 1=1j=1

m

=---=HH > pelei,dij,mi; | F) = p(X,Y,D | F)

i=1j=1m,;;€{0,1}

we will continue with this term
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Robust Matching Model (cont'd)

> peledigymi [ F) = > peles,diy | miy, F) - p(my; | F) =
m;;€{0,1} m;;€{0,1}

= peleij, dij | mij = 1,F) -p(mi; = 1| F) +pe(eij, dij | mij = 0,F) -p(mi; =0 | F) =

p1(eij,dij|F) 1-ap po(eij,dij|F) ag

= (1 —ao)pi(eij,dij | F) + oo po(eiz,dij | F) (19)

e the po(e;j,di; | F) = const is a penalty for ‘missing a correspondence’ but it should be a
p.d.f. (cannot be a constant) (see Slide 108 for a simplification)

ap — 1, po— 0 sothat

po ~ const

e the pi1(e;j,d;i; | F) is typically an easy-to-design component: assuming independence of
geometric error and descriptor similarity:
pilej, dij | F) = pi(es; | F) - p1(diz)

e we choose, eg.

1 F, () 1 lldG@y)—d(y,) 2
- 2 2
piles; | F) = ——— e 2917, pi(dij) = 204 (20)

= To(o, F) Ta(og,dimd)

® o1, 04, o are ‘hyper-parameters’
® the form of T'(o1, F') depends on error definition
® we will continue with the result from (19)
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»Simplified Robust Energy (Error) Function

e assuming the choice of p; as in (20), we are simplifying

m n
pX,Y,D|F)=]]]] [(1 —ao)pi(eij, dij | F) + aopoless, dij | F)] (21)
i=1j=1
e we define ‘energy’ as: V(z) = —logp(z) this helps simplify the formulas

e for simplicity, we omit d;;
e we choose og > 01 and the missed-correspondence penalty function as

1 I
| F)= ——— 2002
polers | F) = o e
e then
m n ~ ap _e%].(F) a0 T (0_1 F) _612]-(1’)
V(X,Y,D|F) = 20 10g(e 27 4 Zelon,¥) 2002)
( | z::z:: Te(al,F) 1—ap Te(oo,F)
A(F) t & const
e by choosing representative of F' such that A(F) = const, we get
m n (F)
V(X,Y,D|F):mnA+ZZ—log( 207 +t) (22)

i=1j=1

V(eiz)

note that m, n are fixed
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» The Action of the Robust Matching Model on Data

Example for V(e) from (22):

1

. red — the usual (non-robust) error when t = 0

35 et =0 blue — the rejected correspondence penalty ¢
3 ——t=02 green — ‘robust energy’ (22)
25
2 e if the error of a correspondence exceeds a limit, it is ignored
>
15

: v e then V(e) = const and we essentially count outliers in (22)
1\ /' ® ¢ controls the ‘turn-off’ point
0.5 T . . . .
e the inlier/outlier threshold is e is the error for which
N,
0 N (1 —ao)pi(er) = appoler): note that ¢ ~ 0

-05
-4 -3 -2eT-1 0 1 eT2 3 4
e er = o1/ —logt2 (23)

The full optimization problem is (18):

likelihood prior

X,Y,D|F F
F" = argmaxp(F | X, Y, D) = arg max il ,p(yX,l/,l))ﬁm ) _
N——

evidence

= arg mFin{V(X, Y,D|F)+V(F)}

® typically we take V' (F) = O unless we need to stabilize a computation, e.g. when video camera moves
smoothly (on a high-mass vehicle) and we have a prediction for F

® evidence is not needed unless we want to compare different models
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Discussion: On The Art of Probabilistic Model Design. ..

e a few models for fitting zero-centered circle C of radius r to points in R?

marginalized over C'

K]
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e mode inside the circle
e models the inside well
e tends to normal distrib.

orthogonal deviation from C

. (.0

2
1 1 (r\lx\l) T o
2x0(22) X2\ @
0

e peak at the center
e unusable for small radii
e tends to Dirac distrib.

rlixll
o

Sampson approximation

x

N(0,%1)

_e2Gan)

1 202

ray/(2m)3 ¢

e mode at the circle
e hole at the center
e tends to normal distrib.
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How To Find the Global Maxima (Modes) of a PDF?

p()
-

2
15
05 . . .

0

0 0.2 0.4 0.6 0.8 1
X
randomized \
MH_crawl

0 1000 2000 3000 4000 5000
iterations

® averaged over 10? trials

® number of proposals before
|# = @true| < step

® uniform and Gibbs give the
theoretical result

e consider the function p(z) at left p.d.f. on [0, 1], mode at 0.1

e consider several methods:
1. exhaustive search
step = 1/(iterations-1);
for x = O:step:1
if p(x) > bestp
bestx = x; bestp = p(x);
end
end
e slow algorithm (definite quantization); faster variants
exist e fast to implement

2. randomized search with uniform sampling
x = rand(1);
if p(x) > bestp
bestx = x; bestp = p(x);
end
e slow algorithm but better convergence e fast to
implement e how to stop it?

3. random sampling from p(z) (Gibbs sampler)
e faster algorithm e fast to implement but often infeasible (e.g.
when p(z) is data dependent (our case))

4. Metropolis-Hastings sampling
e almost as fast (with care) e not so fast to implement e rarely
infeasible ¢ RANSAC belongs here
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How To Generate Random Samples from a Complex Distribution?

target (red) and scaled proposal (blue) distributions

e red: probability density function p(z) of a toy

distribution on the unit interval  target distribution
15 4 4
g p(x) => aiBe(ziai, B), Y =1, a; >0
£ i=1 i=1
g Be(z; o, 8) = L =)t
B(a, f)
i ?
o % . ® note we can generate samples from this p(xz) how?

X

e suppose we cannot sample from p(z) but we can sample from some ‘simple’

distribution, given the last sample zo (blue) proposal distribution

Uo,1(x) (independent) uniform sampling
q(x | wo) = ¢ Be(x; 32 + 1, 1_Tz° +1) ‘beta’ diffusion (crawler) T — temperature
p(x) (independent) Gibbs sampler

® note we have unified all the random sampling methods on the previous slide

e how to transform proposal samples q(z | zo) to target distribution p(z) samples?
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»Metropolis-Hastings (MH) Sampling

C - configuration (of all variable values) Here C = F and p(C) = p(F | X,Y, D)
Goal: Generate a sequence of random samples {C;} from p(C)

e setup a Markov chain with a suitable transition probability function so that it

generates the sequence

Sampling procedure

1. given Cj, generate random sample S from ¢(S | C;)

g may use some information from C; (Hastings)
2. compute acceptance ratio the evidence term drops out

_ pS) a(Ci]9)

-~ p(Ci) (S| Cy)
3. generate random number u from unit-interval uniform distribution Uo 1
4. if u < a then Ci41:= S else Ciy1:=C;

‘Programing’ an MH sampler

1. design a proposal distribution ¢ and a sampler from ¢

2. write functions ¢(C; | S) and ¢(S | C;) that are proper distributions not always simple
Finding the mode

e remember the best sample fast implementation but must wait long to hit the mode

e use simulated annealing very slow

e start local optimization from the best sample good trade-off between speed and accuracy
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MH Sampling Demo

initial sample

sampling process (video, 7:33)

® blue point: current sample
e green circle: best sample so far quality = 7 (x)
e histogram: current distribution of visited states final distribution of visited

® the vicinity of modes are the most often visited states states
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Demo Source Code (Matlab)

function x = proposal_gen(x0)
% proposal generator q(x | x0)

T = 0.01; 7% temperature
x = betarnd((x0)/T+1, (1-x0)/T+1);

function p = target_p(x)
% target distribution pi(x)

% shape parameters:
= [2 40 100 6];
b= [10 40 20 1];

»

% mixing coefficients:
w=[10.40.253 0.50]; w = w/sum(w);
p=0;
for i = 1:length(a)
p = p + w(i)*betapdf(x,a(i),b(i));
end

end

function p = proposal_q(x, x0)
% proposal distribution q(x | x0)

%% DEMO script

k = 10000; % number of samples
X = NaN(1,k); % list of samples

x0 = proposal_gen(0.5);
for i = 1:k
x1 = proposal_gen(x0);
a = target_p(x1)/target_p(x0) * ...
proposal_q(x0,x1) /proposal_q(x1,x0);
if rand < a
X(@i) = x1; x0 = x1;
else
X(i) = x0;
end
end

figure(1)

x = 0:0.001:1;

plot(x, target_p(x), ’r’, ’linewidth’,2);
hold on

n = histc(X, 0:0.025:1);

h = bar(0:0.025:1, n/sum(n)/0.025, ’histc’);
set(h, ’facecolor’, ’r’, ’facealpha’, 0.3)
x1im([0 11); ylim([0 2.5])

xlabel ’x’

ylabel ’p(x)’

T = 0.01; title ’MH demo’
p = betapdf (x, x0/T+1, (1-x0)/T+1); hold off
end
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»From MH Sampling to RANSAC

e configuration = k-tuple of inlier correspondences
the minimization will be over a discrete set of epipolar geometries proposable from 7-tuples
e data-driven proposals ¢:
1. select k-tuple from data independently and uniformly ¢(S) = ("L")_l

2. solve the minimal geometric problem — geometry proposal (e.g. F from k = T7)

. . p(S) q(Si)
e independent sampling a=—/—%"-
P T CARED!

’
1. q uniform, then a = ZEE; MAPSAC (p(S) includes the prior)
2. g dependent on descriptor similarity PROSAC (similar pairs are proposed more often)
LO-MAPSAC

1. generate random sample Sy, from ¢(S)
2. set initial N := ("))
3. repeat N-times:

a. generate random sample S’ from ¢(S)
b. if p(S’) > p(Sy) then

i Sp:i=8
ii. threshold-out inliers using e from (23)
iii. start local optimization from S} and update Sy with the result
iv. re-estimate N from inlier counts using the standard formula for RANSAC termination, see Slide 117
4. output Sy

e see the MPV course for RANSAC details see also [Fischler & Bolles 1981], [25 years of RANSAC]
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»Stopping RANSAC

Principle: what is the number of proposals N that are needed to hit an all-inlier sample?

e (1 —w)® — proposal does not contain an outlier
e 1 — (1 —w)® — proposal contains at least one outlier
e 1 — P = all proposals contained an outlier = (1 — (1 — w)?®)

log(1 — P)
~ log(1— (1 —-w)*) N
P — probability that at least one sample is all-inlier
w — the fraction of outliers among tentative correspondences

s — sample size (7 in 7-point algorithm)
10

10
P=0.5
108 P=0.8
P=0.99
Nfors;? 7 . P=0.9999
s 10 : :
w [[08 [ 099 g
0.5 || 205 590 \;‘;104
0.8 || 1.3-10°% | 3.5-10°
0.9 || 1.6-107 | 4.6-107 10°
10°
107 10" 10°

w (outlier fraction)
® N can be re-estimated using the current estimate for w (if there is LO, then after LO)
the quasi-posterior estimate for w is the average over all samples generated so far

e for w — 1 we gain nothing over the standard MH-sampler stoppig criterion
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» The Difference between RANSAC and General MH Sampler

RANSAC = five ideas: [Fischler & Bolles 1981]
1. proposal distribution is given by the empirical distribution of data sample:

e pairs of points define line distribution from p(n | X) (left)

= _., v ° e random correspondence tuples drawn uniformly propose
‘ samples of F from a data-driven distribution ¢(F | X,Y)
2. stopping based on the probability of mode-hitting — Slide 117

3. standard RANSAC replaces probability maximization with consensus maximization

) x the er is the inlier/outlier threshold from (23)

er

4. when counting inliers, do not work with all m;; but with a set of tentative
correspondences that form a matching, e.g. selected by stable matching:

. find a pair m;; of greatest p1(d;;) and remember it

. remove row ¢ and column j from the matching table (needs some bookkeeping and reindexing)
. repeat Steps a—b until the table is empty
. return the remembered set

o nNn T w

5. each time a new best sample occurs, start local optimization from inliers
or LO weighted by posterior p(m;;) [Chum et al. 2003]
LM optimization with Sampson error (and re-weighting)
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Example Matching Results for the 7-point Algorithm with RANSAC

input images interest points (ca. 3600) tentative corresp. (416) matching (340)
notice wrong matches

® the minimization os over a discrete set of epipolar geometries proposable from 7-tuples
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Example: MH Sampling for a More Complex Problem

Task: Find two vanishing points from line segments detected in input image.

iter: 10 (acc TOT=00%, HMC=MaM%); Eava = 14.557

=

W

video

Model
e assumptions: principal point known, square pixel
e explicit variables
1. two unknown vanishing points v1, v2
2. each line has a vanishing point label X\; € {0, 1,2}, 0 represents an outlier
e latent variables
1. '‘mother lines’ passing through vanishing points
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Beyond RANSAC

Note that by simplification in (18) on Slide 106 we have lost constraints on M
(eg. uniqueness). One can choose a better model when not marginalizing:

—_— " =
geometric error similarity ~ constraints  prior
this is a global model: decisions on m;; are no longer independent!
In the MH scheme
e one can work with full p(M,F | X,Y, D), then S = (M, F)
e explicit labeling m;; can be done by, e.g. sampling from

q(mij | F) ~ (1 —ao)pi(eij | F), aopo(eij | F))
when p(M) uniform then always accepted, a =1 ® derive
e additional proposals from ¢(F | M) are possible, with explicit inliers  Hybrid Monte Carlo
e we can compute the posterior probability of each match p(m;;) by histogramming m;;
over {S;}
e local optimization can then use explicit inliers and p(m;;)

e error can be estimated for elements of F from {S;} does not work in RANSAC!
® large error indicates problem degeneracy this is not directly available in RANSAC
e good conditioning is not a requirement we work with the entire distribution p(F')
® one can find the most probable number of epipolar geometries by reversible jump MCMC

(homographies or other models)
if there are multiple models explaning data, RANSAC will return one of them randomly
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Thank You



0=0.25
0=0.5
o=1
0.25r
o=2
0.2+
=
1
— 0.15+
X
=
0.1
0.05r \
0 i i \\ L i j
0 0.5 1 15 2 25 3

3D Computer Vision: enlarged figures R. Sara, CMP; rev. 13-Nov-2012 *ll



0=0.25
0=0.5
o=1
0.25r
o=2
»
0.2+
=
1
— 0.15+
<
=
0.1r
0.05r
===
0 Il Il Il Il
0 0.5 1 15 2 25 3

3D Computer Vision: enlarged figures R. Sara, CMP; rev. 13-Nov-2012 *ll



c6=0.25
c=05
o=1
0.25r
c=2
0.2
=
I
— 0.15+
=
g
0.1r
0.05f / \
O I i \ i j
0 0.5 1 15 2 2.5 3

3D Computer Vision: enlarged figures R. Sara, CMP; rev. 13-Nov-2012 *ll



—~Nov-2012 *ill

R. Sara, CMP; rev. 13

3D Computer Vision: enlarged figures



.
o e oo
. .
.
s o ) °
o'.. e :
.
.
. o
oo .
. . .' o . o
. . . ® .
o = S .'.'0' = o 0 2 e ° oo
o o ° °
e o A .
X ° PR - ']
= " oo 4 .o e
®® %coee ==
.

3D Computer Vision: enlarged figures R. S4ra, CMP; rev. 13-Nov-2012 *@lll



M o
. °
.
* e °
M .
.
“
. .
e
LI o . . .
. ° ..
. .
e Tl oev 3 ‘.
® ¢ eoeee s L
i ® °° g

3D Computer Vision: enlarged figures R. S4ra, CMP; rev. 13-Nov-2012 *@lll



	Optimization for 3D Vision
	The Correspondence Problem
	Optimization by Random Sampling

	End of Slides

