
OPPA European Social Fund
Prague & EU: We invest in your future.

Text Search

Nondeterministic Finite Automata

Text Search Using Automata

Transformation NFA to DFA and Simulation of NFA

Power of Nondeterministic Approach

Regular Expression Search

 Dealing with transitions

B

u

j

~

u

n

e
@# N k

!

q

f

Marko Berezovský

Radek Mařík

PAL 2012

A R

"!"

4

] {

u

@#?
wtf?

g

Languages, grammars, automata

Czech instant sources:

[1] Prof. Marie Demlová: A4B01JAG

http://math.feld.cvut.cz/demlova/teaching/jag/predn_jag.html

 Pages 1-27, in PAL, you may wish to skip: Proofs, chapters 2.4, 2.6, 2.8.

[2] I. Černá, M. Křetínský, A. Kučera: Automaty a formální jazyky I

http://is.muni.cz/do/1499/el/estud/fi/js06/ib005/Formalni_jazyky_a_automaty_I.pdf

 Chapters 1 and 2, skip same parts as in [1].

English sources:

[3] B. Melichar, J. Holub, T. Polcar: Text Search Algorithms

http://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a4m33pal/melichar-tsa-lectures-1.pdf

 Chapters 1.4 and 1.5, it is probably too short, there is nothing to skip.

[4] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory

folow the link at http://cw.felk.cvut.cz/doku.php/courses/a4m33pal/literatura_odkazy

 Chapters 1., 2., 3., there is a lot to skip, consult the teacher preferably.

For more references see PAL links page

http://cw.felk.cvut.cz/doku.php/courses/a4m33pal/literatura_odkazy

NFA, DFA & Text search References 0

Deterministic Finite Automaton (DFA)

Nondeterministic Finite Automaton (NFA)

Both DFA nd NFA consist of:

 Finite input alphabet  .

 Finite set of internal states Q.

 One starting state q0  Q.

 Nonempty set of accept states F  Q.

 Transition function .

DFA transition function is  : Q   → Q.

DFA is always in one of its states.

DFA transits from current state to another state depending on the current input symbol.

NFA transition function is  : Q   → P(Q) (P(Q) is powerset of Q, set of all subsets of Q)

NFA is always (simultaneously) in a set of any number of its states.

NFA transits from a state to a set of states depending on the current input symbol.

Finite Automata Overview 1

1 2

0 0

0

1

1

1

0

1 2

0

1
0 3

0 0

0,1

A1

A2

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a

Indeterminism Basics 2

A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

NFA A1, its transition diagram and its transition table

c

c

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a

2

0 4

3

8

7

6

5

a
b

b

b

c

c

c

a

a

a

b

a,b

a,b

a

2

0 4

8

7

6

5

a

b

b
b

c

c

c

a

a

c

a

b

a

2

0 4

3

8

7

6

5

a

b

b

b
c

c

c

a

a

a

b

a

a,b

a,b

a,b

a,b

1 2

3
4

NFA A1 processing input word abcba

abcba
abcba

abcba abcba

Active states

3

Indeterminism NFA at work

continue...

3

A1

1 1

1 1

c

2

0 4

3

8

7

6

5

a

b

b

b
c

c

c

a

a

a

b

a

a,b

a,b

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a

a,b

a,b

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c
a
a

a

b

a

a,b

a,b

6

4 5

NFA A1 has processed word abcba

and went through read symbols

and respective sets(!) of states

{0} → a → {1} → b → {3, 4} → c →

→ {0, 6, 7, 8} → b → {2, 6, 7} → a →

→ {0, 4, 5, 6}.

abcba

abcba

abcba

Accepted!

Indeterminism NFA at work

...continued

4

1 1

1

NFA simulation without transform to DFA

Indeterminism Simulation 5

Each of current states is occupied by one token.

Read an input symbol and move tokens accordingly.

If token has more possibilities it will split into two or more tokens,

if token has no possibility it will leave the board, uhm, the transition diagram.

Read b from input

SetOfStates S = {q0}, S_tmp;

i = 1;

while ((i <= t.length) && (!S.isEmpty())) {

 S_tmp = Set.emptySet();

 for (q in S) // for each state in S

 S_tmp.union(delta(q, t[i]));

 S = S_tmp;

 i++;

}

return S.containsFinalState(); // true or false

Input: NFA , text in array t

NFA simulation without transform to DFA

Indeterminism Simulation 6

Idea:

Register all states to which you have just arrived. In the next step

read the input symbol x and move SIMULTANEOUSLY to ALL states

to which you can get from ALL current states along transitions marked by x.

NFA to DFA Algorithm 7

Data

Each state of DFA is a subset of states of NFA

Start state of DFA is a one element set containing just start state of NFA.

A state of DFA is accept state iff it contains at least one accept state of NFA.

Construction

Create start state of DFA and corresponding first line of its transition table (TT).

For each state Q of DFA not yet processed do {

 Decompose Q into its constituent states Q1, ..., Qk of NFA

 For each symbol x of alphabet do {

 S = union of all references in NFA table at positions [Q1] [x], ... [Qk][x]

 if (S is not among states of DFA yet)

 add S to states of DFA and add corresponding line to TT of DFA

 }

 Mark Q as processed

}

// Remember, empty set is also a set ot states, it can be easily a state of DFA

Generating DFA A2 equivalent to NFA A1 using transition tables

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

...

NFA to DFA Example 8

A2

Copy start state

continue...

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

1 34 F

...

NFA to DFA Example 9

Add new state(s)

continue...

A2

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

1 34 F

2 45

...

NFA to DFA Example 10

Add new state(s)

continue...

A2

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

1 34 F

2 45

34 6 0678

...

NFA to DFA Example 11

Add new state(s)

continue...

A2

Note:

In the example we add

the empty set to the table

at the very end of the process

just to keep the table uncluttered....

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

1 34 F

2 45

34 6 0678

45 8 678 F

...

NFA to DFA Example 12

Add new state(s)

continue...

A2

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

Generating DFA A2 equivalent to NFA A1

a b c

0 1 2

1 34 F

2 45

34 6 0678

45 8 678 F

6 0

0678 0167 23467

8 7 7

678 067 67

0167 016 2346 F

23467 0456 6 0678

7 6 6

067

...

NFA to DFA Example 13

Add new state(s)

... after few more iterations...

continue...

A2

c

2

0 4

3

8

7

6

5

a

b

b

b

c

c

c

a

a

a

b

a,b

a,b

a A1

1

a b c

0 1 2

1 3,4 F

2 4,5

3 6 0

4 6,7,8

5 8 F

6 0

7 6 6

8 7 7

 DFA A2 equivalent to NFA A1

a b c

0 1 2 n

1 n 34 n F

2 45 n n

34 6 n 0678

45 n 8 678 F

6 0 n n

0678 0167 23467 n

8 7 7 n

678 067 67 n

0167 016 2346 n F

23467 0456 6 0678

7 6 6 n

067 016 2346 n

67 06 6 n

016 01 234 n F

2346 0456 n 0678

0456 01 28 678 F

06 01 2 n

01 1 234 n F

234 456 n 0678

28 457 7 n

456 0 8 678 F

457 6 68 678 F

68 07 7 n

07 16 26 n

16 0 34 n

26 045 n n

654 1 28 678 F

n n n n

NFA to DFA Example 14

A2

...FINISHED!

Naïve approach

1. Align pattern with the beginning of text.

2. While corresponding symbols of pattern and text match each other

 move forward by one symbol in pattern.

3. When symbol mismatch occurs shift pattern forward by one symbol, reset

position in the pattern to the beginning of pattern and go to 2.

4. When the end of pattern is passed report success, reset position in the pattern

to its beginning and go to 2.

5. When the end of text is reached stop.

text

pattern

a b c a b c

x a b c

text

pattern

a b c a b c

x a b c

a b c

a b c

after a while: etc...

 match

 mismatch

text

pattern

a b c a b c

x a b c

a b c

Start Pattern shift

Text Search 15

To be used with great caution!

Might be both efficient and not

Repetition

Alphabet: Finite set of symbols.

Text: Sequence of symbols of the alphabet.

Pattern: Sequence of symbols of the same alphabet,

 pattern occurence is to be detected in the text

Text is often fixed or seldom changed, pattern typically varies (looking for different

words in the same document), patern is often significantly shorter than the text.

Text Search

Notation

Alphabet: 

Symbols in the text: t1, t2, … tn

Symbols in the pattern: p1, p2, … pm

Holds m  n, usually m << n

Text: ...task is very simple but it is used very freq...

Pattern: simple

Example

16 Basics

NFA A3 which accepts just a single word p1p2p3p4.

A

0
p1

1
p2

2
p3

3
p4

4

NFA A4 which accepts each word with suffix p1 p2 p3 p4

with its transition table.

0
p1

1
p2

2
p3

3
p4

4

z    {p1, p2, p3, p4}

p1 p2 p3 p4 z

0 0,1 0 0 0 0

1 2

2 3

3 4

4 F

A4

A3

 Power of Indeterminism Examples 17

p1 p2 p3 p4 z

0 01 0 0 0 0

01 01 02 0 0 0

02 01 0 03 0 0

03 01 0 0 04 0

04 01 0 0 0 0 F

z   – {p1, p2, p3, p4}

p1 p2 p4

p1

p3,p4,b
p2,p4,b

p1

p1
p3

p1

0 02 03 04 01

p1
p2,p3,b

A

0
p1

1
p2

2
p3

3
p4

4

NFA A4 which accepts

each word with suffix p1 p2 p3 p4

and its transition table.

p1 p2 p3 p4 z

0 0,1 0 0 0 0

1 2

2 3

3 4

4 F

DFA A5 is a deterministic equivalent of NFA A4.

equivalently

p1

 =  – {x} x

A4

A5

repeated

 Power of Indeterminism Easy description 18

a b z

0 01 0 0

01 01 02 0

02 01 03 0

03 014 0 0

04 01 02 0 F

z   – {a, b}

a b a

z

a
a

b

b

0 02 03 04 01

A

0
a

1
b

2
b

3
a

4

NFA A6 which accepts

each word with suffix abba

with its transition table

a b z

0 0,1 0 0

1 2

2 3

3 4

4 F

DFA A7 is a deterministic equivalent of NFA A6.

It also accepts each word with suffix abba.

example

a

b,z

b,z
z

z

A6

A7

 Power of Indeterminism Easy construction 19

NFA accepting exactly one word p1p2p3p4.

A

0
p1

1
p2

2
p3

3
p4

4

NFA accepting any word with suffix p1p2p3p4.

 Power of Indeterminism Simple examples 20

A

0
p1

1
p2

2
p3

3
p4

NFA accepting any word with substring (factor) p1p2p3p4 anywhere in it.

A

4

0
p1

1
p2

2
p3

3
p4

4

A

0
p1

1
p2

2
p3

3
p4

NFA accepting any word with substring (factor) p1p2p3p4 anywhere in it.

A

4

Can be used for search, but the following reduction is usual.

A

0
p1

1
p2

2
p3

3
p4

Text search NFA for finding pattern P = p1p2p3p4 in the text.

4

A, [pos++]

0
p1

1
p2

2
p3

3
p4

Want to know the position of the pattern in the text?

Equip the transitions with a counter.

4

[pos=0]

NFA stops when

pattern is found.

 Power of Indeterminism Easy modifications 21

A

0
p1 p2 p3 p4

NFA accepting any word with subsequence p1p2p3p4 anywhere in it.

A

4

A A A

1 2 3

NFA accepting any word with subsequence p1p2p3p4 anywhere in it,

one symbol in the sequence may be altered.

Alternatively: NFA accepting any word containing a subsequence Q

which Hamming distance from p1p2p3p4 is at most 1.

A

A A A A

p1 p2 p3 p4

p2 p3 p4

A A A

A A A

0 1 2 3 4

5 6 7 8

Example

Example

 Power of Indeterminism Examples 22

Search NFA can search for more than one pattern simultaneously.

The number of patterns can be

finite -- this leads to dictionary automaton (we will meet them later)

or infinite -- this leads to regular language.

Grammar Language Automaton

Type-0 Recursively enumerable Turing machine

Type-1 Context-sensitive Linear-bounded

 non-deterministic Turing machine

Type-2 Context-free Non-deterministic pushdown automaton

Type-3 Regular Finite state automaton (NFA or DFA)

Chomsky language hierarchy remainder

Only regular languages can be processed by NFA/DFA. More complex languages

cannot. For example any language containing well-formed parentheses

is context-free and not regular and cannot be recognized by NFA/DFA.

 Languages Hierarchy Wider picture 23

Let L1 and L2 be any languages. Then

 L1  L2 is union of L1 and L2. It is a set of all words which are in L1 or L2.

 L1.L2 is concatenation of L1 and L2. It is a set of all words w for which holds

 w = w1w2 (concatenation of words w1 and w2), where w1 L1 and w2  L2.

 L1
* is Kleene star or Kleene closure of language L1. It is set of all words

 which are concatenations of any number (incl. zero) of any words of L1

 in any order.

Closure

Whenever L1 and L2 are regular languages

then L1  L2, L1.L2 , L1
* are regular languages too.

Example

L1 = {001, 0001, 00001, ...}, L2 = {110, 1110, 11110, ...}.

L1  L2 = {001, 110, 0001, 1110, 0001, 1110, ...}

L1.L2 = {001110, 0011110, 00111110, ..., 0001110, 00011110, 000111110, ... }

L1
* = {, 001, 001001, 001001001, ... 001110, 001110001, ..., 1110, 11110, ...

 ..., 111101101100001...} // this one is not easy to list nicely ... or is it?

Regular Languages A reminder 24

Operations on regular languages

Regular expressions defined recursively

Symbol  is regular expression.

Each symbol of alphabet  is regular expression.

Whenever e1 and e2 are regular expressions also strings (e1), e1+e2, e1e2, (e1)
*

are regular expressions.

Languages represented by regular expressions (RE) defined recursively

RE  represents language containing only empty string

RE x, where x  , represents language {x}.

Let RE's e1 and e2 represent languages L1 and L2. Then

 RE (e1) represents L1, RE e1+e2 represents L1  L2, RE e1e2, represents L1.L2 ,

 RE (e1)
* represents L1

* .

Examples

0+1(0+1)* all integers in binary without leading 0's

0.(0+1)*1 all finite binary fractions  (0, 1) without trailing 0's
((0+1)(0+1+2+3+4+5+6+7+8+9) + 2(0+1+2+3)):(0+1+2+3+4+5)(0+1+2+3+4+5+6+7+8+9)

 all 1440 day's times in format hh:mm from 00:00 to 23:59

(mon+(wedne+t(ue+hur))s+fri+s(atur+un))day

 English names of days in the week

(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*((2+7)5+(5+0)0)

 all decimal integers ≥ 100 divisible by 25

Regular Expressions Another reminder 25

Input: Regular expression R containing n characters of the given alphabet.

Output: NFA recognizing language L(R) described by R.

Create start state S

for each k (1 ≤ k ≤ n) {

 assign index k to the k-th character in R

 // this makes all characters in R unique: c[1], c[2], ..., c[n].

 create state S[k] // S[k] corresponds directly to c[k]

}

for each k (1 ≤ k ≤ n) {

 if c[k] can be the first character in some string described by R

 then create transition S  S[k] labeled by c[k] with index stripped off

 if c[k] can be the last character in some string described by R

 then mark S[k] as final state

 for each p (1 ≤ p ≤ n)

 if (c[k] can follow immediately after c[p] in some string described by R)

 then create transition S[p]  S[k] labeled by c[k] with index stripped off

}

Regular Expressions Conversion to NFA 26

Convert regular expression to NFA

b c

a

b

a b

a

c a b b

a b c a

b b

c

R = a* b (c + a *b)* b + c

 Add indices:

R = a1* b2(c3+ a4*b5)* b6 + c7

a1 b2 c3 a4 b5

S S c7

S b6

NFA accepts L(R)

Regular expression

Regular Expression to NFA Example 27



b c

a

b

a b

a

c a b b

a b c a

b b

c

NFA searches the text for any occurence of any word of L(R)

R = a *b (c + a *b)* b + c

a1 b2 c3 a4 b5

S c7

S b6

The only difference from the NFA accepting R

S

Regular Expressions Search NFA 28

To find a subsequence representing a word  L(R), where R is a regular

expression, do the following:

Create NFA acepting L(R)

Add self loops to the states of NFA:

1. Self loop labeled by  (whole alphabet) at the start state.

2. Self loop labeled  ─ {x} at each state which outgoing transition(s) are labeled

 by single x  . // serves as an "optimized" wait loop

3. Self loop labeled by  at each state which outgoing transition(s) are labeled

 by more than single symbol from . // serves as an "usual" wait loop

4. No self loop to all other states. // which have no outgoing loop, final ones

Bonus

Regular Expressions More applications 29

c

a,c

a,c a,c a,b a,b

a

b

a

c b c c

a

b

a

c

a

a

NFA searches the text for any occurence of any subsequence

 representing a word word of L(R)

R = ab + (abcb + cc)* a

S a1

a

a3 b4 c5 b6 c7 S a9

S b2

c8

S a1

Bonus

Regular Expressions Subsequence search 30







a,b

a a a a

a

b

b
b

b

a b

a,b

a,b a,b a,b a a,b
1 2 3

Transforming NFA which searches text for an occurence of a word of a given

regular language into the equivalent DFA might take exponential space

and thus also exponential time. Not always, but sometimes yes:

Consider regular expression R = a(a+b)(a+b)...(a+b) over alphabet {a, b}.

n 0

Text search NFA1 for R

a1 a2 0 b3 a4 b5 a6 b7

Text search NFA2 for R, why not this one?

Mystery

NFA1

NFA2

Regular Expressions Effectivity of NFA 31

R = a(a+b)(a+b)

 a b

0 0,1 0

1 2 2

2 3 3

3 - -

a,b

a,b a a,b
1 2 3 0

Text search NFA for R

NFA table

 a b

 0 01 0

 01 012 02

 012 0123 023

0123 0123 023

 02 013 03

 023 013 03

 013 012 02

 03 01 0

DFA table

Regular Expressions Effectivity of NFA 32

NFA with transitions

The transition from one state to another can be performed without

reading any input symbol. Such transition is labeled by symbol .

0

1

2

3

5

6

b

a,b a
4

b

c

c

a

a







closure

Symbol CLOSURE(p) denotes the set of all states q,

which can be reached from p using only transitions.

By definition let CLOSURE(p) = {p}, when there is no transition out from p.

CLOSURE(0) = {2, 3, 4}

CLOSURE(1) = {1}

CLOSURE(2) = {3, 4}

CLOSURE(3) = {3}

...

Search the text for more than just exact match

A9

Epsilon Transitions Definition/example 33

Construction of equivalent NFA without transitions

Input: NFA A with some transitions.

Output: NFA A' without transitions.

1. A' = exact copy of A.

2. Remove all transitions from A'.

3. In A' for each (q, a) do: add to the set (p,a) all such states r

 for which holds q  CLOSURE(p) and (q,a) = r.

4. Add to the set of final states F in A' all states p for which holds

 CLOSURE(p)  F  .

p
a

r q
 a

r q

a

p

t t a,b
a,b

a,b

easy construction

Epsilon Transitions Removal 34

0

1

2

3

5

6

b

a,b a
4

b

c

c

a

a







1

3

5

6
a,b

4

b

c

c

a

a

a

c

a

c

Equivalent NFA

without transitions

NFA with s transitions

2 0

c

a,b

Epsilon Ttransitions Removed 35

New transitions

and accept states

are highlighted

NFA for search for any unempty

substring of pattern p1p2p3p4

over alphabet  .

Note the transitions.

A

0
p1 p2 p3 p4

4

5
p2 p3 p4

8

9
p3 p4

12
p4

11

13

1 2 3

7 6

10







Epsilon Transitions Application 36

Union of two or more NFA:

Create additional start state S and add transitions from S to start states of

all involved NFA's. Draw an example yourself!

Powerful trick!

Equivalent NFA for search for any unempty substring of pattern p1p2p3p4

with transitions removed.

A

0
p1 p2 p3 p4

4

5
p2 p3 p4

8

9
p3

p4

12
p4

11

13

1 2 3

7 6

10

p2

p3

p4

p4

p3

p4

States 5, 9, 12 are unreachable.

Transformation algorithm NFA -> DFA

if applied, will neglect them.

Epsilon Transitions Application cont. 37

p1 p2 p3 p4 z

0 0,1 0,6 0,10 0,13 0

1 2 0 F

2 3 0 F

3 4 0 F

4 0 F

5 6 10 13 0

6 7 0 F

7 8 0 F

8 0 F

9 10 13 0

10 11 0 F

11 0 F

12 13 0

13 0 F

p1 p2 p3 p4 z

0 0.1 0.6 0.10 0.13 0

0.1 0.1 0.2.6 0.10 0.13 0 F

0.6 0.1 0.6 0.7.10 0.13 0 F

0.10 0.1 0.6 0.10 0.11.13 0 F

0.13 0.1 0.6 0.10 0.13 0 F

0.2.6 0.1 0.6 0.3.7.10 0.13 0 F

0.7.10 0.1 0.6 0.10 0.8.11.13 0 F

0.11.13 0.1 0.6 0.10 0.13 0 F

0.3.7.10 0.1 0.6 0.10 0.4.8.11.13 0 F

0.8.11.13 0.1 0.6 0.10 0.13 0 F

0.4.8.11.13 0.1 0.6 0.10 0.13 0 F

Transition table of NFA above

without transitions.

Transition table of DFA which is

equivalent to previous NFA.

DFA in this case has less states than the equivalent NFA.

Q: Does it hold for any automaton of this type? Proof?

Epsilon Transitions Removed / DFA 38

SetOfStates S = eps_CLOSURE(q0), S_tmp;

int i = 1;

while ((i <= t.length) && (!S.empty())) {

 for (q in S) // for each state in S

 if (q.isFinal)

 print(q.final_state_info); // pattern found

 S_tmp = Set.empty();

 for (q in S)

 S_tmp.union(eps_CLOSURE(delta(q, t[i]);));

 S = S_tmp;

 i++;

}

return S.containsFinalState(); // true or false

Input: NFA , text in array t,

Text search using NFA simulation without transform to DFA

Text Search with epsilon transitions 39

OPPA European Social Fund
Prague & EU: We invest in your future.

