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Languages, grammars, automata 

 

Czech instant sources: 

[1] Prof. Marie Demlová: A4B01JAG  

http://math.feld.cvut.cz/demlova/teaching/jag/predn_jag.html 

    Pages 1-27, in PAL, you may wish to skip:  Proofs, chapters 2.4, 2.6, 2.8. 

 

[2] I. Černá, M. Křetínský, A. Kučera: Automaty a formální jazyky I 

http://is.muni.cz/do/1499/el/estud/fi/js06/ib005/Formalni_jazyky_a_automaty_I.pdf 

   Chapters 1 and 2, skip same parts as in [1].  

 

English sources: 

[3] B. Melichar, J. Holub, T. Polcar: Text Search Algorithms 

http://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a4m33pal/melichar-tsa-lectures-1.pdf 

  Chapters 1.4 and 1.5, it is probably too short, there is nothing to skip. 

 

[4] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory 

folow the link at http://cw.felk.cvut.cz/doku.php/courses/a4m33pal/literatura_odkazy 

  Chapters 1., 2., 3., there is a lot to skip, consult the teacher preferably.  

 

For more references see PAL links page 

http://cw.felk.cvut.cz/doku.php/courses/a4m33pal/literatura_odkazy 
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Deterministic Finite Automaton (DFA)    

Nondeterministic Finite Automaton (NFA)  

 

Both DFA nd NFA consist of: 

  Finite input alphabet  . 

  Finite set of internal states Q. 

  One starting state q0  Q. 

  Nonempty set of accept states F  Q. 

  Transition function . 

 

DFA transition function is  : Q   → Q.  

DFA is always in one of its states. 

DFA transits from current state to another state depending on the current input symbol. 

 

NFA transition function is  :  Q   → P(Q)   (P(Q) is powerset of Q, set of all subsets of Q) 

NFA is always (simultaneously) in a set of any number of its states. 

NFA transits from a state to a set of states depending on the current input symbol. 
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NFA A1, its transition diagram and its transition table 
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NFA  A1 processing input word abcba 
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Indeterminism NFA at work 

continue... 
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NFA A1  has processed word abcba  

and went through read symbols  

and respective sets(!) of states 

 

{0} → a → {1} → b → {3, 4} → c → 

→ {0, 6, 7, 8} → b → {2, 6, 7} → a →  

→ {0, 4, 5, 6}.  

abcba  

abcba  

abcba  

Accepted!  

Indeterminism NFA at work 

...continued 
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NFA simulation without transform to  DFA  

Indeterminism Simulation 5 

Each of current states is occupied by one token. 

Read an input symbol and move tokens accordingly.  

If token has more possibilities it will split into two or more tokens,  

if token has no possibility it will leave the board, uhm, the transition diagram. 

Read b from input  



SetOfStates S = {q0}, S_tmp;  

 

i = 1;           

while ((i <= t.length) && (!S.isEmpty())) { 

  S_tmp = Set.emptySet(); 

  for (q in S)     // for each state in S     

    S_tmp.union(delta(q, t[i]));   

  S = S_tmp; 

  i++; 

} 

return S.containsFinalState();  // true or false 

Input:  NFA , text in array t   

NFA simulation without transform to  DFA  

Indeterminism Simulation 6 

Idea: 

Register all states to which you have just arrived. In the next step  

read the input symbol x and move SIMULTANEOUSLY to ALL states  

to which you can get from  ALL current states along transitions marked  by x.   



NFA to DFA Algorithm 7 

Data 

Each state of DFA is a subset of states of NFA 

Start state of DFA is a one element set containing just start state of NFA. 

A state of DFA is accept state iff it contains at least one accept state of NFA. 

 

Construction 

Create start state of DFA and corresponding first line of its transition table (TT). 

For each state Q of DFA not yet processed do { 

   Decompose Q into its constituent states Q1, ..., Qk of NFA  

    For each symbol x of alphabet do { 

     S = union of all references in NFA table at positions [Q1] [x], ... [Qk][x] 

     if (S is not among states of DFA yet) 

           add S to states of DFA and add corresponding line to TT of DFA 

   } 

  Mark Q as processed 

} 

 

// Remember, empty set is also a set ot states, it can be easily a state of DFA 

Generating DFA A2 equivalent to NFA  A1 using transition tables 
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Generating DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 

... 

NFA to DFA Example 8 

A2 

Copy start state 

continue... 
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Generating DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 

1 34 F 

... 

NFA to DFA Example 9 

Add new state(s) 

continue... 

A2 
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Generating DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 

1 34 F 

2 45 

... 
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Add new state(s) 

continue... 

A2 
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Generating DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 

1 34 F 

2 45 

34 6 0678 

... 

NFA to DFA Example 11 

Add new state(s) 

continue... 

A2 

Note:  

In the example we add  

the empty set to the table 

at the very end of the process 

just to keep the table uncluttered.... 
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Generating DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 

1 34 F 

2 45 

34 6 0678 

45 8 678 F 
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Add new state(s) 

continue... 

A2 
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Generating DFA A2 equivalent to NFA  A1  
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1 34 F 
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Add new state(s) 

... after few more iterations... 

continue... 

A2 
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   DFA A2 equivalent to NFA  A1  

a b c 

0 1 2 n 

1 n 34 n F 

2 45 n n 

34 6 n 0678 

45 n 8 678 F 

6 0 n n 

0678 0167 23467 n 

8 7 7 n 

678 067 67 n 

0167 016 2346 n F 

23467 0456 6 0678 

7 6 6 n 

067 016 2346 n 

67 06 6 n 

016 01 234 n F 

2346 0456 n 0678 

0456 01 28 678 F 

06 01 2 n 

01 1 234 n F 

234 456 n 0678 

28 457 7 n 

456 0 8 678 F 

457 6 68 678 F 

68 07 7 n 

07 16 26 n 

16 0 34 n 

26 045 n n 

654 1 28 678 F 

n n n n 

NFA to DFA Example 14 

A2 

...FINISHED! 



Naïve approach 

1. Align pattern with the beginning of text. 

2. While corresponding symbols of pattern and text match each other 

      move forward by one symbol in pattern.  

3. When symbol mismatch occurs shift pattern forward by one symbol, reset 

position in the pattern to the beginning  of pattern and go to 2. 

4. When the end of pattern is passed report success, reset position in the pattern 

to its beginning and go to 2. 

5. When the end of text is reached stop.  

text 

pattern 

a b c a b c 

x a b c 

text 

pattern 

a b c a b c 

x a b c 

a b c 

a b c 

after a while: etc... 

       match 

       mismatch 

text 

pattern 

a b c a b c 

x a b c 

a b c 

Start Pattern shift 

Text Search 15 

To be used with great caution! 

Might be both efficient and not 

Repetition 



Alphabet: Finite set of symbols. 

Text:         Sequence of symbols of the alphabet.  

Pattern:    Sequence of symbols  of the same alphabet,   

                  pattern occurence is to be detected in the text  

 

Text is often fixed or seldom changed, pattern typically varies (looking for different  

words in the same document), patern is often significantly shorter than the text. 

Text Search  

Notation  

Alphabet:    

Symbols in the text:   t1, t2, … tn   

Symbols in the pattern:   p1, p2, … pm  

Holds m  n, usually m << n 

Text:    ...task is very simple but it is used very freq... 

Pattern:      simple 

Example 

16 Basics 



NFA A3 which accepts just a single word p1p2p3p4. 

A 

0 
p1 

1 
p2 

2 
p3 

3 
p4 

4 

NFA A4 which accepts each word with suffix p1 p2 p3 p4 

with its transition table. 

0 
p1 

1 
p2 

2 
p3 

3 
p4 

4 

z    {p1, p2, p3, p4}  

p1 p2 p3 p4 z 

0 0,1 0 0 0 0 

1 2 

2 3 

3 4 

4 F 

A4 

A3 
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p1 p2 p3 p4 z 

0 01 0 0 0 0 

01 01 02 0 0 0 

02 01 0 03 0 0 

03 01 0 0 04 0 

04 01 0 0 0 0 F 

z   – {p1, p2, p3, p4}  

p1 p2 p4 

p1 

p3,p4,b 
p2,p4,b 

p1 

p1 
p3 

p1 

0 02 03 04 01 

p1 
p2,p3,b 

A 

0 
p1 

1 
p2 

2 
p3 

3 
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NFA A4 which accepts  

each word  with suffix p1 p2 p3 p4 

and its transition table. 

p1 p2 p3 p4 z 

0 0,1 0 0 0 0 

1 2 

2 3 

3 4 

4 F 

DFA A5 is a deterministic equivalent of NFA A4.  

equivalently 

p1 

    =  – {x}  x 

A4 

A5 

repeated 
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a b z 

0 01 0 0 

01 01 02 0 

02 01 03 0 

03 014 0 0 

04 01 02 0 F 

z   – {a, b}  

a b a 

z 

a 
a 

b 

b 

0 02 03 04 01 

A 

0 
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1 
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2 
b 

3 
a 

4 

NFA A6 which accepts  

each word  with suffix abba 

with its transition table 

a b z 

0 0,1 0 0 

1 2 

2 3 

3 4 

4 F 

DFA A7 is a deterministic equivalent of NFA A6. 

It also accepts each word with suffix abba. 

example 

a 

b,z 

b,z 
z 

z 

A6 

A7 
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NFA accepting exactly one word p1p2p3p4. 

A 

0 
p1 

1 
p2 

2 
p3 

3 
p4 

4 

NFA accepting any word with suffix p1p2p3p4.   

  Power of Indeterminism Simple examples 20 
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NFA accepting any word with substring (factor)  p1p2p3p4 anywhere in it. 
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p2 
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p3 

3 
p4 

NFA accepting any word with substring (factor)  p1p2p3p4 anywhere in it. 

A 

4 

Can be used for search, but the following reduction is usual. 

A 

0 
p1 

1 
p2 

2 
p3 

3 
p4 

Text search NFA for finding pattern P =  p1p2p3p4 in the text. 

4 

A, [pos++] 

0 
p1 

1 
p2 

2 
p3 

3 
p4 

Want to know the position of the pattern in the text? 

Equip the transitions with a counter.   

4 

[pos=0] 

NFA stops when  

pattern is found. 
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A 

0 
p1 p2 p3 p4 

NFA accepting any word with subsequence p1p2p3p4 anywhere in it. 

A 

4 

A A A 

1 2 3 

NFA accepting any word with subsequence p1p2p3p4 anywhere in it, 

one symbol in the sequence may be altered. 

Alternatively: NFA accepting any word containing a subsequence Q 

which Hamming distance from p1p2p3p4 is at most 1. 

A 

A A A A 

p1 p2 p3 p4 

p2 p3 p4 

A A A 

A A A 

0 1 2 3 4 

5 6 7 8 

Example 

Example 
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Search NFA can search for more than one pattern simultaneously. 

The number of patterns can be   

finite -- this leads to dictionary automaton (we will meet them later) 

or infinite -- this leads to regular language. 

Grammar  Language                    Automaton 

 

Type-0     Recursively enumerable     Turing machine 

Type-1     Context-sensitive                 Linear-bounded  

                                                              non-deterministic Turing machine 

Type-2     Context-free                         Non-deterministic pushdown automaton 

Type-3     Regular                                Finite state automaton (NFA or DFA) 

Chomsky language hierarchy remainder  

Only regular languages can be processed by NFA/DFA. More complex languages 

cannot. For example any language containing well-formed parentheses   

is context-free and not regular and cannot be recognized by NFA/DFA.  

  Languages Hierarchy Wider picture 23 



 

 

Let L1 and L2 be any languages. Then  

  L1  L2 is union of L1 and L2. It is a set of all words which are in L1 or L2.  

  L1.L2 is concatenation of L1 and L2. It is a set of all words w for which holds 

            w = w1w2 (concatenation of words w1 and w2), where  w1 L1 and w2  L2. 

  L1
* is Kleene star or Kleene closure of language  L1. It is set of all words  

            which are concatenations of any number (incl. zero) of any words of L1  

            in any order. 

 

Closure 

Whenever L1 and L2 are regular languages  

then L1  L2, L1.L2 , L1
* are  regular languages too. 

 

Example 

L1 = {001, 0001, 00001, ...}, L2 = {110, 1110, 11110, ...}. 

L1  L2 = {001, 110, 0001, 1110, 0001, 1110, ...}  

L1.L2 = {001110, 0011110, 00111110, ..., 0001110, 00011110, 000111110, ... } 

L1
* = {, 001, 001001, 001001001, ... 001110, 001110001, ..., 1110, 11110, ... 

          ..., 111101101100001...}    // this one is not easy to list nicely ... or is it? 

 

 

 

Regular Languages A reminder 24 

Operations on regular languages  



Regular expressions defined recursively 

Symbol  is regular expression. 

Each symbol of alphabet   is regular expression. 

Whenever e1 and e2 are regular expressions also strings (e1), e1+e2, e1e2,  (e1)
* 

are regular expressions. 

 

Languages represented by regular expressions (RE) defined recursively 

RE   represents language containing only empty string 

RE x, where x  , represents language {x}. 

Let RE's e1 and e2 represent languages L1 and L2. Then 

  RE (e1) represents L1, RE e1+e2 represents  L1  L2, RE e1e2, represents L1.L2 , 

  RE (e1)
* represents L1

* . 

 

Examples 

0+1(0+1)*    all integers in binary without leading 0's  

0.(0+1)*1     all finite binary fractions  (0, 1) without trailing 0's 
((0+1)(0+1+2+3+4+5+6+7+8+9) + 2(0+1+2+3)):(0+1+2+3+4+5)(0+1+2+3+4+5+6+7+8+9) 

                    all 1440 day's times in format hh:mm from 00:00 to 23:59 

(mon+(wedne+t(ue+hur))s+fri+s(atur+un))day 

                    English names of days in the week  

(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*((2+7)5+(5+0)0)     

                    all decimal integers ≥ 100 divisible by 25 

Regular Expressions Another reminder  25 



Input: Regular expression R containing n characters of the given alphabet. 

Output: NFA recognizing language L(R) described by R.   

 

Create start state S 

 

for each k (1 ≤ k ≤ n) { 

   assign index k  to the k-th character in R  

     // this makes all characters in R unique: c[1], c[2], ..., c[n].   

   create state S[k]           // S[k] corresponds directly to c[k]   

} 

 

for each k (1 ≤ k ≤ n) { 

    if c[k] can be the first character in some string described by R 

       then create transition S  S[k]  labeled by c[k] with index stripped off  

    if c[k] can be the last character in some string described by R 

       then mark S[k] as final state   

    for  each p (1 ≤ p ≤ n) 

       if (c[k] can follow immediately after c[p] in some string described by R) 

         then create transition S[p]  S[k]  labeled by c[k] with index stripped off 

}    

Regular Expressions Conversion to NFA  26 

Convert regular expression to NFA  



b c 

a 

b 

a b 

a 

c a b b 

a b c a 

b b 

c 

R = a*  b  (c + a *b )*  b   + c 

   Add indices: 

R = a1* b2(c3+ a4*b5)* b6  + c7 

a1 b2 c3 a4 b5 

S S c7 

S b6 

NFA accepts L(R) 

Regular expression 

Regular Expression to NFA Example 27 



 

b c 

a 

b 

a b 

a 

c a b b 

a b c a 

b b 

c 

NFA searches the text for any occurence of any word of L(R) 
  

R = a *b  (c + a *b )*  b   + c 

a1 b2 c3 a4 b5 

S c7 

S b6 

The only difference from the NFA accepting R 

S 

Regular Expressions Search NFA 28 



To find a subsequence representing a word  L(R), where R is a regular  

expression, do the following: 

 

Create NFA acepting L(R) 

Add self loops to the states of NFA: 

1. Self loop labeled by   (whole alphabet) at the start state. 

2. Self loop labeled  ─ {x} at each state which outgoing transition(s) are labeled 

    by single x  .                                 // serves as an "optimized" wait loop 

3. Self loop labeled by   at each state  which outgoing transition(s) are labeled  

    by more than single symbol from . // serves as an "usual" wait loop 

4. No self loop to all other states.       // which have no outgoing loop, final ones  

 

Bonus 

Regular Expressions More applications 29 



c 

a,c 

a,c a,c a,b a,b 

a 

b 

a 

c b c c 

a 

b 

a 

c 

a 

a 

NFA searches the text for any occurence of any subsequence  

 representing a word word of L(R) 
  

R = ab + (abcb + cc )*  a   

S a1 

a 

a3 b4 c5 b6 c7 S a9 

S b2 

c8 

S a1 

Bonus 

Regular Expressions Subsequence search 30 

 

 

 



a,b 

a a a a 

a 

b 

b 
b 

b 

a b 

a,b 

a,b a,b a,b a a,b 
1 2 3 

Transforming NFA which searches text for an occurence of a word of a given 

regular language into the equivalent DFA might take exponential space  

and thus also exponential time. Not always, but sometimes yes: 

 

Consider regular expression  R =  a(a+b)(a+b)...(a+b)  over alphabet {a, b}. 

n 0 

Text search NFA1 for R 

a1 a2 0 b3 a4 b5 a6 b7 

Text search NFA2 for R,  why not this one? 

Mystery 

NFA1 

NFA2 

Regular Expressions Effectivity of NFA 31 



R = a(a+b)(a+b) 

     a   b 

0   0,1  0 

1    2   2 

2    3   3 

3    -   - 

a,b 

a,b a a,b 
1 2 3 0 

Text search NFA for R 

NFA table 

          a    b 

   0     01    0 

  01    012   02 

 012   0123  023 

0123   0123  023 

  02    013   03 

 023    013   03 

 013    012   02 

  03     01    0 

DFA table 
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NFA with transitions 

The transition from one state to another can be performed without 

reading any input symbol. Such transition is labeled by symbol . 

0 

1 

2 

3 

5 

6 

b 

a,b a 
4 

b 

c 

c 

a 

a 

 

 

 

closure 

Symbol CLOSURE(p) denotes the set of all states q, 

which can be reached from p using only transitions.  

By definition let CLOSURE(p) = {p}, when there is no transition out from p. 

CLOSURE(0) = {2, 3, 4} 

CLOSURE(1) = {1} 

CLOSURE(2) = {3, 4} 

CLOSURE(3) = {3} 

... 

 

Search the text for more than just exact match 

A9 
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Construction of equivalent NFA without transitions 

 

Input: NFA A with some  transitions. 

Output: NFA A' without transitions. 

 

1. A' = exact copy of A. 

2. Remove all transitions from A'. 

3. In A' for each (q, a) do: add to the set  (p,a) all such states r  

    for which holds       q  CLOSURE(p) and  (q,a) = r. 

4. Add to the set of final states  F in A' all states p for which holds  

                                   CLOSURE(p)   F   . 

p 
a 

r q 
 a 

r q 

a 

p 

t t a,b 
a,b 

a,b 

easy construction 
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0 

1 

2 

3 

5 

6 

b 

a,b a 
4 

b 

c 

c 

a 

a 

 

 

 

1 

3 

5 

6 
a,b 

4 

b 

c 

c 

a 

a 

a 

c 

a 

c 

Equivalent NFA  

without transitions 

NFA with  s transitions 

2 0 

c 

a,b 
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New transitions  

and accept states  

are highlighted 



NFA  for search for any unempty  

substring of pattern p1p2p3p4  

over alphabet  . 

Note the transitions.  

A 

0 
p1 p2 p3 p4 

4 

5 
p2 p3 p4 

8 

9 
p3 p4 

12 
p4 

11 

13 

1 2 3 

7 6 

10 

 

 

 
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Union of two or more NFA: 

Create additional start state S and add transitions from S to start states of  

all involved NFA's. Draw an example yourself! 

Powerful trick! 



Equivalent NFA  for search for any unempty substring of pattern p1p2p3p4   

with transitions removed. 

A 

0 
p1 p2 p3 p4 

4 

5 
p2 p3 p4 

8 

9 
p3 

p4 

12 
p4 

11 

13 

1 2 3 

7 6 

10 

p2 

p3 

p4 

p4 

p3 

p4 

States 5, 9, 12 are unreachable. 

Transformation algorithm NFA -> DFA 

if applied, will neglect them. 
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p1 p2 p3 p4 z 

0 0,1 0,6 0,10 0,13  0 

1 2 0 F 

2 3 0 F 

3 4 0 F 

4 0 F 

5 6 10 13 0 

6 7 0 F 

7 8 0 F 

8 0 F 

9 10 13 0 

10 11 0 F 

11 0 F 

12 13 0 

13 0 F 

p1 p2 p3 p4 z 

0 0.1 0.6 0.10 0.13 0 

0.1 0.1 0.2.6 0.10 0.13 0 F 

0.6 0.1 0.6 0.7.10 0.13 0 F 

0.10 0.1 0.6 0.10 0.11.13 0 F 

0.13 0.1 0.6 0.10 0.13 0 F 

0.2.6  0.1 0.6 0.3.7.10 0.13 0 F 

0.7.10  0.1 0.6 0.10 0.8.11.13 0 F 

0.11.13  0.1 0.6 0.10 0.13 0 F 

0.3.7.10  0.1 0.6 0.10 0.4.8.11.13 0 F 

0.8.11.13  0.1 0.6 0.10 0.13 0 F 

0.4.8.11.13  0.1 0.6 0.10 0.13 0 F 

Transition table of NFA above 

without transitions. 

Transition table of  DFA which is  

equivalent to previous NFA. 

DFA in this case has less  states than the equivalent NFA. 

Q: Does it hold for any automaton of this type? Proof? 
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SetOfStates S = eps_CLOSURE(q0), S_tmp;  

int i = 1;           

while ((i <= t.length) && (!S.empty())) { 

  for (q in S)     // for each state in S 

    if (q.isFinal) 

      print(q.final_state_info); // pattern found      

  S_tmp = Set.empty(); 

  for (q in S)  

    S_tmp.union(eps_CLOSURE(delta(q, t[i]);));    

  S = S_tmp; 

  i++; 

} 

 

return S.containsFinalState();  // true or false 

Input:   NFA , text in array t,   

Text search using NFA simulation without transform to  DFA  

Text Search with epsilon transitions 39 
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