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pOutline

� So far we dealt with the “classic” (most simple) BN representation

− static model,

− binary variables.

� We will generalize towards

− dynamic Bayesian networks

∗ capable to capture system development in time,

− other types of variables

∗ categorical variables, continuous variables and their combinations.

� We will also discuss another type of graphs

− directed → undirected graphs,

− Markov Random Fields

∗ different properties and application.
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pDynamic Bayesian Networks (DBNs)

� nodes = variables corresponding to the values of real variables in concrete time,

� real variables re-appear (see P1,t, P2,t, P3,t in figure),

� edges stand for causal relationship,

� additional constraints must be introduced

(otherwise too many possible relationships),

� variable notation (implicit constraints)

− t – discrete time (the choice of step size is problem dependent),

− Xt – the set of unobservable state variables at time t,

∗ Positiont, V elocityt, Accelerationt, Batteryt, . . .

− Et – the set of observable evidence variables at time t,

∗ Odometryt, . . .

− Xa:b – Xa, Xa+1, . . . , Xb−1, Xb.
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pDynamic Bayesian Networks (DBNs)

� Constraint #1: nth order Markov assumption

− transition model: Pr(Xt|X0:t−1) = Pr(Xt|Xt−n:t−1)

− sensor model: Pr(Et|X0:t, E0:t−1) = Pr(Et|Xt)

� Constraint #2: stationary process

− neither transition nor sensor model changes in time

∀t : Pr(Xt|Xt−n:t−1) = Pr(Xt+1|Xt−n+1:t)

∀t : Pr(Et|Xt) = Pr(Et+1|Xt+1)

� Under the first-order Markov assumption, DBN can be defined by

− initial conditions: Pr(X0),

− transition and sensor model (for single t only).
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pDBN example (Russell, Norvig: AIMA)

� the network is defined by the initial conditions and single slice (transition and sensor model)

� the network can be unrolled up to an arbitrary time step.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pDBN example (Russell, Norvig: AIMA) – continuation

� classical BN inference enumerates prob of arbitrary event given arbitrary evidence,

� näıve approach may ignore the split of variables (state vs evidence), or query the past states,

� what is the difference in prob of rain at day 1 knowing it did not rain at day 4 and umbrellas

appeared at day 2?

− Pr(r1) = Pr(r0, r1) + Pr(¬r0, r1) = Pr(r0)Pr(r1|r0) + Pr(¬r0)Pr(r1|¬r0) = 0.58,

− Matlab BNT, jtree inf engine: Pr(r1|¬r4, u2) = 0.68,

− rain prob at day 1 increased with the evidence,

� the number of time steps can be large/unlimited

− only specialized tasks can be solved due to computational costs.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pDBN inference tasks

� filtering – Pr(Xt|e1:t)

− get the distribution of current state knowing (all) past evidence variables,

− the fundamental task in decision making of a rational agent,

� prediction – Pr(Xt+k|e1:t), k > 0

− unlike filtering, a future state is of interest (or filtering without late evidence),

� smoothing – Pr(Xk|e1:t), 0 ≤ k < t

− improved estimate of past states, essential for learning,

� most likely explanation – arg maxx1:t
Pr(x1:t|e1:t)

− note it is not repeated smoothing – states mutually interact,

− applied e.g. in speech recognition

(speech signal → sentence and not the sequence of the most likely characters).
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pFiltering

� the aim is to devise a recursive state estimation algorithm

− Pr(Xt+1|e1:t+1) = f (et+1, P r(Xt|e1:t)),

− filtering at time t and evidence at time t + 1 → filtering at time t + 1,

Pr(Xt+1|e1:t+1) = Pr(Xt+1|e1:t, et+1) = . . . split evidence only

= αPr(et+1|Xt+1, e1:t)Pr(Xt+1|e1:t) = . . . apply Bayes theorem

= αPr(et+1|Xt+1)Pr(Xt+1|e1:t) . . . follows from Markov property of evidence

� filtering was decomposed into

− prediction Pr(Xt+1|e1:t) and integration of the last evidence Pr(et+1|Xt+1),

� prediction will be solved by summing out Xt

− Pr(Xt+1|e1:t) =
∑

xt
Pr(Xt+1|xt, e1:t)Pr(xt|e1:t) =

∑
xt
Pr(Xt+1|xt)Pr(xt|e1:t),

� the result is a time and space constant (independent of t) recursive function f

− f1,t+1 = FORWARD(f1:t, et+1), where f1:t = Pr(Xt|e1:t)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � A4M33RZN



pFiltering – example

� we observe u1 and u2 – what is rain prob at day 1 (disregarding u2) and rain prob at day 2?

− Pr(R1|u1) = α1Pr(u1|R1)
∑

R0∈{r0,¬r0} Pr(R1|R0)Pr(R0),

− Pr(r1|u1) = α1 × 0.9× (0.7× 0.7 + 0.3× 0.3) = α1 × 0.9× 0.58,

− Pr(¬r1|u1) = α1 × 0.2× (0.3× 0.7 + 0.7× 0.3) = α1 × 0.2× 0.42,

− α1 = 1.65→ Pr(r1|u1) = 0.861, Pr(¬r1|u1) = 0.139

− Pr(R2|u1, u2) = α2Pr(u2|R2)
∑

R1∈{r1,¬r1} Pr(R2|R1)Pr(R1|u1),

− Pr(r2|u1, u2) = α2 × 0.9× (0.7× 0.861 + 0.3× 0.139) = α2 × 0.9× 0.644,

− Pr(¬r2|u1, u2) = α2 × 0.2× (0.3× 0.861 + 0.7× 0.139) = α2 × 0.2× 0.356,

− α2 = 1.54→ Pr(r2|u1, u2) = 0.891, Pr(¬r2|u1, u2) = 0.109
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pDBN vs HMM

� Hidden Markov Model (HMM)

− frequent application in speech recognition or biomedicine,

� HMM is a special (and trivial) case of dynamic Bayesian network

− state is described by the only variable (usually there is a single evidence variable as well),

− i.e., Rain-Umbrella example represents both DBN and HMM,

� HMM is a statistical model doable by polynomial algorithms in the number of time steps

− works in simple worlds = the state and sensor variable have a reasonable number of values

∗ a set of discrete (evidence or state) variables can make a single variable

(whose values correspond to tuples),

− simple tasks prevail, HMMs appear more frequently than their DBN generalizations,

− however, DBNs are more efficient than HMMs in complex tasks with sparse dependencies

∗ DBN decomposes complex systems using independence,

∗ exponentially fewer parameters than HMMs,

∗ ex.: 10 binary state variables, 2 parents each

· DBN has 10× 22 = 400 parameters, HMM has 210 × 210 ≈ 106 parameters.
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pBayesian Automated Taxi (project, IJCAI paper, 1995)

� the project of autonomous vehicle in regular highway traffic

− overtaking a slower vehicle and bypassing a stationary vehicle,

− response to the maneuvers of other drivers or to the change of the number of lanes.
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pDBNs – overview

� so far, we applied BNs to model constant relationships among different variables

− time was not concerned,

− or the model captured a single moment.

� often we need to track time changes

− the state of the world is described and its dynamics is modeled,

� for the sake of feasibility, constraints must be introduced

− Markov assumption: the current state depends solely on a limited history of past states,

− stationarity: transition and evidence probabilities do not change in time, slices stay identi-

cal,

− discrete time: slices (world states at particular time steps) can be distinguished,

− explicit prior split of variables: hidden/state and observable/evidence variables,

� for each time step a whole slice (state and sensor model) is copied

− the network is unrolled then,

− DBN can be understood as an equivalent of static BN,

− however, this analogy is rarely used due to complexity reasons,

− new standard tasks: filtering, prediction, smoothing, most likely explanation.
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pOther types of variables in BN

� BN must record Pr(Pi|parents(Pi)) by definition

− CPT is a special case of more general conditional probability distribution (CPD),

� categorical variables

− (can take on one of a limited, and usually fixed, number of possible values),

− CPTs again, they just may grow more quickly with the number of parents,

∗ qi . . . the number of unique instantiations of Pi parents,,

∗ ri . . . the number of distinct Pi values,

∗ r . . . the maximum number of distinct values of one network variable (r = max
i=1...n

ri),

∗ the total number of independent BN parameters

K =
∑n

i=1 qi(ri − 1),

∗ for binary variables ri = 2 a qi = 2|parents(Pi)|,

∗ for categorical variables 2 ≤ ri ≤ r a qi ≤ r|parents(Pi)|.
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pOther types of variables in BN

� continuous variables

− CPT gets infinite, discretization → categorical variable

∗ dilemma: large CPTs vs information loss,

− representation/approximation with canonical probability distributions

∗ finite, often simple parametrization,

∗ the most often option: normal (Gaussian) distribution and its mixtures,

∗ figure: definition of a continuous node without any parent with 9 parameters.
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pCategorical variable with a continuous parent

� CPD for a categorical child D with a continuous parent C

− soft thresholding using softmax function (multinomial logistic function)

Pr(D = di|C = c) = ewi×c+bi∑|D|
j=1 e

wj×c+bj

− ~w – gives softness (slope) of the threshold, ~b – gives position of the threshold,

� applicable even for multiple continuous parents

−W and B in a matrix format, contribution of the individual parents gets combined,

� binary D → softmax ≈ sigmoid function, � ternary D – probabilities of target values,
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pContinuous child node, hybrid parents

� a continuous child Cp having continuous parent Cr and categorical parent D

− the most common CPD form is the linear Gaussian (LG) model

∗ mean child value varies linearly with the continuous parent, variance is fixed,

Pr(Cp = cp|Cr = cr, D = d) = N(µd = adcr + bd, σd)

∗ reasonable model provided that the range of continuous parent is likely to be narrow,

− we define a LG child function for each value of categorical parent

∗ for each value d a distinct set of parameters ad, bd and σd is defined,

� generalization for more parents

− mean child value corresponds to a linear combination of values of continuous parents,

− a new LG parametrization must be given for each possible assignment to categorical parents

when having more of them.
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pContinuous nodes – example (Russell, Norvig: AIMA)

� Fruit sales are influenced by price, the price is given by harvest yields and government subsidy.
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pContinuous variables – summary

� parametrization of continuous variables CPDs

− commonly with normal distribution and its mixtures, linearized by continuous parents,

− in general not more difficult/demanding than for categorical variables,

− several combinations for connections wrt node types exist (see BNT for Matlab),

� the global joint probability model

− having categorical softmax nodes and continuous LG nodes . . .

− . . . joint probability takes a form of multivariate Gaussian

− (over all continuous variables for each combination of discrete variable values).

� inference in principle does not change

− nevertheless, more difficult, all the algorithms cannot be applied,

− they need to be generalized (dealing with atomic events etc.),

� new methods for learning from data appear

− softmax is in BNT learned by the iteratively reweighted least squares (IRLS) algorithm,

− for other node and connection models other dedicated algorithms.
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pUndirected graphs

� undirected graph model = Markov network = Markov Random Field (MRF),

� the same aim as the directed models

− to factorize/decompose the joint probability using conditional independence,

� notion of conditional independence in undirected graphs

− simple graph separation – in comparison with directed d-separation it is trivial,

− A ⊥⊥ B|C: all the paths from A from B must disappear when all the nodes in C removed.
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pUndirected graphs

� joint probability factorization is based on the definition of conditional independence

− for two nodes not connected by an edge it holds

Pr(Pi, Pj|P\{i,j}) = Pr(Pi|P\{i,j})Pr(Pj|P\{i,j})
− Hammersley-Clifford theorem

Pr(P1, . . . , Pn) = 1
Z

∏
C∈mcl{G} ψC(PC)

Z . . . normalization const, mcl{G} . . . set of maximal cliques G, ψC . . . potential function

� possible difficulties

− factors (usually) do not have interpretation (they are not probabilities),

− product of factors must be normalized (to express the joint probability),

� potential functions

− HC theorem assumes their strict positivity,

− traditionally given as an exponential energy function E

ψC(PC) = exp−E(PC)

− joint probability corresponds to the sum of energies of all maximal cliques.
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pMRF: example (Bishop: Graphical models, chapter 8)

� noise filtering in a binary image (2 colors)
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pMRF: example (Bishop: Graphical models, chapter 8)

� structure of the model is proposed a priori

− color of the adjacent pixels strongly correlated,

− distant pixels can be ignored (distant=not an immediate

neighbor → first-order model)

∗ a regular grid of nodes Xi, Xi ∈ {−1, 1}
− noise is modeled by another “layer” of nodes Yi, Yi ∈ {−1, 1}
∗ low-level noise (Pr(noise)� 0.5)

→ strong correlation with Xi,

− two types of maximal cliques with 2 nodes

∗ adjacent Xi and Xj, connected Yi and Xi,

� corresponds to the Ising model.
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pMRF: example (Bishop: Graphical models, chapter 8)

� learning of joint probability Pr(X,Y)

− clique energy: −ηXiYi and −βXiXj,

∗ η and β positive parametrization constants,

∗ in case of agreement of node signs the energy is lower and the probability is higher,

− the energy function

E(X,Y) = h
∑

iXi − β
∑
{i,j}XiXj − η

∑
iXiYi,

∗ first term prefers one of the colors (background color is more frequent a priori),

− the target probability

Pr(X,Y) = 1
Z

∏
C ψC(PC) = 1

Z exp−E(X,Y)

� de-noising = learning of the model

− Yi is observed (noisy image), we search for Xi such that Pr(X,Y) is maximized,

− can be done by a gradient-descent algorithm (which concerns pixel coordinates)

1. initialization X (∀i Xi = Yi),

2. ∀i gradually and repeatedly (in a random order or in a systematic order)

(a) determine the the total energy for Xi = +1 and Xi = −1,

(b) take the setting with the lower energy,

3. stop if energy did not decrease (after all the cycle ∀i).
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pTransformation from directed to undirected model

� an important part of the junction tree inference algorithm,

� clique potentials must concern the conditional probabilities in directed graph,

� this is easy to meet in directed graphs where nodes have at most one parent.

Pr(P1, . . . , P4) =

= Pr(P1)Pr(P2|P1)Pr(P3|P2)Pr(P4|P2)

Pr(P1, . . . , P4) =
1

Z

∏
i

ψCi
(PCi

)

ψC1(PC1) = ψ1,2(P1, P2) = Pr(P1)Pr(P2|P1)

ψC2(PC2) = ψ2,3(P2, P3) = Pr(P3|P2)

ψC3(PC3) = ψ2,4(P2, P4) = Pr(P4|P2)

Z = 1
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pTransformation from directed to undirected model

� the networks with converging nodes must be moralized (see junction tree algorithm),

− otherwise, there are some conditional probs that cannot be applied within any of the cliques!

− undirected graph would encode a different set of (conditional) independence relationships.

Pr(P1, . . . , P4) =

= Pr(P1)Pr(P2)Pr(P3|P1, P2)Pr(P4|P3)

Pr(P1, . . . , P4) =
1

Z

∏
i

ψCi
(PCi

) (Z = 1)

ψCM
(PCM

) = ψ1,2,3(P1, P2, P3) =

= Pr(P1)Pr(P2)Pr(P3|P1, P2)

ψC3(PC3) = ψ3,4(P3, P4) = Pr(P4|P3)

� transformation from undirected to directed model more difficult and less frequent.
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pSummary

� BNs belong to a large class of graphical stochastic models,

� BN frequently used in

− knowledge-based systems, causal diagrams,

� changes in the formalism or additional constraints lead to models applicable in other domains

− BN vs DBN/HMM

∗ speech recognition, signal processing, time series,

− BN vs MRF

∗ gases and fluids, society, images,

� variables can be both discrete and continuous

− for simplicity and educational reasons this course focused on binary variables.
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pApplications of Bayesian networks

� PATHFINDER (Stanford, 1980’)

− diagnosis of the lymph nodes diseases,

− tested on 53 patients, diagnostics outperformed the best pathologists,

− followed by a series of medical diagnostic systems,

� other diagnostic systems/applications

− interpretation of electromyography (EMG),

− gas turbines,

− corn yields,

� gene expression modeling

− mutual interactions among genes (gene regulatory networks),

− G1 encodes an enzyme that stimulates expression of another gene G2,

− G1 “causes” G2.

� interactive problem solving in MS Windows systems

− troubleshoots both HW and SW problems,

− similarly car diagnostics, jet engines etc,

� modeling in geology, hydrology, sociology,

� among others BN Weka classifier.
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pBN – summary

� probability is a rigorous tool for uncertainty modeling,

� each atomic event has its joint probability,

� queries answered by aggregation (adding with subsequent division) of atomic events,

� needs to be simplified in non-trivial domains,

� the tool is independence and conditional independence

− Bayesian network = graph (ind. relationships) + conditional probability distributions

(quantities),

− inference is still NP-hard wrt to the number of variables,

− solution can be in special network types (singly connected, sparse networks), ex.: trees –

at most one parent,

− or approximate inference,

� BNs can be learned from data, two tasks exist

− parameter learning, less difficult, can be seen as a subtask of . . .

− structure learning.
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pAdvantages of Bayesian networks

� the problem structure given as a graph is clear and its semantics understandable for user

− it can naturally be interpreted in the cause-effect way, one can also manually generate it,

− it implements both causal and diagnostic inference,

− evidence can be propagated in an arbitrary way – a universal model,

− for comparison, a neural network as a “ black box”,

� ability to merge prior knowledge with data

− existing network (typically outlined by an expert) can be modified to explain the data,

− learning purely from data is a special case (empty/random init model),

� theoretically sound, robust, widely applicable

− small modifications in model result in small perturbations in results, does not overfit,

− application in exploration analysis, classification or regression,

� ability to deal with missing values and hidden variables

− model can estimate a missing value given its relations to other values/variables,

− hidden variable may explain “suspicious” dependency between two observed variables,

� what stands against?

− learning is difficult,

− there is no general and widely-applicable algorithm applicable without its understanding.
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pRecommended reading, lecture resources

� Russel, Norvig: AI: A Modern Approach, Uncertain Knowledge and Reasoning (Part IV)

− representation of CPDs with continuous variables,

− temporal probability models (chap. 15, not in the first edition),

− Google books (isbn:0136042597),

� Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

− BN Toolbox and continuous variables?

− http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html,

� Bishop: Pattern Recognition & Machine Learning, Graphical Models (Chapter 8)

− a general chapter, in this lecture it inspired the part on undirected graphs,

− http://research.microsoft.com/en-us/um/people/cmbishop/prml/Bishop-PRML-sample.pdf.

� Forbes et al.: The BATmobile: Towards a Bayesian Automated Taxi, IJCAI 1995

− TAXI case study,

− http://www.cs.berkeley.edu/~russell/papers/ijcai95.
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