
OPPA European Social Fund
Prague & EU: We invest in your future.

 Data structures and algorithms

Part 9

Petr Felkel

10.12. 2007

Searching and Search Trees II

DSA 2

Topics

Red-Black tree

– Insert

– Delete

B-Tree

– Motivation

– Search

– Insert

– Delete

Based on:

[Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and 19, McGraw Hill, 1990]

[Whitney: CS660 Combinatorial Algorithms, San Diego State University, 1996]

[Frederic Maire: An Introduction to Btrees, Queensland University of Technology,1998]

DSA 3

Red-Black tree

Approximately balanced BST

hRB ≤ 2x hBST (height ≤ 2x height of balanced tree)

Additional bit for COLOR = {red | black}

nil (non-existent child) = pointer to node

nil

nil nil

1 1

leaf inner node

DSA 4

Red-Black tree

A binary search tree is a red-black tree if:

1. Every node is either red or black

2. Every leaf (nil) is black

3. If a node is red, then both its children are black

4. Every simple path from a node to a descendant leaf
contains the same number of black nodes

(5. Root is black)

Black-height bh(x) of a node x is the number of black

nodes on any path from x to a leaf, not counting x

black

black

black red

red

black

black

black red

Black-height bh(x)

DSA 5

Red-Black tree

4

2 7

6 9

5

1

2

1

1

2

black height
bh(x)

nil

0

1

nil nil

nil

nil nil

nil

black height bh(T) = 2

DSA 6

nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil

Binary Search Tree -> RB Tree

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

black height bh(T) = 4

h(T) = 4

4

3

2

1

DSA 7

nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

3

2

2

1

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

black height bh(T) = 3

h(T) = 4

DSA 8

nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree

3

3

2

1

black height bh(T) = 3

h(T) = 4

DSA 9

nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

Binary Search Tree -> RB Tree

2

2

1

1

black height bh(T) = 2

h(T) = 4

DSA 10

Red-Black tree

 of a node x

• is the number of black nodes on any path from x to a leaf, not

counting x

• is equal for all paths from x to a leaf

• For given h is bh(x) in the range from h/2 to h

– if ½ of nodes red => bh(x)  ½ h(x), h(x)  2 lg(n+1)

– if all nodes black => bh(x) = h(x) = lg(n+1) - 1

Black-height bh(x)

Height h(x) of a RB-tree rooted in node x

• is at maximum twice of the optimal height of a balanced tree

• h ≤ 2lg(n+1) …. h  (lg(n))

DSA 11

RB-tree height proof

A red-black tree with n internal nodes has height h at most 2lg(n+1)

Proof: 1. Show that subtree starting at x contains at least 2bh(x)-1 internal nodes.

 By induction on height of x:

I. If x is a leaf, then bh(x) = 0, 2bh(x)-1 = 0 internal nodes //… nil node

II. Consider x with height h and two children (with height h -1)

– x's children black-height is either bh(x) -1 or bh(x) // black or red

– Ind. hypothesis: x's children subtree has at least 2bh(x)-1 -1 internal nodes

– So subtree starting at x contains at least
(2bh(x)-1 -1) + (2bh(x)-1 -1) + 1 = 2bh(x) - 1 internal nodes => proved

2. Let h = height of the tree rooted at x

– min ½ nodes are black on any path to leaf => bh(x) ≥ h / 2

– Thus, n ≥ 2h/2 - 1 <=> n + 1 ≥ 2h/2 <=> lg(n+1) ≥ h / 2

– h ≤ 2lg(n+1)

[Cormen, p.264]

DSA 12

Inserting in Red-Black Tree
Color new node Red

Insert it as in the standard BST

If parent is Black, stop. Tree is a Red-Black tree.

If parent is Red (3+3 cases)…

resp.

While x is not root and parent is Red

 if x’s uncle is Red then case 1 // propagate red up

 else if x is Right child then case 2 // double rotation

 case 3 // single rotation

Color root Black

x x
!

x x x

x x

DSA 13

Inserting in Red-Black Tree

4

2 11

8 16

6

1

2

1

1

2

nil

1

1

nil

nil

nil nil

nil

nil 0 1

nil nil 0

If parent is Black, stop. Tree is a Red-Black tree.

x’s parent is Black x’s parent is Black

Insert 1

DSA 14

!?

Inserting in Red-Black Tree

Case 1a

1

y

x

C

D B

A

C

D B

2

3 4 5 4 5

!

bh(x)

increased by one x is node of interest

1

A

2

3

x's uncle is Red

new x

x’s parent is Red

x's uncle y is Red

x is a Left child
Loop: x = x.p.p

Recolor

DSA 15

!?

Inserting in Red-Black Tree

Case 1b

2

y

x

C

D A

B

C

D A

B

3

1 4 5

2 3

1 4 5

new x

!

x's uncle is Red
x is node of interest

bh(x)

increased by one

Loop: x = x.p.p

x’s parent is Red

x's uncle y is Red

x is a Right child

Recolor

DSA 16

Inserting in Red-Black Tree

Case 2

2

y

x

C

D A

B

C

D

A

B

3

1 4 5

2

3

1

4 5

x

!

x's uncle is Black
x is a Right child

!

transform to Case 3

Lrot(x.p)

x’s parent is Red

x's uncle y is Black

x is a Right child

DSA 17

Inserting in Red-Black Tree

Case 3

x's uncle is Black
x is a Left child

C

D

A

B

2

3

1

4 5

x

!

Terminal case, tree

is a Red-Black tree

B

C A

2

D

5 4

3 1

x Rrot(x.p.p)

x’s parent is Red

x's uncle y is Black

x is a Left child

 Recolor +

x

y

DSA 18

Inserting in Red-Black Tree

1

y

x

B

A C

D

2

3 4

!

1

y

x

C

D B

A

2

3 4

!

Cases Right from the grandparent

are symmetric

5 5

DSA 19

[Cormen90]

 p[x] = parent of x

left[x] = left son of x

 y = uncle of x

[Cormen90]

Red uncle y ->recolor up

DSA 20

Inserting in Red-Black Tree

Insertion in O(log(n)) time

Requires at most two rotations

DEMO: http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html

 (Intuitive, good for understanding)

 http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html

 (little different order of re-coloring and rotations)

http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
http://reptar.uta.edu/NOTES5311/REDBLACK/RedBlack.html

DSA 21

Deleting in Red-Black Tree

Find node to delete

Delete node as in a regular BST
Node y to be physically deleted will have at most one child x!!!

If we delete a Red node, tree still is a Red-Black tree, stop

Assume we delete a black node

Let x be the child of deleted (black) node

If x is red, color it black and stop

while(x is not root) AND (x is black)

 move x with virtual black mark through the tree

 (If x is black, mark it virtually double black)

A

DSA 22

Deleting in Red-Black Tree

while(x is not root) AND (x is black) {

 // move x with virtual black mark through the tree

 // just recolor or rotate other subtree up (decrease bh in R subtree)

 if(red sibling)

 -> Case 1: Rotate right subtree up, color sibling black, and

 continue in left subtree with new sibling

 if(black sibling with both black children)

 -> Case 2: Color sibling red and go up

 else // black sibling with one or two red children

 if(red left child) -> Case 3: rotate to surface

 Case 4: Rotate right subtree up

}

A

DSA 23

Deleting in R-B Tree - Case 1
x is the child of the physically deleted black node => double black

x’s sibling w (sourozenec) is red

(x’s parent MUST be black)

2

new w

x

3 1 4

5 6

D

E B

C A

Lrot(x.p)

x stays at the same black height

[Possibly transforms to case 2a and terminates – depends on 3,4]

2

x

3

1

4 5 6

B

D A

E C

w

 Recolor(x.p, w) +

Case 1

A

DSA 24

Deleting in R-B Tree - Case 2a

x’s sibling w is black

x’s parent is red

x’s sibling left child is black

x’s sibling right child is black

2

x

3

1

4 5 6

B

D A

E C

Terminal case, tree is Red-Black tree

2

3

1

4 5 6

D A

E C

w black up

Case 2a

stop

new x

B B

DSA 25

Deleting in R-B Tree - Case 2b

x’s sibling w is black

x’s parent is black

x’s sibling left child is black

x’s sibling right child is black

2

x

3

1

4 5 6

B

D A

E C

Decreases x black height by one

2

3

1

4 5 6

B

D A

E C

new x

w black up

Case 2b

DSA 26

Deleting in R-B Tree - Case 3
x’s sibling w is black

x’s parent is either

x’s sibling left child is red // blocks coloring w red

x’s sibling right child is black

2

x

3

1

4 5 6

D A

E C

Transform to case 4
x stays at same black height

2 3 1

4

5 6

C

D

E

w
A

B B

x w Rrot(w)

Case 3

DSA 27

Deleting in R-B Tree - Case 4
x’s sibling w is black

x’s parent is either

x’s sibling left child is either

x’s sibling right child is red // blocks coloring w red

2

3

1

4 5 6

D A

E

Terminal case, tree is Red-Black tree

x w

2 3 1 4

5 6

E B

A

B

C C

D

Lrot(x.p)

Case 4

stop

DSA 28

Deleting in Red-Black Tree

[Cormen90]

Notation similar to AVL

z = logically removed

y = physically removed

x = y’s only son

DSA 29

[Cormen90]

x = son of removed node

p[x] = parent of x

w = sibling (brother) of x

R subtree up

Check L

Recolor

Black up

Go up

inner R-

 subtree up

R subtree up

stop

DSA 30

Deleting in R-B Tree

Delete time is O(log(n))

At most three rotations are done

DSA 31

Which BS tree is the best? [Pfaff 2004]

It is data dependent

• For random sequences

 => use unsorted tree, no waste time for rebalancing

• For mostly random ordering with occasional runs of sorted order

 => use red-black trees

• For insertions often in a sorted order and

– later accesses tend to be random => AVL trees

– later accesses are sequential or clustered => splay trees

• self adjusting trees,

• update each search by moving searched element to the root

DSA 32

B-tree as BST on disk

DSA 33

B-tree

Based on [Cormen] and [Maire]

Order 5 (5-ary tree)

Min degree t = 3

DSA 34

B-tree

1. Motivation

2. Multiway search tree

3. B-tree

4. Search

5. Insert

6. Delete

DSA 35

B-tree

• Large data do not fit into operational memory -> disk

• Time for disk access is limited by HW

 (Disk access = Disk-Read, Disk-Write)

• Disk access is MUCH slower compared to instruction

– 1 disk access ~ 13 000 000 instructions!!!!

– Number of disk accesses dominates the

computational time

Motivation

DISK : 16 ms

Seek 8ms + rotational

delay 7200rpm 8ms

Instruction:

800 MHz 1,25ns

DSA 36

B-tree

Disk access = Disk-Read, Disk-Write

– Disk divided into blocks

(512, 2048, 4096, 8192 bytes)

– Whole block transferred

– Design a multiway search tree

– Each node fits to one disk block

Motivation

DSA 37

B-tree

= a generalization of Binary search tree (m=2)

Each node has at most m children (m>2)

Internal node with n keys has n+1 successors, n < m

 (except root)

Leaf nodes with no successors

Tree is ordered %

Keys in nodes separates the ranges in subtrees %

Multiway search tree

DSA 38

B-tree

Multiway search tree – internal node

© Frederic Maire, QUT

k1<k2 < … < k5

Pointers to subtrees

Keys in internal node separate the ranges of keys in subtrees

DSA 39

B-tree

Multiway search tree – leaf node

© Frederic Maire, QUT k1<k2 < … < k5

Leaves have no pointers to subtrees

Leaves have no subtrees and do not use pointers

DSA 40

B-tree

= of order m is an m-way search tree, such that

• All leaves have the same height (B-tree is balanced)

• All internal nodes are constrained to have

– at least m/2 non-empty children and (precisely later)

– at most m non-empty children

• The root can have 0 or between 2 to m children

• 0 - leaf

• m - a full node

B-tree

DSA 41

B-tree

Different authors use different names

• Order m B-tree

– Maximal number of children

– Maximal number of keys (No. of children - 1)

– Minimal number of keys

• Minimum degree t

– Minimal number of children [Cormen]

B-tree – problems with notation

Order m B-tree

Minimum degree t

DSA 42

B-tree

Relation between minimal and maximal number of

children also differs

For minimal number t of children

Maximal number m of children is

• m = 2t – 1 simple B-tree,

 multiphase update strategy

• m = 2t optimized B-tree,

 singlephase update strategy

B-tree – problems with notation

DSA 43

B-tree

999 keys

999 999 999

999 999 999

1000 successors

1000 successors

1 node

 999 keys

1000 nodes

 999 000 keys

1 000 000 nodes

 999 000 000 keys

B-tree of order m=1000 of height 2 contains

 1 001 001 nodes (1+1000 + 1 000 000)

 999 999 999 keys ~ one billion keys (1 miliarda klíčů)

B-tree example

DSA 44

B-tree

n … number of keys ki stored in the node n < m.

 Node with n = m-1 is a full-node

ki … n keys, stored in non-decreasing order

 k1 ≤ k2 ≤ … ≤ kn

leaf … boolean value, true for leaf, false for internal node

ci … n+1=m pointers to successors (undefined for leaves)

 Keys ki separate the keys in subtree:

 For keysi in the subtree with root ki holds
 keys1 ≤ k1 ≤ keys2 ≤ k2 ≤ … ≤ kn ≤ keysn+1

B-tree node fields

DSA 45

B-tree

• Search

• Insert

• Delete

B-tree algorithms

DSA 46

B-tree search

Similar to BST tree search

Keys in nodes sequentially or binary search

Input: pointer to tree root and a key k

Output: an ordered pair (y, i), node y and index i

 such that y.k[i] = k

 or NIL, if k not found

DSA 47

n=1, i=1,2

n=3, i=1,2,3

B-tree search

17 Search 17 Search 18

17 not found => return NIL 18 found => return (x, 3)

18

3 2 1 4

x

DSA 48

B-tree search

B-treeSearch(x,k)

 i  1

 while i ≤ x.n and k > x.k[i] //sequential search

 do i  i+1

 if i ≤ x.n and k = x.k[i]

 return (x, i) // pair: node & index

 if x.leaf

 then return NIL

 else

 Disk-Read(x.c[i]) // tree traversal

 return B-treeSearch(x.c[i],k)

DSA 49

B-tree search

Number of disk pages read is

 O(h) = O(logm n)

Where h is tree height and

 m is the tree order

 n is number of tree nodes

Since num. of keys x.n < m, the while loop takes O(m)

 and

total time is O(m logm n)

B-treeSearch complexity Using tree order m

DSA 50

B-tree search

Number of disk pages read is

 O(h) = O(logt n)

Where h is tree height and

 t is the minimum degree of B-tree

 n is number of tree nodes

Since num. of keys x.n < 2t, the while loop takes O(t)

 and

total time is O(t logt n)

B-treeSearch complexity Using minimum degree t

DSA 51

Two principal strategies

B-tree update strategies

1. Multiphase strategy

 “solve the problem, when appears” m=2t-1 children

2. Single phase strategy [Cormen]

 “avoid the future problems” m =2t children

Actions:

 Split full nodes

 Merge nodes with less than minimum entries

DSA 52

B-tree insert - 1.Multiphase strategy

Insert 17 17

n=1, i=1,2

n=3, i=1,2,3

Insert to a non-full node

DSA 53

B-tree insert - 1.Multiphase strategy

Insert to a full node

25

Insert 25

median

17

Node split

Propagate

median up

1.Multiphase strategy

 “solve the problem, when appears”

DSA 54

B-tree insert - 1.Multiphase strategy

Insert (x, T) - pseudocode

Find the leaf for x

If not full, insert x and stop

while (current_node full) (node overflow)

 find median (in keys in the node after insertion of x)

 split node into two

 promote median up as new x

 current_node = parent of current_node or new root

Insert x and stop

Top down phase

Bottom-up phase

x…key, T…tree

DSA 55

B-tree insert - 2.Singlephase strategy

Principle: “avoid the future problems”

• Split the full node with 2t-1 keys when enter

• It creates space for future medians from the children

• No need to go bottom-up

• Splitting of

– Root => tree grows by one

– Inner node or leaf => parent gets median key

Top down phase only

DSA 56

Insert B

A C D E J K N O R S T U V Y Z

G M P X

A B C D E J K N O R S T U V Y Z

G M P X

B-tree insert - 2.Singlephase strategy

Insert to a non-full node m = 2t = 6 children

m-1 keys = odd max number

DSA 57

Insert Q

Splitting a passed full node and insert to a not full node

A B C D E J K N O R S T U V Y Z

G M P X

A B C D E J K N O Q R S U V Y Z

G M P T X

B-tree insert - 2.Singlephase strategy

A B C D E J K N O R S U V Y Z

G M P T X

Split RSTUV

Insert Q to RS

1 new node

DSA 58

Insert L

A B C D E J K N O Q R S U V Y Z

G M P T X

A B C D E J K L N O Q R S U V Y Z

G M T X

P

B-tree insert - 2.Singlephase strategy

A B C D E J K N O Q R S U V Y Z

G M T X

P

Splitting a passed full root and insert to a not full node

Split GMPTX

Tree grows by 1

Insert L to JK

2 new nodes

DSA 59

Insert F

A B D E F J K L N O Q R S U V Y Z

C G M T X

P

A B C D E J K L N O Q R S U V Y Z

G M T X

P

B-tree insert - 2.Singlephase strategy

A B D E J K L N O Q R S U V Y Z

C G M T X

P

Split ABCDE

Insert F to DE

DSA 60

B-tree insert - 2.Singlephase strategy

Insert (x, T) - pseudocode

While searching the leaf x

 if (node full)

 find median (in keys in the full node only)

 split node into two

 insert median to parent (there is space)

Insert x and stop

Top down phase only

x …key, T… tree

DSA 61

B-tree delete

• Search for value to delete

• Entry is in leaf

 is simple to delete. Do it. Corrections of number of elements later...

• Entry is in inner node

– It serves as separator for two subtrees

– swap it with predecessor(x) or successor(x)

– and delete in leaf

 if leaf had more than minimum number of entries

 delete x from the leaf and STOP

 else

 redistribute the values to correct and delete x in leaf

 (may move the problem up to the parent,

 problem stops by root, as it has no minimum number of entries)

Delete (x, btree) - principles Multipass strategy only

leaf

Inner node

Leaf in detail

DSA 62

B-tree delete

Node has less than minimum entries

• Look to siblings left and right

• If one of them has more than minimum entries

– Take some values from it

– Find new median in the sequence:

 (sibling values – separator- node values)

– Make new median a separator (store in parent)

• Both siblings are on minimum

– Collapse node – separator – sibbling to one node

– Remove separator from parent

– Go up to parent and correct

J K L N O

G M

J K M N

G L

JKLMN

J K N O

G M

J K M N

G

DSA 63

B-tree delete

 if(x to be removed is not in a leaf)

 swap it with successor(x)

 currentNode = leaf

 while(currentNode underflow)

 try to redistribute entries from an immediate

 sibling into currentNode via its parent

 if(impossible) then merge currentNode with a

 sibling and one entry from the parent

 currentNode = parrent of CurrentNode

Delete (x, btree) - pseudocode Multipass strategy only

DSA 64

Maximum height of B-tree

h ≤ log ((n+1)/2)

Gives the upper bound to number of disk accesses

See [Maire] or [Cormen] for details

m / 2

half node used for k,

half of children

DSA 65

References

[Cormen] Cormen, Leiserson, Rivest: Introduction to Algorithms, Chapter 14 and
19, McGraw Hill, 1990

Red Black Tree

[Whitney]: CS660 Combinatorial Algorithms, San Diego State University, 1996],
RedBlack, B-trees
http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html#RT
FToC5

[RB tree] John Franco - java applet

 http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html

[RB tree] Robert Lafore. Applets accompanying the book "Data Structures and
Algorithms in Java,“ Second Edition. Robert Lafore, 2002
(applet, v němž si lze vyzkoušet vkládání a mazání u Red-Black Tree)
http://cs.brynmawr.edu/cs206/WorkshopApplets/Chap09/RBTree/RBTree.html

B-tree

[Maire] Frederic Maire: An Introduction to Btrees, Queensland University of
Technology,1998]
http://sky.fit.qut.edu.au/~maire/baobab/lecture/

http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html
http://www.eli.sdsu.edu/courses/fall96/cs660/notes/redBlack/redBlack.html
http://www.ececs.uc.edu/~franco/C321/html/RedBlack/redblack.html
http://cs.brynmawr.edu/cs206/WorkshopApplets/Chap09/RBTree/RBTree.html
http://sky.fit.qut.edu.au/~maire/baobab/lecture/

DSA 66

References

[Wiki] B-tree. Wikipedia, The Free Encyclopedia. (2006, November 24). Retrieved

December 12, 2006, from

http://en.wikipedia.org/w/index.php?title=B-tree&oldid=89805120

[Jones] Jeremy Jones: B-Tree animation - java applet

https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm

Splay tree

[Wiki] Splay tree. Wikipedia, The Free Encyclopedia. (2007, Oct 29) Retrieved

November 27, 2007 from

<http://en.wikipedia.org/w/index.php?title=Splay_tree&oldid=167855497>.

Tree comparison

[Pfaff 2004] Ben Pfaff. Performance Analysis of BSTs in System Software,

extended abstract of this paper appeared in the proceedings of

SIGMETRICS/Performance 2004.

http://www.stanford.edu/~blp/papers/libavl.pdf

http://en.wikipedia.org/w/index.php?title=B-tree&oldid=89805120
http://en.wikipedia.org/w/index.php?title=B-tree&oldid=89805120
http://en.wikipedia.org/w/index.php?title=B-tree&oldid=89805120
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm
https://www.cs.tcd.ie/Jeremy.Jones/vivio/trees/B-tree.htm
http://en.wikipedia.org/w/index.php?title=Splay_tree&oldid=167855497
http://www.stanford.edu/~blp/papers/libavl.pdf

OPPA European Social Fund
Prague & EU: We invest in your future.

