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Topics 

Red-Black tree  

– Insert 

– Delete 

B-Tree 

– Motivation 

– Search 

– Insert 

– Delete 

 

 
Based on: 

[Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990] 

[Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996] 

[Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998] 
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Red-Black tree 

Approximately balanced BST 

hRB ≤ 2x hBST        (height ≤ 2x height of balanced tree) 

 

Additional bit for COLOR = {red | black} 

nil (non-existent child) = pointer to      node 

 

nil 

nil nil 

1 1 

leaf inner node 
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Red-Black tree 

A binary search tree is a  red-black  tree if: 
 

1. Every node is either red  or black  

2. Every leaf (nil) is black  

3. If a node is  red, then both its children are black  

4. Every simple path from a node to a descendant  leaf 
contains the same number of black  nodes 

(5. Root is black) 

 

Black-height  bh(x) of a node x is the number of black 

nodes on any path from x to a leaf, not counting x 

black 

black 

black red 

red 

black 

black 

black red 

Black-height bh(x) 
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Red-Black tree 

4 

2 7 

6 9 

5 

1 

2 

1 

1 

2 

black height 
bh(x) 

nil 

0 

1 

nil nil 

nil 

nil nil 

nil 

black height bh(T) = 2 
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nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 

Binary Search Tree -> RB Tree 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

black height bh(T) = 4 

h(T) = 4 

4 

3 

2 

1 
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nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

Binary Search Tree -> RB Tree 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

3 

2 

2 

1 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

black height bh(T) = 3 

h(T) = 4 
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nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

Binary Search Tree -> RB Tree 

3 

3 

2 

1 

black height bh(T) = 3 

h(T) = 4 
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nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

8 

4 12 

2 6 10 14 

1 3 5 7 9 11 13 15 

Binary Search Tree -> RB Tree 

2 

2 

1 

1 

black height bh(T) = 2 

h(T) = 4 
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Red-Black tree 

          of a node x  

• is the number of black nodes on any path from x to a leaf, not 

counting x 

• is equal for all paths from x to a leaf 

• For given h is bh(x) in the range from h/2 to h  

– if ½ of nodes red =>  bh(x)  ½ h(x), h(x)  2 lg(n+1)  

– if all nodes black =>  bh(x) = h(x) = lg(n+1) - 1 

Black-height bh(x) 

Height h(x)         of a RB-tree rooted in node x 

• is at maximum twice of the optimal height of a balanced tree 

• h ≤ 2lg(n+1)                              …. h  (lg(n)) 
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RB-tree height proof 

A red-black tree with n internal nodes has height h at most 2lg(n+1) 

 
Proof: 1. Show that subtree starting at x contains at least 2bh(x)-1 internal nodes.  

   By induction on height of x:  

I.  If x is a leaf, then bh(x) = 0, 2bh(x)-1 = 0 internal nodes     //… nil node 

II. Consider x with height h and two children (with height h -1) 

– x's children black-height is either bh(x) -1 or bh(x)   // black or red 

– Ind. hypothesis: x's children subtree has at least 2bh(x)-1 -1 internal nodes  

– So subtree starting at x contains at least  
(2bh(x)-1 -1) + (2bh(x)-1 -1) + 1 = 2bh(x) - 1 internal nodes => proved 

2. Let h = height of the tree rooted at x  

– min ½ nodes are black on any path to leaf   => bh(x) ≥ h / 2 

– Thus,   n ≥ 2h/2 - 1 <=> n + 1 ≥ 2h/2 <=> lg(n+1) ≥ h / 2  

– h ≤ 2lg(n+1)  

[Cormen, p.264] 
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Inserting in Red-Black Tree 
Color new node Red 

Insert it as in the standard BST 

 

If parent is Black, stop. Tree is a Red-Black tree. 

If parent is Red (3+3 cases)… 

resp. 

While x is not root  and  parent is Red 

 if x’s uncle is Red then case 1  // propagate red up 

 else  if x is Right child then case 2 // double rotation 

  case 3     // single rotation 

Color root Black 

x x 
! 

x x x 

x x 
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Inserting in Red-Black Tree 

4 

2 11 

8 16 

6 

1 

2 

1 

1 

2 

nil 

1 

1 

nil 

nil 

nil nil 

nil 

nil 0 1 

nil nil 0 

If parent is Black, stop. Tree is a Red-Black tree. 

x’s parent is Black x’s parent is Black 

Insert 1 
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!? 

Inserting in Red-Black Tree 

Case 1a 

1 

y 

x 

C 

D B 

A 

C 

D B 

2 

3 4 5 4 5 

! 

bh(x)  

increased by one x is node of interest  

1 

A 

2 

3 

x's uncle is Red 

new x 

x’s parent is Red 

x's uncle y is Red 

x is a Left child 
Loop: x = x.p.p 

Recolor 
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!? 

Inserting in Red-Black Tree 

Case 1b 

2 

y 

x 

C 

D A 

B 

C 

D A 

B 

3 

1 4 5 

2 3 

1 4 5 

new x 

! 

x's uncle is Red 
x is node of interest  

bh(x) 

increased by one 

Loop: x = x.p.p 

x’s parent is Red 

x's uncle y is Red 

x is a Right child 

Recolor 
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Inserting in Red-Black Tree 

Case 2 

2 

y 

x 

C 

D A 

B 

C 

D 

A 

B 

3 

1 4 5 

2 

3 

1 

4 5 

x 

! 

x's uncle is Black 
x is a Right child  

! 

transform to Case 3 

Lrot(x.p) 

x’s parent is Red 

x's uncle y is Black 

x is a Right child 
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Inserting in Red-Black Tree 

Case 3 

x's uncle is Black 
x is a Left child  

C 

D 

A 

B 

2 

3 

1 

4 5 

x 

! 

Terminal case, tree 

is a Red-Black tree 

B 

C A 

2 

D 

5 4 

3 1 

x Rrot(x.p.p) 

x’s parent is Red 

x's uncle y is Black 

x is a Left child 

 Recolor + 

x 

y 
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Inserting in Red-Black Tree 

1 

y 

x 

B 

A C 

D 

2 

3 4 

! 

1 

y 

x 

C 

D B 

A 

2 

3 4 

! 

Cases Right from the grandparent  

are symmetric 

5 5 
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[Cormen90] 

 p[x] = parent of x 

left[x] = left son of x 

    y = uncle of x 

[Cormen90] 

Red uncle y ->recolor up 
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Inserting in Red-Black Tree 

Insertion in O(log(n)) time 

Requires at most two rotations 

 

 

 

DEMO: http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html 

                  (Intuitive, good for understanding) 

       http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html  

       (little different order of re-coloring and rotations) 

http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html


DSA 21 

Deleting in Red-Black Tree 

Find node to delete 

Delete node as in a regular BST 
Node y to be physically deleted will have at most one child x!!! 

 

If we delete a Red node, tree still is a Red-Black tree, stop 

Assume we delete a black node 

 
Let x be the child of deleted (black) node 

If x is red, color it black and stop 

 
while(x is not root) AND ( x is black)  

 move x with virtual black mark through the tree  

 (If x is black, mark it virtually double black      )   

  

A 
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Deleting in Red-Black Tree 

while(x is not root) AND ( x is black) { 

   // move x with virtual black mark      through the tree  

   // just recolor or rotate other subtree up (decrease bh in R subtree) 

   if(red sibling)  

  -> Case 1: Rotate right subtree up, color sibling black, and 

             continue in left subtree with new sibling 

   if(black sibling with both black children)  

  -> Case 2: Color sibling red and go up  

   else // black sibling with one or two red children 

  if(red left child) -> Case 3: rotate to surface  

  Case 4: Rotate right subtree up  

} 

A 
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Deleting in R-B Tree - Case 1 
x is the child of the physically deleted black node => double black  

x’s sibling w (sourozenec) is red 

(x’s parent MUST be black) 

2 

new w 

x 

3 1 4 

5 6 

D 

E B 

C A 

Lrot(x.p) 

x stays at the same black height 

[Possibly transforms to case 2a and terminates – depends on 3,4] 

2 

x 

3 

1 

4 5 6 

B 

D A 

E C 

w 

 Recolor( x.p, w ) + 

Case 1 

A 
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Deleting in R-B Tree - Case 2a 

x’s sibling w is black 

x’s parent is red 

x’s sibling left child is black 

x’s sibling right child is black 

2 

x 

3 

1 

4 5 6 

B 

D A 

E C 

Terminal case, tree is Red-Black tree 

2 

3 

1 

4 5 6 

D A 

E C 

w black up 

Case 2a 

stop 

new x 

B B 
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Deleting in R-B Tree - Case 2b 

x’s sibling w is black 

x’s parent is black 

x’s sibling left child is black 

x’s sibling right child is black 

2 

x 

3 

1 

4 5 6 

B 

D A 

E C 

Decreases x black height by one 

2 

3 

1 

4 5 6 

B 

D A 

E C 

new x 

w black up 

Case 2b 
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Deleting in R-B Tree - Case 3 
x’s sibling w is black 

x’s parent is either 

x’s sibling left child is red          // blocks coloring w red 

x’s sibling right child is black 

2 

x 

3 

1 

4 5 6 

D A 

E C 

Transform to case 4 
x stays at same black height 

2 3 1 

4 

5 6 

C 

D 

E 

w 
A 

B B 

x w Rrot(w) 

Case 3 
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Deleting in R-B Tree - Case 4 
x’s sibling w is black 

x’s parent is either 

x’s sibling left child is either 

x’s sibling right child is red        // blocks coloring w red 

2 

3 

1 

4 5 6 

D A 

E 

Terminal case, tree is Red-Black tree 

x w 

2 3 1 4 

5 6 

E B 

A 

B 

C C 

D 

Lrot(x.p) 

Case 4 

stop 



DSA 28 

Deleting in Red-Black Tree 

[Cormen90] 

Notation similar to AVL 

z = logically removed 

y = physically removed 

x = y’s only son 
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[Cormen90] 

x     = son of removed node 

p[x] = parent of x 

w    = sibling (brother) of x 

R subtree up 

Check L 

Recolor  

Black up 

Go up 

inner R- 

 subtree up 

R subtree up 

stop 
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Deleting in R-B Tree  

Delete time is O(log(n)) 

At most three rotations are done 
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Which BS tree is the best? [Pfaff 2004] 

It is data dependent     

• For random sequences  

     => use unsorted tree, no waste time for rebalancing 

• For mostly random ordering with occasional runs of sorted order  

  => use red-black trees  

• For insertions often in a sorted order and 

– later accesses tend to be random => AVL trees 

– later accesses are sequential or clustered => splay trees   

• self adjusting trees,  

• update each search by moving searched element to the root  
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B-tree as BST on disk  
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B-tree 

Based on [Cormen] and [Maire] 

Order 5 (5-ary tree) 

Min degree t = 3 
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B-tree  

1. Motivation 

2. Multiway search tree 

3. B-tree 

4. Search 

5. Insert 

6. Delete 
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B-tree 

• Large data do not fit into operational memory -> disk 

• Time for disk access is limited by HW 

 (Disk access = Disk-Read, Disk-Write) 

 

• Disk access is MUCH slower compared to instruction 

– 1 disk access ~ 13 000 000 instructions!!!!   

– Number of disk accesses dominates the 

computational time 

Motivation 

DISK : 16 ms 

Seek 8ms + rotational  

delay 7200rpm 8ms  

 

Instruction: 

800 MHz 1,25ns 
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B-tree 

Disk access = Disk-Read, Disk-Write 

– Disk divided into blocks  

(512, 2048, 4096, 8192 bytes) 

– Whole block transferred  

 

– Design a multiway search tree 

– Each node fits to one disk block 

 

 

Motivation 
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B-tree 

= a generalization of Binary search tree    (m=2) 

 

Each node has at most m children     (m>2) 

Internal node with n keys has n+1 successors, n < m 

 (except root) 

Leaf nodes with no successors 

Tree is ordered   % 

Keys in nodes separates the ranges in subtrees   % 

Multiway search tree 
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B-tree 

Multiway search tree – internal node 

© Frederic Maire, QUT 

k1<k2 < … < k5 

Pointers to subtrees 

Keys in internal node separate the ranges of keys in subtrees 
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B-tree 

Multiway search tree – leaf node 

© Frederic Maire, QUT k1<k2 < … < k5 

Leaves have no pointers  to subtrees 

Leaves have no subtrees and do not use pointers 
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B-tree 

    

=  of order m is an m-way search tree, such that 

 

• All leaves have the same height (B-tree is balanced) 

• All internal nodes are constrained to have 

– at least m/2 non-empty children and   (precisely later) 

– at most m    non-empty children 

• The root can have 0 or between  2 to m children 

• 0  - leaf 

• m  - a full node  

B-tree 
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B-tree 

Different authors use different names 

• Order m B-tree 

– Maximal number of children  

– Maximal number of keys   (No. of  children - 1) 

– Minimal number of keys  

• Minimum degree t   

– Minimal number of children [Cormen] 

B-tree – problems with notation 

Order m B-tree 

Minimum degree t 
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B-tree 

Relation between minimal and maximal number of 

children also differs  

For minimal number t of children 

Maximal number m of children is 

• m = 2t – 1   simple B-tree, 

         multiphase update strategy 

• m = 2t         optimized B-tree,  

        singlephase update strategy 

B-tree – problems with notation 
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B-tree 

999 keys 

999 999 999 

999 999 999 

1000 successors 

1000 successors 

1 node 

 999 keys 

1000 nodes 

 999 000 keys 

1 000 000 nodes 

 999 000 000 keys 

B-tree of order m=1000 of height 2 contains  

 1 001 001 nodes (1+1000 + 1 000 000) 

 999 999 999 keys ~ one billion keys (1 miliarda klíčů) 

B-tree example 
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B-tree 

n …  number of keys ki stored in the node n < m. 

  Node with n = m-1 is a full-node 

ki …  n keys, stored in non-decreasing order 

   k1 ≤ k2 ≤ … ≤ kn 

leaf … boolean value, true for leaf, false for internal node 

ci …  n+1=m pointers to successors (undefined for leaves)  

  Keys ki separate the keys in subtree:  

  For keysi in the subtree with root ki holds 
         keys1 ≤ k1 ≤ keys2 ≤ k2 ≤ … ≤ kn ≤ keysn+1  

B-tree node fields 
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B-tree 

• Search 

• Insert 

• Delete 

B-tree algorithms 
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B-tree search 

Similar to BST tree search 

Keys in nodes sequentially or binary search 

 

Input:     pointer to tree root and a key k 

Output:  an ordered pair (y, i), node y and index i  

      such that y.k[i] = k 

       or NIL, if k not found 
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n=1, i=1,2 

n=3, i=1,2,3 

B-tree search 

17 Search 17     Search 18 

 

 

 

 

 

 

  

  

17 not found => return NIL 18 found => return (x, 3) 

18 

3 2 1 4 

x 
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B-tree search 

B-treeSearch(x,k) 

 i  1 

 while i ≤ x.n  and  k > x.k[i]    //sequential search 

  do i  i+1 

  if i ≤ x.n and  k = x.k[i]   

  return (x, i)    // pair: node & index 

  if x.leaf 

  then return NIL 

  else   

   Disk-Read(x.c[i]) // tree traversal 

   return B-treeSearch(x.c[i],k) 
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B-tree search 

Number of disk pages read is  

  O(h) = O(logm n)  

Where  h is tree height and 

     m is the tree order 

     n  is number of tree nodes  

Since num. of keys x.n < m, the while loop takes O(m)  

 and  

total time is O(m logm n) 

B-treeSearch complexity Using tree order m 
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B-tree search 

Number of disk pages read is  

  O(h) = O(logt n)  

Where  h is tree height and 

     t is the minimum degree of B-tree 

     n  is number of tree nodes  

Since num. of keys x.n < 2t, the while loop takes O(t)  

 and  

total time is O(t logt n)  

B-treeSearch complexity Using minimum degree t 
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Two principal strategies 

B-tree update strategies 

1. Multiphase strategy 

 “solve the problem, when appears”      m=2t-1 children 

 

2. Single phase strategy [Cormen] 

 “avoid the future problems”                   m =2t children 

 

Actions: 

 Split full nodes 

 Merge nodes with less than minimum entries 
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B-tree insert - 1.Multiphase strategy 

Insert 17 17 

n=1, i=1,2 

n=3, i=1,2,3 

Insert to a non-full node 
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B-tree insert - 1.Multiphase strategy 

Insert to a full node 

25 

Insert 25 

median 

17 

Node split 

Propagate  

median up 

1.Multiphase strategy 

 “solve the problem, when appears” 
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B-tree insert - 1.Multiphase strategy 

Insert (x, T) - pseudocode 

Find the leaf for x 

If not full, insert x and stop 

while (current_node full)       (node overflow) 

 find median (in keys in the node after insertion of x) 

 split node into two 

 promote median up as new x 

   current_node = parent of current_node or new root 

Insert x and stop 

Top down phase 

Bottom-up phase 

x…key, T…tree 
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B-tree insert - 2.Singlephase strategy 

Principle: “avoid the future problems” 

• Split the full node with 2t-1 keys when enter 

• It creates space for future medians from the children  

• No need to go bottom-up 

 

• Splitting of 

– Root  => tree grows by one 

– Inner node or leaf => parent gets median key 

Top down phase only 
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Insert B 

A C D  E  J K      N O      R S T U  V Y Z        

G M P   X    

A B C  D  E J K      N O      R S T U  V Y Z        

G M P   X    

B-tree insert - 2.Singlephase strategy 

Insert to a non-full node m = 2t = 6 children 

m-1 keys = odd max number 
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Insert Q 

Splitting a passed full node and insert to a not full node 

A B C  D  E J K      N O      R S T U  V Y Z        

G M P   X    

A B C  D  E J K      N O      Q R S      U V        Y Z       

G M P   T   X 

B-tree insert - 2.Singlephase strategy 

A B C  D  E J K      N O      R S      U V        Y Z       

G M P   T   X 

Split RSTUV 

Insert Q to RS 

1 new node 
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Insert L  

A B C  D  E J K      N O      Q R S      U V        Y Z       

G M P   T   X 

A B C  D  E J K L      N O      Q R S      U V        Y Z       

G M        T X 

P   

B-tree insert - 2.Singlephase strategy 

A B C  D  E J K      N O      Q R S      U V        Y Z       

G M        T X 

P   

Splitting a passed full root and insert to a not full node 

Split GMPTX 

Tree grows by 1 

Insert L to JK 

2 new nodes 
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Insert F 

A B     D E F      J K L      N O        Q R S      U V        Y Z       

C G M      T X 

P   

A B C  D  E J K L      N O      Q R S      U V        Y Z       

G M        T X 

P   

B-tree insert - 2.Singlephase strategy 

A B     D E      J K L      N O        Q R S      U V        Y Z       

C G M      T X 

P   

Split ABCDE 

Insert F to DE 
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B-tree insert - 2.Singlephase strategy 

Insert (x, T) - pseudocode 

While searching the leaf x 

 if (node full) 

  find median (in keys in the full node only) 

  split node into two 

  insert median to parent (there is space) 

Insert x and stop 

 

Top down phase only 

x …key, T… tree 
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B-tree delete 

• Search for value to delete 

• Entry is in leaf  

  is simple to delete. Do it. Corrections of number of elements later... 

• Entry is in inner node 

– It serves as separator for two subtrees 

– swap it with predecessor(x) or successor(x)  

– and delete in leaf  

 

 if leaf had more than minimum number of entries 

  delete x from the leaf and STOP 

    else 

  redistribute the values to correct and delete x in leaf  

  (may move the problem up to the parent,  

   problem stops by root, as it has no minimum number of entries) 

Delete (x, btree) - principles Multipass strategy only 

leaf 

Inner node 

Leaf in detail 
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B-tree delete 

Node has less than minimum entries 

• Look to siblings left and right 

• If one of them has more than minimum entries  

– Take some values from it 

– Find new median in the sequence: 

    (sibling values – separator- node values) 

– Make new median a separator (store in parent) 

• Both siblings are on minimum 

– Collapse node – separator – sibbling to one node 

– Remove separator from parent  

– Go up to parent and correct 

J K L      N O      

G M        

J K      M N      

G L        

JKLMN 

J K      N O      

G M        

J K M N    

G        
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B-tree delete 

 if(x to be removed is not in a leaf) 

  swap it with successor(x) 

 currentNode = leaf 

 while(currentNode underflow) 

  try to redistribute entries from an immediate 

  sibling into currentNode via its parent 

  if(impossible) then merge currentNode with a  

  sibling and one entry from the parent  

   currentNode = parrent of CurrentNode  

  

Delete (x, btree) - pseudocode Multipass strategy only 
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Maximum height of B-tree 

h ≤ log    ((n+1)/2) 

 

Gives the upper bound to number of disk accesses 

See [Maire] or [Cormen] for details 

 

m / 2 

half node used for k,  

half of children 
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