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Outline

= So far we dealt with the “classic” (most simple) BN representation

static model,

binary variables.
s We will generalize towards

dynamic Bayesian networks
* capable to capture system development in time,
other types of variables

« categorical variables, continuous variables and their combinations.

s We will also discuss another type of graphs

directed — undirected graphs,
Markov Random Fields

« different properties and application.,




Dynamic Bayesian Networks (DBNs)

= nodes = variables corresponding to the values of real variables in concrete time,

= real variables re-appear (see Py, Pay, Ps; in figure),

m edges stand for causal relationship,

m additional constraints must be introduced
(otherwise too man ible relationshi o o
y possible relationships),
Crod Cend Crad
(o) Cu) (o)
()

= variable notation (implicit constraints)

t — discrete time (the choice of step size is problem dependent),
X; — the set of unobservable state variables at time ¢,

x Position;, Velocity;, Acceleration;, Battery;, ...

E, — the set of observable evidence variables at time ¢,

x Odometry,, ...

Xap = Xar Xagt1, -0 Xpo1, Xp.




Dynamic Bayesian Networks (DBNs)

s Constraint #1: nth order

transition model: Pr(X¢| Xo:-1) = Pr( X Xi—n:t-1)

ED—~ D~~~
T2

sensor model: Pr(FE;| Xy, Foi—1) = Pr(E]Xy)

s Constraint #2: process

neither transition nor sensor model changes in time
Vi PT<Xt’Xt—n:t—1) = PT(XH—l’Xt—TH—l:t)
vVt : PT(Et|Xt) = PT(EH_1|XH_1)

m Under the first-order Markov assumption, DBN can be defined by

initial conditions: Pr(Xj),

transition and sensor model (for single ¢ only).




DBN example (Russell, Norvig: AIMA)

m the network is defined by the initial conditions and single

P(R,)
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(transition and sensor model)

m the network can be unrolled up to an arbitrary time step.
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DBN example (Russell, Norvig: AIMA) — continuation

m classical BN inference enumerates prob of arbitrary event given arbitrary evidence,
= naive approach may ignore the split of variables (state vs evidence), or query the past states,

m what is the difference in prob of rain at day 1 knowing it did not rain at day 4 and umbrellas
appeared at day 27

Pr(ry) = Pr(rg,r1) + Pr(—rg,r1) = Pr(ro)Pr(ri|ro) + Pr(—ry)Pr(ri|—rg) = 0.58,
Matlab BNT, jtree_inf_engine: Pr(ri|—ry, us) = 0.68,

rain prob at day 1 increased with the evidence,
= the number of time steps can be large/unlimited

only specialized tasks can be solved due to computational costs.
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DBN inference tasks

[ ] - P’I“(thel;t)

get the distribution of current state knowing (all) past evidence variables,

the fundamental task in decision making of a rational agent,
0 - Pr(Xiiklewt), k >0

unlike filtering, a future state is of interest (or filtering without late evidence),
o — Pr(Xgleis), 0 <k <t

improved estimate of past states, essential for learning,

. —argmax,  Pr(xile)

L1:t
note it is not repeated smoothing — states mutually interact,

applied e.g. in speech recognition
(speech signal — sentence and not the sequence of the most likely characters).




Filtering

= the aim is to devise a recursive state estimation algorithm

Pr(Xialerii1) = flew, Pr(Xilews)),
filtering at time ¢ and evidence at time ¢t + 1 — filtering at time ¢ + 1,

Pr(Xii1lerri1) = Pr(Xiiilert, err1) = . . . split evidence only
= aPr(e; 1| X1, e14)Pr(Xii1|ers) = ... apply Bayes theorem

= aPr(eq 1| Xe1)Pr(Xii1|ers) . . . follows from Markov property of evidence

m filtering was decomposed into
prediction Pr(X;,1|e1+) and integration of the last evidence Pr(e; 1| X¢i1),
m prediction will be solved by summing out X,
PT<Xt+1‘€1:t) = th PT(XtJrl’SUta el:t)PT(xt‘elzt) = th PT<Xt+1’$t)PT($t‘€1:t)y

= the result is a time and space constant (independent of ¢) recursive function f

fl,t+1 — FORWARD(fl:t; €t+1), where fi; = PT(Xt‘elzt)




Filtering — example

0.580 0.644
0.4*20 0.356
True 0.700 0.861 0.6!91
False 0.300 0.139 0.109

Umbrella

= we observe u; and uy — what is rain prob at day 1 (disregarding us) and rain prob at day 27

Pr(Ri|u) = ar Pr(u|Ry) 32 goegrg gy P7(Bi|Ro) Pr(Ro),

Pr(ri|u;) = a1 x 0.9 x (0.7 x 0.7+ 0.3 x 0.3) = a1 x 0.9 x 0.58,
Pr(=ri|u;) = a; x 0.2 x (0.3 x 0.7+ 0.7 x 0.3) = a3 x 0.2 x 0.42,

a; = 1.65 — Pr(ri|uy) = 0.861, Pr(—ri|u;) = 0.139

Pr(Rolur, us) = aoPr(uz|Re) D g ey —pyy Pr(RalB) Pr(Rylu),
Pr(ra|uy, us) = as x 0.9 x (0.7 x 0.861 + 0.3 x 0.139) = s x 0.9 x 0.644,
Pr(—ry|uy, ug) = ay x 0.2 x (0.3 x 0.861 + 0.7 x 0.139) = ap x 0.2 x 0.356,
ag = 1.54 — Pr(ryluy, ug) = 0.891, Pr(—re|ur, us) = 0.109




DBN vs HMM

s Hidden Markov Model (HMM)
frequent application in speech recognition or biomedicine,
s HMM is a special (and trivial) case of dynamic Bayesian network

state is described by the only variable (usually there is a single evidence variable as well),

i.e., Rain-Umbrella example represents both DBN and HMM,
s HMM is a statistical model doable by polynomial algorithms in the number of time steps

works in simple worlds = the state and sensor variable have a reasonable number of values

* a set of discrete (evidence or state) variables can make a single variable
(whose values correspond to tuples),

simple tasks prevail, HMMs appear more frequently than their DBN generalizations,
however, DBNs are more efficient than HMMSs in complex tasks with sparse dependencies
x DBN decomposes complex systems using independence,

« exponentially fewer parameters than HMMs,

* ex.. 10 binary state variables, 2 parents each
- DBN has 10 x 22 = 400 parameters, HMM has 2!° x 21 ~ 105 parameters.




Bayesian Automated Taxi (project, IJCAI paper, 1995)

m the project of autonomous vehicle in regular highway traffic

overtaking a slower vehicle and bypassing a stationary vehicle,

response to the maneuvers of other drivers or to the change of the number of lanes.
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DBNs — overview

= so far, we applied BNs to model constant relationships among different variables

time was not concerned,

or the model captured a single moment.
= often we need to track time changes

the state of the world is described and its dynamics is modeled,
m for the sake of feasibility, constraints must be introduced

Markov assumption: the current state depends solely on a limited history of past states,

stationarity: transition and evidence probabilities do not change in time, slices stay identi-
cal,

discrete time: slices (world states at particular time steps) can be distinguished,

explicit prior split of variables: hidden/state and observable/evidence variables,
= for each time step a whole slice (state and sensor model) is copied

the network is unrolled then,
DBN can be understood as an equivalent of static BN,
however, this analogy is rarely used due to complexity reasons,

new standard tasks: filtering, prediction, smoothing, most likely explanation.




Other types of variables in BN

s BN must record Pr(P,;|parents(P;)) by definition
CPT is a special case of more general (CPD),
m categorical variables

(can take on one of a limited, and usually fixed, number of possible values),
CPTs again, they just may grow more quickly with the number of parents,

% @; ...the number of unique instantiations of P; parents,,
x 1; ...the number of distinct P; values,

% 1 . ..the maximum number of distinct values of one network variable (r = max r;),
1=1...n

* the total number of independent BN parameters
K =5 a(ri—1),

% for binary variables r; = 2 a ¢; = 2lPerents(Pi)l

x for categorical variables 2 < r;, <ragq; < plparents(Fy)|




Other types of variables in BN

m continuous variables

CPT gets infinite, discretization — categorical variable
* dilemma: large CPTs vs information loss,
representation /approximation with canonical probability distributions

 finite, often simple parametrization,
* the most often option: normal (Gaussian) distribution and its mixtures,

x figure: definition of a continuous node without any parent with 9 parameters.

f(P)




Categorical variable with a continuous parent

m CPD for a categorical child D with a continuous parent C'

soft thresholding using softmax function (multinomial logistic function)

o . . ewiXC+bi
PT<D - dZ’C - C) - Z|D\ w;xctb;
j=1°

W — gives softness (slope) of the threshold, b — gives position of the threshold,
= applicable even for multiple continuous parents
W and B in a matrix format, contribution of the individual parents gets combined,

m binary D — softmax = sigmoid function, m ternary D — probabilities of target values,
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Continuous child node, hybrid parents

= a continuous child €, having continuous parent C, and categorical parent D

the most common CPD form is the linear Gaussian (LG) model

« mean child value varies linearly with the continuous parent, variance is fixed,
Pr(C, =¢c,|C, = ¢, D =d) = N(ug = aqc, + bg, 04)
* reasonable model provided that the range of continuous parent is likely to be narrow,

we define a LG child function for each value of categorical parent

* for each value d a distinct set of parameters a4, b; and o, is defined,
= generalization for more parents

mean child value corresponds to a linear combination of values of continuous parents,

a new LG parametrization must be given for each possible assignment to categorical parents
when having more of them.




Continuous nodes — example (Russell, Norvig: AIMA)

m Fruit sales are influenced by price, the price is given by harvest yields and government subsidy.

1 T T
Subsidy? | @arves) s |
i
/ \ S o6 ]
categorical ~— continuous % 04 r 1
binary g
[aT
\ 02 r .
Buys? o . .
0 2 4 6 3 10 12

0
\\.\\\\\ .
S P(Cost/H Subsidy?=fal
P(COSUHEJ(’)V%%,_SubSidy?:tme) S?g%%&%&%\ {Cost aIVgSt,_u sidy se)
0.3r ‘QQ\%\\\‘Q‘\\\‘}Q\ 0(? L
0.35] AN ;
Yoal T 015F
03 L ot;
0
10

5 Harvest 5 Harvest

5
Cost 10 0 5




Continuous variables — summary

parametrization of continuous variables CPDs

commonly with normal distribution and its mixtures, linearized by continuous parents,
in general not more difficult/demanding than for categorical variables,

several combinations for connections wrt node types exist (see BNT for Matlab),

the global joint probability model

having categorical softmax nodes and continuous LG nodes ...
... joint probability takes a form of multivariate Gaussian

(over all continuous variables for each combination of discrete variable values).
= inference in principle does not change

nevertheless, more difficult, all the algorithms cannot be applied,

they need to be generalized (dealing with atomic events etc.),

new methods for learning from data appear

softmax is in BNT learned by the iteratively reweighted least squares (IRLS) algorithm,

for other node and connection models other dedicated algorithms.




Undirected graphs

= undirected graph model = Markov network = (MRF),

= the same aim as the directed models
to factorize/decompose the joint probability using conditional independence,
= notion of conditional independence in undirected graphs

simple graph separation — in comparison with directed d-separation it is trivial,

A 1L B|C" all the paths from A from B must disappear when all the nodes in C removed.




Undirected graphs

= joint probability factorization is based on the definition of conditional independence

for two nodes not connected by an edge it holds
Pr(P;, Pj|Pii ) = Pr(P| Py ) Pr(P R ygy)
Hammersley-Clifford theorem

Pr(Py, ..., P) = 7 [oemarey Yo(Fo)
Z ...normalization const, mcl{G} ...set of maximal cliques GG, ¥¢ ... potential function

m possible difficulties

factors (usually) do not have interpretation (they are not probabilities),

product of factors must be normalized (to express the joint probability),

m potential functions

HC theorem assumes their strict positivity,
traditionally given as an exponential energy function F

joint probability corresponds to the sum of energies of all maximal cliques.




MRF: example (Bishop: Graphical models, chapter 8)

= noise filtering in a binary image (2 colors)

Figure 8.30 |lllustration of image de-noising using a Markov random field. The top row shows the original
binary image on the left and the corrupted image after randomly changing 10% of the pixels on the right. The
bottom row shows the restored images obtained using iterated conditional models (ICM) on the left and using
the graph-cut algorithm on the right. ICM produces an image where 96% of the pixels agree with the original
image, whereas the corresponding number for graph-cut is 99%.




MRF: example (Bishop: Graphical models, chapter 8)

m structure of the model is proposed a priori

— color of the adjacent pixels strongly correlated,

— distant pixels can be ignored (distant=not an immediate
neighbor — first-order model)
* a regular grid of nodes X;, X; € {—1,1} yi l l
— noise is modeled by another “layer” of nodes Y;, Y; € {—1,1} , ’
* low-level noise (Pr(noise) < 0.5) M/ M
— strong correlation with X, }_/

— two types of maximal cliques with 2 nodes }‘/ﬂ“a
* adjacent X; and X, connected Y; and X,

m corresponds to the Ising model.
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MRF: example (Bishop: Graphical models, chapter 8)

= learning of joint probability Pr(X,Y)
clique energy: —nX;Y; and —(3X,; X,

x 1 and (3 positive parametrization constants,
% in case of agreement of node signs the energy is lower and the probability is higher,
the energy function
EXY)=h), Xi— 0y XiX; —n), XiY,
* first term prefers one of the colors (background color is more frequent a priori),
the target probability

Pr(X,Y) =+ [Iovc(Pe) =  exp—E(X,Y)
= de-noising = learning of the model

Y; is observed (noisy image), we search for X; such that Pr(X,Y) is maximized,
can be done by a gradient-descent algorithm (which concerns pixel coordinates)
1. initialization X (Vi X; =Y}),
2. Vi gradually and repeatedly (in a random order or in a systematic order)

(a) determine the the total energy for X; = +1 and X; = —1,

(b) take the setting with the lower energy,
3. stop if energy did not decrease (after all the cycle V7).




Transformation from directed to undirected model

m an important part of the junction tree inference algorithm,
m clique potentials must concern the conditional probabilities in directed graph,

m this is easy to meet in directed graphs where nodes have at most one parent.

Pr(Py,...,P) =

o (Poy) = Y12(Pr, o) = Pr(Py) Pr(P|Py)
:PT(Pl)PT(PQ|P1)PT(P3|P2>PT(P4’P2) (

) = Yo3( P, P3) = Pr(P3]P)
Yoy (Poy) = V24(Pa, Py) = Pr( Py Ps)




Transformation from directed to undirected model

= the networks with converging nodes must be moralized (see junction tree algorithm),

otherwise, there are some conditional probs that cannot be applied within any of the cliques!

undirected graph would encode a different set of (conditional) independence relationships.

Pr(Py,....P) =—]]ve(Pe) (Z=1)
Pr(P, ..., P) = Z'

P~ ) = P, P, P;) =
= Pr(P)Pr(P,)Pr(Ps| P, P)Pr(P|Ps) vt = 11@17:2(7;3(1);7“(;2)27“(133?1 P)

Yoy (Poy) = V3a(Ps, Py) = Pr(Py|Ps)

m transformation from undirected to directed model more difficult and less frequent.




Summary

BNs belong to a large class of graphical stochastic models,

BN frequently used in

knowledge-based systems, causal diagrams,

changes in the formalism or additional constraints lead to models applicable in other domains

BN vs DBN/HMM
* speech recognition, signal processing, time series,
BN vs MRF

« gases and fluids, society, images,

variables can be both discrete and continuous

for simplicity and educational reasons this course focused on binary variables.




Applications of Bayesian networks

= PATHFINDER (Stanford, 1980’)

diagnosis of the lymph nodes diseases,
tested on 53 patients, diagnostics outperformed the best pathologists,

followed by a series of medical diagnostic systems,
= other diagnostic systems/applications

interpretation of electromyography (EMG),
gas turbines,

corn yields,
m gene expression modeling

mutual interactions among genes (gene regulatory networks),

G1 encodes an enzyme that stimulates expression of another gene G2,
G1 “causes’ G2.

m interactive problem solving in MS Windows systems
troubleshoots both HW and SW problems,

similarly car diagnostics, jet engines etc,
= modeling in geology, hydrology, sociology,

s among others BN Weka classifier.




BN — summary

probability is a rigorous tool for uncertainty modeling,

m each event has its joint probability,

queries answered by aggregation (adding with subsequent division) of atomic events,

needs to be simplified in non-trivial domains,
m the tool is independence and conditional independence
= graph (ind. relationships) + conditional probability distributions
(quantities),
inference is still NP-hard wrt to the number of variables,

solution can be in special network types (singly connected, sparse networks), ex.: trees —
at most one parent,

or approximate inference,
m BNs can be learned from data, two tasks exist

parameter learning, less difficult, can be seen as a subtask of ...

structure learning.




Advantages of Bayesian networks

m the problem structure given as a graph is clear and its semantics understandable for user

it can naturally be interpreted in the cause-effect way, one can also manually generate it,
it implements both causal and diagnostic inference,
evidence can be propagated in an arbitrary way — a universal model,

for comparison, a neural network as a “ black box",

ability to merge prior knowledge with data

existing network (typically outlined by an expert) can be modified to explain the data,

learning purely from data is a special case (empty/random init model),

theoretically sound, robust, widely applicable

small modifications in model result in small perturbations in results, does not overfit,

application in exploration analysis, classification or regression,

ability to deal with missing values and hidden variables

model can estimate a missing value given its relations to other values/variables,

hidden variable may explain “suspicious” dependency between two observed variables,
= what stands against?

learning is difficult,
there is no general and widely-applicable algorithm applicable without its understanding.




Recommended reading, lecture resources

Russel, Norvig: Al: A Modern Approach, Uncertain Knowledge and Reasoning (Part 1V)

representation of CPDs with continuous variables,

temporal probability models (chap. 15, not in the first edition),
Google books (isbn:0136042597),

Murphy: A Brief Introduction to Graphical Models and Bayesian Networks.

BN Toolbox and continuous variables?

http://www.cs.ubc.ca/~murphyk/Bayes/bayes.html,
Bishop: Pattern Recognition & Machine Learning, Graphical Models (Chapter 8)

a general chapter, in this lecture it inspired the part on undirected graphs,

http://research.microsoft.com /en-us/um/people/cmbishop/prml /Bishop-PRML-sample.pdf.
Forbes et al.: The BATmobile: Towards a Bayesian Automated Taxi, |JCAI 1995

TAXI case study,
http://www.cs.berkeley.edu/“russell /papers /ijcai9b.




